Chun Yang
2025
SLiNT: Structure-aware Language Model with Injection and Contrastive Training for Knowledge Graph Completion
Mengxue Yang
|
Chun Yang
|
Jiaqi Zhu
|
Jiafan Li
|
Jingqi Zhang
|
Yuyang Li
|
Ying Li
Findings of the Association for Computational Linguistics: EMNLP 2025
Link prediction in knowledge graphs (KGs) requires integrating structural information and semantic context to infer missing entities. While large language models (LLMs) offer strong generative reasoning capabilities, their limited exploitation of structural signals often results in *structural sparsity* and *semantic ambiguity*, especially under incomplete or zero-shot settings. To address these challenges, we propose **SLiNT** (**S**tructure-aware **L**anguage model with **I**njection and co**N**trastive **T**raining), a modular framework that injects KG-derived structural context into a frozen LLM backbone with lightweight LoRA-based adaptation for robust link prediction. Specifically, **Structure-Guided Neighborhood Enhancement (SGNE)** retrieves pseudo-neighbors to enrich sparse entities and mitigate missing context; **Dynamic Hard Contrastive Learning (DHCL)** introduces fine-grained supervision by interpolating hard positives and negatives to resolve entity-level ambiguity; and **Gradient-Decoupled Dual Injection (GDDI)** performs token-level structure-aware intervention while preserving the core LLM parameters. Experiments on WN18RR and FB15k-237 show that SLiNT achieves superior or competitive performance compared with both embedding-based and generation-based baselines, demonstrating the effectiveness of structure-aware representation learning for scalable knowledge graph completion.
2024
Arbitrary Time Information Modeling via Polynomial Approximation for Temporal Knowledge Graph Embedding
Zhiyu Fang
|
Jingyan Qin
|
Xiaobin Zhu
|
Chun Yang
|
Xu-Cheng Yin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Distinguished from traditional knowledge graphs (KGs), temporal knowledge graphs (TKGs) must explore and reason over temporally evolving facts adequately. However, existing TKG approaches still face two main challenges, i.e., the limited capability to model arbitrary timestamps continuously and the lack of rich inference patterns under temporal constraints. In this paper, we propose an innovative TKGE method (PTBox) via polynomial decomposition-based temporal representation and box embedding-based entity representation to tackle the above-mentioned problems. Specifically, we decompose time information by polynomials and then enhance the model’s capability to represent arbitrary timestamps flexibly by incorporating the learnable temporal basis tensor. In addition, we model every entity as a hyperrectangle box and define each relation as a transformation on the head and tail entity boxes. The entity boxes can capture complex geometric structures and learn robust representations, improving the model’s inductive capability for rich inference patterns. Theoretically, our PTBox can encode arbitrary time information or even unseen timestamps while capturing rich inference patterns and higher-arity relations of the knowledge base. Extensive experiments on real-world datasets demonstrate the effectiveness of our method.