Fan Liu


2025

pdf bib
CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG
Yang Tian | Fan Liu | Jingyuan Zhang | V. W. | Yupeng Hu | Liqiang Nie
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Retrieval-Augmented Generation (MMRAG) has been introduced to enhance Multimodal Large Language Models by incorporating externally retrieved multimodal knowledge, but it introduces two challenges: Parametric-Retrieved Knowledge Inconsistency (PRKI), where discrepancies between parametric and retrieved knowledge create uncertainty in determining reliability, and Visual-Textual Knowledge Inconsistency (VTKI), where misalignment between visual and textual sources disrupts entity representation. To address these challenges, we propose Cross-source knowledge Reconciliation for MultiModal RAG (CoRe-MMRAG), a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources. CoRe-MMRAG follows a four-stage pipeline: it first generates an internal response from parametric knowledge, then selects the most relevant multimodal evidence via joint similarity assessment, generates an external response, and finally integrates both to produce a reliable answer. Additionally, a specialized training paradigm enhances knowledge source discrimination, multimodal integration, and unified answer generation. Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods, achieving 5.6% and 9.3% performance gains on InfoSeek and Encyclopedic-VQA, respectively. We release code and data at https://github.com/TyangJN/CoRe-MMRAG.

pdf bib
Chain-of-Talkers (CoTalk): Fast Human Annotation of Dense Image Captions
Yijun Shen | Delong Chen | Fan Liu | Xingyu Wang | Chuanyi Zhang | Liang Yao | Yuhui Zheng
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

While densely annotated image captions significantly facilitate the learning of robust vision-language alignment, methodologies for systematically optimizing human annotation efforts remain underexplored. We introduce Chain-of-Talkers (CoTalk), an AI-in-the-loop methodology designed to maximize the number of annotated samples and improve their comprehensiveness under fixed budget constraints (e.g., total human annotation time). The framework is built upon two key insights. First, sequential annotation reduces redundant workload compared to conventional parallel annotation, as subsequent annotators only need to annotate the “residual”—the missing visual information that previous annotations have not covered. Second, humans process textual input faster by reading while outputting annotations with much higher throughput via talking; thus a multimodal interface enables optimized efficiency. We evaluate our framework from two aspects: intrinsic evaluations that assess the comprehensiveness of semantic units, obtained by parsing detailed captions into object-attribute trees and analyzing their effective connections; extrinsic evaluation measures the practical usage of the annotated captions in facilitating vision-language alignment. Experiments with eight participants show our Chain-of-Talkers (CoTalk) improves annotation speed (0.42 vs. 0.30 units/sec) and retrieval performance (41.13% vs. 40.52%) over the parallel method.

pdf bib
TP-RAG: Benchmarking Retrieval-Augmented Large Language Model Agents for Spatiotemporal-Aware Travel Planning
Hang Ni | Fan Liu | Xinyu Ma | Lixin Su | Shuaiqiang Wang | Dawei Yin | Hui Xiong | Hao Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have shown promise in automating travel planning, yet they often fall short in addressing nuanced spatiotemporal rationality. While existing benchmarks focus on basic plan validity, they neglect critical aspects such as route efficiency, POI appeal, and real-time adaptability. This paper introduces **TP-RAG**, the first benchmark tailored for retrieval-augmented, spatiotemporal-aware travel planning. Our dataset includes 2,348 real-world travel queries, 85,575 fine-grain annotated POIs, and 18,784 high-quality travel trajectory references sourced from online tourist documents, enabling dynamic and context-aware planning. Through extensive experiments, we reveal that integrating reference trajectories significantly improves spatial efficiency and POI rationality of the travel plan, while challenges persist in universality and robustness due to conflicting references and noisy data. To address these issues, we propose *EvoRAG*, an evolutionary framework that potently synergizes diverse retrieved trajectories with LLMs’ intrinsic reasoning. *EvoRAG* achieves state-of-the-art performance, improving spatiotemporal compliance and reducing commonsense violation compared to ground-up and retrieval-augmented baselines. Our work underscores the potential of hybridizing Web knowledge with LLM-driven optimization, paving the way for more reliable and adaptive travel planning agents.

pdf bib
PEToolLLM: Towards Personalized Tool Learning in Large Language Models
Qiancheng Xu | Yongqi Li | Heming Xia | Fan Liu | Min Yang | Wenjie Li
Findings of the Association for Computational Linguistics: ACL 2025

Tool learning has emerged as a promising direction by extending Large Language Models’ (LLMs) capabilities with external tools. Existing tool learning studies primarily focus on the general-purpose tool-use capability, which addresses explicit user requirements in instructions. However, they overlook the importance of personalized tool-use capability, leading to an inability to handle implicit user preferences. To address the limitation, we first formulate the task of personalized tool learning, which integrates user’s interaction history towards personalized tool usage. To fill the gap of missing benchmarks, we construct PEToolBench, featuring diverse user preferences reflected in interaction history under three distinct personalized settings, and encompassing a wide range of tool-use scenarios. Moreover, we propose a framework PEToolLLaMA to adapt LLMs to the personalized tool learning task, which is trained through supervised fine-tuning and direct preference optimization. Extensive experiments on PEToolBench demonstrate the superiority of PEToolLLaMA over existing LLMs. We release code and data at https://github.com/travis-xu/PEToolBench.