2025
pdf
bib
abs
End-to-End Optimization for Multimodal Retrieval-Augmented Generation via Reward Backpropagation
Zhiyuan Fan
|
Longfei Yun
|
Ming Yan
|
Yumeng Wang
|
Dadi Guo
|
Brian Mak
|
James Kwok
|
Yi R. Fung
Findings of the Association for Computational Linguistics: EMNLP 2025
Multimodal Retrieval-Augmented Generation (MM-RAG) has emerged as a promising approach for enhancing the reliability and factuality of large vision-language models (LVLMs). While end-to-end loss backpropagation is infeasible due to non-differentiable operations during the forward process, current methods primarily focus on component-level optimizations, necessitate extensive component-specific training datasets and suffer from a gap between local and global optimization objectives. In this paper, we propose a new paradigm that backpropagates global rewards from the system output to each component and then transforms these rewards into specific local losses, enabling each component to perform gradient descent and thus ensuring end-to-end optimization. Specifically, we first insert two lightweight multimodal components, a query translator and an adaptive reranker, to address the heterogeneity of multimodal knowledge and the varying knowledge demands for different questions, and then tune only these inserted components using our proposed paradigm to integrate the entire system. Our method achieves SOTA performance on multiple knowledge-intensive multimodal benchmarks with high training efficiency, relying exclusively on supervised signals from an external reward model. Experimental results and our detailed analysis of the evolution of components during training collectively reveal the advantages and considerable potential of this paradigm as a promising direction for MM-RAG research.
2024
pdf
bib
abs
PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models
Haoran Li
|
Dadi Guo
|
Donghao Li
|
Wei Fan
|
Qi Hu
|
Xin Liu
|
Chunkit Chan
|
Duanyi Yao
|
Yuan Yao
|
Yangqiu Song
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The rapid development of language models (LMs) brings unprecedented accessibility and usage for both models and users. On the one hand, powerful LMs achieve state-of-the-art performance over numerous downstream NLP tasks. On the other hand, more and more attention is paid to unrestricted model accesses that may bring malicious privacy risks of data leakage. To address these issues, many recent works propose privacy-preserving language models (PPLMs) with differential privacy (DP). Unfortunately, different DP implementations make it challenging for a fair comparison among existing PPLMs. In this paper, we present PrivLM-Bench, a multi-perspective privacy evaluation benchmark to empirically and intuitively quantify the privacy leakage of LMs. Instead of only reporting DP parameters, PrivLM-Bench sheds light on the neglected inference data privacy during actual usage. PrivLM-Bench first clearly defines multi-faceted privacy objectives. Then, PrivLM-Bench constructs a unified pipeline to perform private fine-tuning. Lastly, PrivLM-Bench performs existing privacy attacks on LMs with pre-defined privacy objectives as the empirical evaluation results. The empirical attack results are used to fairly and intuitively evaluate the privacy leakage of various PPLMs. We conduct extensive experiments on three datasets of GLUE for mainstream LMs.
2023
pdf
bib
abs
Multi-step Jailbreaking Privacy Attacks on ChatGPT
Haoran Li
|
Dadi Guo
|
Wei Fan
|
Mingshi Xu
|
Jie Huang
|
Fanpu Meng
|
Yangqiu Song
Findings of the Association for Computational Linguistics: EMNLP 2023
With the rapid progress of large language models (LLMs), many downstream NLP tasks can be well solved given appropriate prompts. Though model developers and researchers work hard on dialog safety to avoid generating harmful content from LLMs, it is still challenging to steer AI-generated content (AIGC) for the human good. As powerful LLMs are devouring existing text data from various domains (e.g., GPT-3 is trained on 45TB texts), it is natural to doubt whether the private information is included in the training data and what privacy threats can these LLMs and their downstream applications bring. In this paper, we study the privacy threats from OpenAI’s ChatGPT and the New Bing enhanced by ChatGPT and show that application-integrated LLMs may cause new privacy threats. To this end, we conduct extensive experiments to support our claims and discuss LLMs’ privacy implications.