Chenxin An


2025

pdf bib
Long Chain-of-Thought Fine-tuning via Understanding-to-Reasoning Transition
Chenxin An | Zhihui Xie | Xiaonan Li | Ming Zhong | Shansan Gong | Lei Li | Jun Zhang | Jingjing Xu | Lingpeng Kong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Reasoning models have demonstrated remarkable performance on complex tasks by generating long reasoning traces prior to producing final answers. However, previous research on long-context scaling in language models has generally focused on managing lengthy input prompts instead of producing long outputs. To leverage the strong long context understanding abilities of current models, we introduce Understanding-to-Reasoning Transition (URT) fine-tuning, a sequence-level curriculum learning framework that gradually shifts a model’s focus from interpreting long chain-of-thoughts to generating them. By incorporating partial reasoning steps in the input context, URT naturally exposes the model to diverse prompt lengths during training, preserving its performance on long-context comprehension while developing advanced reasoning capabilities. Experiments on rigorous reasoning benchmarks, including AIME24 and GPQA Diamond, reveal that our approach surpasses standard fine-tuning by over 10%, while maintaining robust performance on the understanding tasks in RULER.

2024

pdf bib
L-Eval: Instituting Standardized Evaluation for Long Context Language Models
Chenxin An | Shansan Gong | Ming Zhong | Xingjian Zhao | Mukai Li | Jun Zhang | Lingpeng Kong | Xipeng Qiu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, there has been growing interest in long-context scaling of large language models (LLMs). To facilitate research in this field, we propose L-Eval to institute a more standardized evaluation for Long-Context Language Models (LCLMs) addressing two key aspects: dataset construction and evaluation metrics. On the one hand, we build a new evaluation suite containing 20 sub-tasks, 508 long documents, and more than 2,000 human-labeled query-response pairs including diverse task types, domains, and input length (3k~200k tokens). On the other hand, we investigate the effectiveness of evaluation metrics for LCLMs and we show that Length-instruction-enhanced (LIE) evaluation and LLM judges can better correlate with human judgments. We conducted a comprehensive study of 4 popular commercial LLMs and 12 open-source counterparts using the L-Eval benchmark. Our empirical findings offer useful insights into the study of LCLMs and lay the groundwork for the development of a more principled evaluation of these models.

2022

pdf bib
CoLo: A Contrastive Learning Based Re-ranking Framework for One-Stage Summarization
Chenxin An | Ming Zhong | Zhiyong Wu | Qin Zhu | Xuanjing Huang | Xipeng Qiu
Proceedings of the 29th International Conference on Computational Linguistics

Traditional training paradigms for extractive and abstractive summarization systems always only use token-level or sentence-level training objectives. However, the output summary is always evaluated from summary-level which leads to the inconsistency in training and evaluation. In this paper, we propose a Contrastive Learning based re-ranking framework for one-stage summarization called CoLo. By modeling a contrastive objective, we show that the summarization model is able to directly generate summaries according to the summary-level score without additional modules and parameters. Extensive experiments demonstrate that CoLo boosts the extractive and abstractive results of one-stage systems on CNN/DailyMail benchmark to 44.58 and 46.33 ROUGE-1 score while preserving the parameter efficiency and inference efficiency. Compared with state-of-the-art multi-stage systems, we save more than 100 GPU training hours and obtaining 3x 8x speed-up ratio during inference while maintaining comparable results.