Ambiguity is pervasive in real-world questions, yet large language models (LLMs) often respond with confident answers rather than seeking clarification. In this work, we show that question ambiguity is linearly encoded in the internal representations of LLMs and can be both detected and controlled at the neuron level. During the model’s pre-filling stage, we identify that a small number of neurons, as few as one, encode question ambiguity information. Probes trained on these Ambiguity-Encoding Neurons (AENs) achieve strong performance on ambiguity detection and generalize across datasets, outperforming prompting-based and representation-based baselines. Layerwise analysis reveals that AENs emerge from shallow layers, suggesting early encoding of ambiguity signals in the model’s processing pipeline. Finally, we show that through manipulating AENs, we can control LLM’s behavior from direct answering to abstention. Our findings reveal that LLMs form compact internal representations of question ambiguity, enabling interpretable and controllable behavior.
In Natural Language Processing (NLP), the Elo rating system, well-established for ranking dynamic competitors in games like chess, has seen increasing adoption for evaluating Large Language Models (LLMs) through “A vs B” paired comparisons. However, while popular, the system’s suitability for assessing entities with constant skill levels, such as LLMs, remains relatively unexplored. Our study investigates the sensitivity and reproducibility of Elo scores for LLMs, integrating both synthetic and human feedback. We show that Elo ratings for LLMs stabilize with 100 or more comparison permutations. A lower K-factor is preferable for closely matched models, whereas a higher K-factor better distinguishes models with clear performance differences. We also report that transitivity (A B and B C implies A C) does not consistently hold, particularly when models demonstrate similar performance. Our empirical findings provide guidelines for more reliable LLM evaluation.
Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.