Chenyang An
2025
The Price of Format: Diversity Collapse in LLMs
Longfei Yun
|
Chenyang An
|
Zilong Wang
|
Letian Peng
|
Jingbo Shang
Findings of the Association for Computational Linguistics: EMNLP 2025
Instruction-tuned large language models (LLMs) employ structured templates, such as role markers and special tokens, to enforce format consistency during inference. However, we identify a critical limitation of such formatting: it induces a phenomenon we term diversity collapse, where the model generates semantically similar outputs for open-ended inputs, undermining creativity and variability. We systematically evaluate this effect across tasks like story completion and free-form generation, finding that (1) diversity collapse persists even under high-temperature sampling, and (2) structural tokens in templates significantly constrain the model’s output space. To contextualize these findings, we fine-tune using a range of structured prompts and then evaluate them across three axes: downstream task performance, alignment behavior, and output diversity. Our analysis shows that format consistency between fine-tuning and inference is crucial for structure-sensitive tasks (e.g., GSM8K, IFEval), but has marginal influence on knowledge-heavy tasks (e.g., MMLU, WebQuestions). In contrast, output diversity is primarily governed by the presence or absence of structural tokens, with minimal formatting yielding the most diverse outputs. These findings reveal that current prompting conventions, while beneficial for alignment, may inadvertently suppress output diversity, underscoring the need for diversity-aware prompt design and instruction tuning.
2024
Learn from Failure: Fine-tuning LLMs with Trial-and-Error Data for Intuitionistic Propositional Logic Proving
Chenyang An
|
Zhibo Chen
|
Qihao Ye
|
Emily First
|
Letian Peng
|
Jiayun Zhang
|
Zihan Wang
|
Sorin Lerner
|
Jingbo Shang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advances in Automated Theorem Proving have shown the effectiveness of leveraging a (large) language model that generates tactics (i.e. proof steps) to search through proof states. The current model, while trained solely on successful proof paths, faces a discrepancy at the inference stage, as it must sample and try various tactics at each proof state until finding success, unlike its training which does not incorporate learning from failed attempts. Intuitively, a tactic that leads to a failed search path would indicate that similar tactics should receive less attention during the following trials. In this paper, we demonstrate the benefit of training models that additionally learn from failed search paths. Facing the lack of such trial-and-error data in existing open-source theorem-proving datasets, we curate a dataset on intuitionistic propositional logic theorems and formalize it in Lean, such that we can reliably check the correctness of proofs. We compare our model trained on relatively short trial-and-error information (TrialMaster) with models trained only on the correct paths and discover that the former solves more unseen theorems with lower trial searches.
Search
Fix author
Co-authors
- Letian Peng 2
- Jingbo Shang 2
- Zhibo Chen 1
- Emily First 1
- Sorin Lerner 1
- show all...