Recent progress in large language models (LLMs) has enabled the automated processing of lengthy documents even without supervised training on a task-specific dataset. Yet, their zero-shot performance in complex tasks as opposed to straightforward information extraction tasks remains suboptimal. One feasible approach for tasks with lengthy, complex input is to first summarize the document and then apply supervised fine-tuning to the summary. However, the summarization process inevitably results in some loss of information. In this study we present a method for processing the summaries of long documents aimed to capture different important aspects of the original document. We hypothesize that LLM summaries generated with different aspect-oriented prompts contain different information signals, and we propose methods to measure these differences. We introduce approaches to effectively integrate signals from these different summaries for supervised training of transformer models. We validate our hypotheses on a high-impact task – 30-day readmission prediction from a psychiatric discharge – using real-world data from four hospitals, and show that our proposed method increases the prediction performance for the complex task of predicting patient outcome.
Generative models have become widely used in biomedical entity linking (BioEL) due to their excellent performance and efficient memory usage. However, these models are usually trained only with positive samples—entities that match the input mention’s identifier—and do not explicitly learn from hard negative samples, which are entities that look similar but have different meanings. To address this limitation, we introduce ANGEL (Learning from Negative Samples in Biomedical Generative Entity Linking), the first framework that trains generative BioEL models using negative samples. Specifically, a generative model is initially trained to generate positive entity names from the knowledge base for given input entities. Subsequently, both correct and incorrect outputs are gathered from the model’s top-k predictions. Finally, the model is updated to prioritize the correct predictions through preference optimization. Our models fine-tuned with ANGEL outperform the previous best baseline models by up to an average top-1 accuracy of 1.4% on five benchmarks. When incorporating our framework into pre-training, the performance improvement increases further to 1.7%, demonstrating its effectiveness in both the pre-training and fine-tuning stages. The code and model weights are available at https://github.com/dmis-lab/ANGEL.
Transforming natural language questions into SQL queries is crucial for precise data retrieval from electronic health record (EHR) databases. A significant challenge in this process is detecting and rejecting unanswerable questions that request information outside the database’s scope or exceed the system’s capabilities. In this paper, we introduce a novel text-to-SQL framework that focuses on standardizing the structure of questions into a templated format. Our framework begins by fine-tuning GPT-3.5-turbo, a powerful large language model (LLM), with detailed prompts involving the table schemas of the EHR database system. Our approach shows promising results on the EHRSQL-2024 benchmark dataset, part of the ClinicalNLP shared task. Although fine-tuning GPT achieves third place on the development set, it struggled with the diverse questions in the test set. With our framework, we improve our system’s adaptability and achieve fourth position in the official leaderboard of the EHRSQL-2024 challenge.
In this paper, we introduce CheXOFA, a new pre-trained vision-language model (VLM) for the chest X-ray domain. Our model is initially pre-trained on various multimodal datasets within the general domain before being transferred to the chest X-ray domain. Following a prominent VLM, we unify various domain-specific tasks into a simple sequence-to-sequence schema. It enables the model to effectively learn the required knowledge and skills from limited resources in the domain. Demonstrating superior performance on the benchmark datasets provided by the BioNLP shared task (Delbrouck et al., 2023), our model benefits from its training across multiple tasks and domains. With subtle techniques including ensemble and factual calibration, our system achieves first place on the RadSum23 leaderboard for the hidden test set.