Edward Curry


2025

pdf bib
KGE Calibrator: An Efficient Probability Calibration Method of Knowledge Graph Embedding Models for Trustworthy Link Prediction
Yang Yang | Mohan Timilsina | Edward Curry
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Knowledge graph embedding (KGE) models are designed for the task of link prediction, which aims to infer missing triples by learning representations for entities and relations. While KGE models excel at ranking-based link prediction, the critical issue of probability calibration has been largely overlooked, resulting in uncalibrated estimates that limit their adoption in high-stakes domains where trustworthy predictions are essential. Addressing this is challenging, as we demonstrate that existing calibration methods are ill-suited to KGEs, often significantly degrading the essential ranking performance they are meant to support. To overcome this, we introduce the KGE Calibrator (KGEC), the first probability calibration method tailored for KGE models to enhance the trustworthiness of their predictions. KGEC integrates three key techniques: a Jump Selection Strategy that improves efficiency by selecting the most informative instances while filtering out less significant ones; Multi-Binning Scaling, which models different confidence levels separately to increase capacity and flexibility; and a Wasserstein distance-based calibration loss that further boosts calibration performance. Extensive experiments across multiple datasets demonstrate that KGEC consistently outperforms existing calibration methods in terms of both effectiveness and efficiency, making it a promising solution for calibration in KGE models.

2017

pdf bib
Word Re-Embedding via Manifold Dimensionality Retention
Souleiman Hasan | Edward Curry
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Word embeddings seek to recover a Euclidean metric space by mapping words into vectors, starting from words co-occurrences in a corpus. Word embeddings may underestimate the similarity between nearby words, and overestimate it between distant words in the Euclidean metric space. In this paper, we re-embed pre-trained word embeddings with a stage of manifold learning which retains dimensionality. We show that this approach is theoretically founded in the metric recovery paradigm, and empirically show that it can improve on state-of-the-art embeddings in word similarity tasks 0.5 - 5.0% points depending on the original space.

2015

pdf bib
How hard is this query? Measuring the Semantic Complexity of Schema-agnostic Queries
André Freitas | Juliano Efson Sales | Siegfried Handschuh | Edward Curry
Proceedings of the 11th International Conference on Computational Semantics