Chenyu Shi


2025

pdf bib
RIVAL: Reinforcement Learning with Iterative and Adversarial Optimization for Machine Translation
Tianjiao Li | Mengran Yu | Chenyu Shi | Yanjun Zhao | Xiaojing Liu | Qi Zhang | Xuanjing Huang | Qiang Zhang | Jiayin Wang
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) possess strong multilingual capabilities, and combining Reinforcement Learning from Human Feedback (RLHF) with translation tasks has shown great potential. However, we observe that this paradigm performs unexpectedly poorly when applied to colloquial subtitle translation tasks. In this work, we investigate this issue and find that the offline reward model (RM) gradually diverges from the online LLM due to distributional shift, ultimately leading to undesirable training outcomes. To address this, we propose RIVAL, an adversarial training framework that formulates the process as a min–max game between the RM and the LLM. RIVAL iteratively updates the both models, with the RM trained to distinguish strong from weak translations (qualitative preference reward), and the LLM trained to enhance its translation for closing this gap. To stabilize training and improve generalizability, we also incorporate quantitative preference reward (e.g., BLEU) into the RM, enabling reference-free quality modeling aligned with human evaluation. Through extensive experiments, we demonstrate that the proposed training framework significantly improves upon translation baselines.

2024

pdf bib
Navigating the OverKill in Large Language Models
Chenyu Shi | Xiao Wang | Qiming Ge | Songyang Gao | Xianjun Yang | Tao Gui | Qi Zhang | Xuanjing Huang | Xun Zhao | Dahua Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models are meticulously aligned to be both helpful and harmless. However, recent research points to a potential overkill which means models may refuse to answer benign queries. In this paper, we investigate the factors for overkill by exploring how models handle and determine the safety of queries. Our findings reveal the presence of shortcuts within models, leading to excessive attention to harmful words like ‘kill’ and prompts emphasizing safety will exacerbate overkill. Based on these insights, we introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon. We first extract such excessive attention by amplifying the difference in the model’s output distributions when responding to system prompts that either include or omit an emphasis on safety. Then we determine the final next-token predictions by downplaying the excessive attention via contrastive decoding. Empirical results have indicated that our method has achieved an average reduction of the refusal rate by 20 % while having almost no impact on safety.