2025
pdf
bib
abs
Consistency Rating of Semantic Transparency: an Evaluation Method for Metaphor Competence in Idiom Understanding Tasks
Hui Gao
|
Jing Zhang
|
Peng Zhang
|
Chang Yang
Proceedings of the 31st International Conference on Computational Linguistics
Idioms condense complex semantics into fixed phrases, and their meaning is often not directly connected to the literal meaning of their constituent words, making idiom comprehension a test of metaphor competence. Metaphor, as a cognitive process in human beings, has not yet found an effective evaluation method to assess the metaphor competence of LLMs (Large Language Models). In this paper, we propose a method to evaluate the metaphor competence of LLMs for the idiom understanding task: the Consistency Rating of Semantic Transparency (CR-ST). This strategy assesses the difficulty of understanding idioms through two dimensions: overall semantic transparency and constituent semantic transparency, aiming to gauge LLMs’ mastery of metaphor competence. Subsequently, we introduce a prompt mechanism-Paraphrase Augmentation Strategy with Self-checking (PASS), based on human language logic, which guides the model to enhance its metaphor competence by explicitly generating idiom paraphrases. We conducted a baseline evaluation of seven LLMs on the CINLID and ChID datasets and analyzed the effectiveness of PASS on different subsets of semantic transparency. The experimental results demonstrate that LLMs can achieve performance comparable to PLMs (Pre-trained Language Models) without additional training, and PASS has a positive effect on the metaphor competence of LLMs.
pdf
bib
abs
Each graph is a new language: Graph Learning with LLMs
Huachi Zhou
|
Jiahe Du
|
Chuang Zhou
|
Chang Yang
|
Yilin Xiao
|
Yuxuan Xie
|
Xiao Huang
Findings of the Association for Computational Linguistics: ACL 2025
Natural language has been extensively used for modeling text-attributed graphs with LLMs. Natural language is used to describe the graph for LLMs to understand or serve as component of the graph, e.g., textual attributes for embedding generation. However, natural language is inherently redundant and unstructured, making it unsuitable for modeling high-order neighbors with LLMs. Specifically, (i) graph descriptions become verbose, overwhelming LLMs, and (ii) only relying on attribute embeddings limits LLM’s ability to capture the adequate graph structural information. These limitations make it difficult to model graphs both concisely and adequately using sole natural language with LLMs.Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose Graph-Defined Language for Large Language Model (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates the graph into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand the graph. This corpus represents the subgraph centered around target nodes concisely with only a few tokens during fine-tuning on downstream tasks. By treating the graph as a new language, GDL4LLM enables LLMs to model text-attributed graph adequately and concisely. Extensive experiments on five datasets demonstrate that GDL4LLM outperforms description-based and embedding-based baselines by efficiently modeling different orders of neighbors.
pdf
bib
abs
Rethink Rumor Detection in the Era of LLMs: A Review
Chang Yang
|
Peng Zhang
|
Jing Zhang
|
Hui Gao
|
Changhao Song
Findings of the Association for Computational Linguistics: EMNLP 2025
The rise of large language models (LLMs) has fundamentally reshaped the technological paradigm of rumor detection, offering transformative opportunities to construct adaptive detection systems while simultaneously ushering in new threats, such as “logically perfect rumors”. This paper aims to unify existing methods in the field of rumor detection and reveal the logical mechanisms behind them. From the perspective of complex systems, we innovatively propose a Cognition-Interaction-Behavior (CIB) tri-level framework for rumor detection based on collective intelligence and explore the synergistic relationship between LLMs and collective intelligence in rumor governance. We identify promising future research directions, including advancing agent-based modeling to capture complex rumor dynamics, addressing emerging challenges unique to the LLM era, and interdisciplinary perspectives. We hope this work lays a theoretical foundation for next-generation rumor detection paradigms and offers valuable insights for advancing the field.
pdf
bib
abs
Efficient Integration of External Knowledge to LLM-based World Models via Retrieval-Augmented Generation and Reinforcement Learning
Chang Yang
|
Xinrun Wang
|
Qinggang Zhang
|
Qi Jiang
|
Xiao Huang
Findings of the Association for Computational Linguistics: EMNLP 2025
World models achieve remarkable success in predicting future states and planning in complex environments and Large Language Models (LLMs) serve as promising foundation to build general world models. However, their performances are usually constrained by the limited external knowledge to specific environments. Existing research attempts to enhance LLM-based world models through prompting or fine-tuning approaches, which are either requiring human knowledge or computationally extensive. Therefore, we introduce Retrieval-Augmented World Models (RAWM), a novel framework that leverages retrieval-augmented generation to efficiently integrate the external knowledge to LLM-based world models. Our main contributions are threefold: (i) We introduce a memory system and design an embedding model to retrieve relevant experiences as the in-context examples to improve the world model’s predictive accuracy. (ii) We develop a reinforcement learning (RL) training pipeline that fine-tunes a small MLP head on the pre-trained embedding model using Proximal Policy Optimization (PPO), further enhancing prediction performance. (iii) We conduct extensive experiments across three diverse environments, i.e., Game24, BlocksWorld, and BabyAI, demonstrating that RAWM consistently outperforms baseline models and exhibits strong generalizability. By leveraging the retrieval-augmented generation and the efficient RL training pipeline, RAWM dynamically utilizes relevant historical experiences and equips LLMs with environment-specific external knowledge without retraining, enabling more accurate and generalizable predictions.
2024
pdf
bib
abs
Deciphering Rumors: A Multi-Task Learning Approach with Intent-aware Hierarchical Contrastive Learning
Chang Yang
|
Peng Zhang
|
Hui Gao
|
Jing Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Social networks are rife with noise and misleading information, presenting multifaceted challenges for rumor detection. In this paper, from the perspective of human cognitive subjectivity, we introduce the mining of individual latent intentions and propose a novel multi-task learning framework, the Intent-Aware Rumor Detection Network (IRDNet). IRDNet is designed to discern multi-level rumor semantic features and latent user intentions, addressing the challenges of robustness and key feature mining and alignment that plague existing models. In IRDNet, the multi-level semantic extraction module captures sequential and hierarchical features to generate robust semantic representations. The hierarchical contrastive learning module incorporates two complementary strategies, event-level and intent-level, to establish cognitive anchors that uncover the latent intentions of information disseminators. Event-level contrastive learning employs high-quality data augmentation and adversarial perturbations to enhance model robustness. Intent-level contrastive learning leverages the intent encoder to capture latent intent features and optimize consistency within the same intent while ensuring heterogeneity between different intents to clearly distinguish key features from irrelevant elements. Experimental results demonstrate that IRDNet significantly improves the effectiveness of rumor detection and effectively addresses the challenges present in the field of rumor detection.
2023
pdf
bib
abs
Rumor Detection on Social Media with Crowd Intelligence and ChatGPT-Assisted Networks
Chang Yang
|
Peng Zhang
|
Wenbo Qiao
|
Hui Gao
|
Jiaming Zhao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
In the era of widespread dissemination through social media, the task of rumor detection plays a pivotal role in establishing a trustworthy and reliable information environment. Nonetheless, existing research on rumor detection confronts several challenges: the limited expressive power of text encoding sequences, difficulties in domain knowledge coverage and effective information extraction with knowledge graph-based methods, and insufficient mining of semantic structural information. To address these issues, we propose a Crowd Intelligence and ChatGPT-Assisted Network(CICAN) for rumor classification. Specifically, we present a crowd intelligence-based semantic feature learning module to capture textual content’s sequential and hierarchical features. Then, we design a knowledge-based semantic structural mining module that leverages ChatGPT for knowledge enhancement. Finally, we construct an entity-sentence heterogeneous graph and design Entity-Aware Heterogeneous Attention to effectively integrate diverse structural information meta-paths. Experimental results demonstrate that CICAN achieves performance improvement in rumor detection tasks, validating the effectiveness and rationality of using large language models as auxiliary tools.