2025
pdf
bib
abs
VistaWise: Building Cost-Effective Agent with Cross-Modal Knowledge Graph for Minecraft
Honghao Fu
|
Junlong Ren
|
Qi Chai
|
Deheng Ye
|
Yujun Cai
|
Hao Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have shown significant promise in embodied decision-making tasks within virtual open-world environments. Nonetheless, their performance is hindered by the absence of domain-specific knowledge. Methods that finetune on large-scale domain-specific data entail prohibitive development costs. This paper introduces VistaWise, a cost-effective agent framework that integrates cross-modal domain knowledge and finetunes a dedicated object detection model for visual analysis. It reduces the requirement for domain-specific training data from millions of samples to a few hundred. VistaWise integrates visual information and textual dependencies into a cross-modal knowledge graph (KG), enabling a comprehensive and accurate understanding of multimodal environments. We also equip the agent with a retrieval-based pooling strategy to extract task-related information from the KG, and a desktop-level skill library to support direct operation of the Minecraft desktop client via mouse and keyboard inputs. Experimental results demonstrate that VistaWise achieves state-of-the-art performance across various open-world tasks, highlighting its effectiveness in reducing development costs while enhancing agent performance.
pdf
bib
abs
Boosting Vulnerability Detection of LLMs via Curriculum Preference Optimization with Synthetic Reasoning Data
Xin-Cheng Wen
|
Yijun Yang
|
Cuiyun Gao
|
Yang Xiao
|
Deheng Ye
Findings of the Association for Computational Linguistics: ACL 2025
Large language models (LLMs) demonstrate considerable proficiency in numerous coding-related tasks; however, their capabilities in detecting software vulnerabilities remain limited. This limitation primarily stems from two factors: (1) the absence of reasoning data related to vulnerabilities, which hinders the models’ ability to capture underlying vulnerability patterns; and (2) their focus on learning semantic representations rather than the reason behind them, thus failing to recognize semantically similar vulnerability samples. Furthermore, the development of LLMs specialized in vulnerability detection is challenging, particularly in environments characterized by the scarcity of high-quality datasets. In this paper, we propose a novel framework ReVD that excels at mining vulnerability patterns through reasoning data synthesizing and vulnerability-specific preference optimization. Specifically, we construct forward and backward reasoning processes for vulnerability and corresponding fixed code, ensuring the synthesis of high-quality reasoning data. Moreover, we design the triplet supervised fine-tuning followed by curriculum online preference optimization for enabling ReVD to better understand vulnerability patterns. The extensive experiments conducted on PrimeVul and SVEN datasets demonstrate that ReVD sets new state-of-the-art for LLM-based software vulnerability detection, e.g., 12.24%-22.77% improvement in the accuracy. The source code and data are available at https://github.com/Xin-Cheng-Wen/PO4Vul.
pdf
bib
abs
CausalMACE: Causality Empowered Multi-Agents in Minecraft Cooperative Tasks
Qi Chai
|
Zhang Zheng
|
Junlong Ren
|
Deheng Ye
|
Zichuan Lin
|
Hao Wang
Findings of the Association for Computational Linguistics: EMNLP 2025
Minecraft, as an open-world virtual interactive environment, has become a prominent platform for research on agent decision-making and execution. Existing works primarily adopt a single Large Language Model (LLM) agent to complete various in-game tasks. However, for complex tasks requiring lengthy sequences of actions, single-agent approaches often face challenges related to inefficiency and limited fault tolerance. Despite these issues, research on multi-agent collaboration remains scarce. In this paper, we propose CausalMACE, a holistic causality planning framework designed to enhance multi-agent systems, in which we incorporate causality to manage dependencies among subtasks. Technically, our proposed framework introduces two modules: an overarching task graph for global task planning and a causality-based module for dependency management, where inherent rules are adopted to perform causal intervention. Experimental results demonstrate our approach achieves state-of-the-art performance in multi-agent cooperative tasks of Minecraft. The code will be open-sourced upon the acceptance of this paper.
2024
pdf
bib
abs
Language Model Adaption for Reinforcement Learning with Natural Language Action Space
Jiangxing Wang
|
Jiachen Li
|
Xiao Han
|
Deheng Ye
|
Zongqing Lu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Reinforcement learning with natural language action space often suffers from the curse of dimensionality due to the combinatorial nature of the natural language. Previous research leverages pretrained language models to capture action semantics and reduce the size of the action space. However, since pretrained models are typically trained on general corpora, there can be an unpredictable mismatch between the priors encoded in pretrained models and the characteristics of the specific RL environment. To address this issue, we propose Mutual-Information Regularized Policy Optimization, MIPO. MIPO enables implicit and dynamic reduction of the action space. Starting from the prior provided by the pretrained language model, our method dynamically adjusts the prior during the learning process based on the guidance of mutual information regularization. Theoretically, we demonstrate that this policy optimization process leads to the monotonic improvement on the mutual-information regularized RL objective. Empirically, we conduct experiments in various environments and demonstrate the effectiveness of MIPO.
pdf
bib
abs
LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay
Yihuai Lan
|
Zhiqiang Hu
|
Lei Wang
|
Yang Wang
|
Deheng Ye
|
Peilin Zhao
|
Ee-Peng Lim
|
Hui Xiong
|
Hao Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
This paper explores the open research problem of understanding the social behaviors of LLM-based agents. Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay. While previous studies have touched on gameplay with LLM agents, research on their social behaviors is lacking. We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction. We evaluate its performance based on game success and analyze LLM agents’ social behaviors. Results affirm the framework’s effectiveness in creating adaptive agents and suggest LLM-based agents’ potential in navigating dynamic social interactions. By examining collaboration and confrontation behaviors, we offer insights into this field’s research and applications.