Changhao Jiang


2025

pdf bib
PFDial: A Structured Dialogue Instruction Fine-tuning Method Based on UML Flowcharts
Ming Zhang | Yuhui Wang | Yujiong Shen | Tingyi Yang | Changhao Jiang | Yilong Wu | Shihan Dou | Qinhao Chen | Zhiheng Xi | Zhihao Zhang | Yi Dong | Zhen Wang | Zhihui Fei | Mingyang Wan | Tao Liang | Guojun Ma | Qi Zhang | Tao Gui | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2025

Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct Process Flow Dialogue (PFDial) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models’ performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.

pdf bib
LLMEval-Med: A Real-world Clinical Benchmark for Medical LLMs with Physician Validation
Ming Zhang | Yujiong Shen | Zelin Li | Huayu Sha | Binze Hu | Yuhui Wang | Chenhao Huang | Shichun Liu | Jingqi Tong | Changhao Jiang | Mingxu Chai | Zhiheng Xi | Shihan Dou | Tao Gui | Qi Zhang | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2025

Evaluating large language models (LLMs) in medicine is crucial because medical applications require high accuracy with little room for error. Current medical benchmarks have three main types: medical exam-based, comprehensive medical, and specialized assessments. However, these benchmarks have limitations in question design (mostly multiple-choice), data sources (often not derived from real clinical scenarios), and evaluation methods (poor assessment of complex reasoning). To address these issues, we present LLMEval-Medicine, a new benchmark covering five core medical areas, including 2,996 questions created from real-world electronic health records and expert-designed clinical scenarios. We also design an automated evaluation pipeline, incorporating expert-developed checklists into our LLM-as-Judge framework. Furthermore, our methodology validates machine scoring through human-machine agreement analysis, dynamically refining checklists and prompts based on expert feedback to ensure reliability. We evaluate 13 LLMs across three categories (specialized medical models, open-source models, and closed-source models) on LLMEval-Med, providing valuable insights for the safe and effective deployment of LLMs in medical domains.