Cedegao E. Zhang


2025

pdf bib
On the Same Wavelength? Evaluating Pragmatic Reasoning in Language Models across Broad Concepts
Linlu Qiu | Cedegao E. Zhang | Joshua B. Tenenbaum | Yoon Kim | Roger P. Levy
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Language use is shaped by pragmatics—i.e., reasoning about communicative goals and norms in context. As language models (LMs) are increasingly used as conversational agents, it becomes ever more important to understand their pragmatic reasoning abilities. We propose an evaluation framework derived from *Wavelength*, a popular communication game where a speaker and a listener communicate about a broad range of concepts in a granular manner. We study a range of LMs on both language comprehension and language production using direct and Chain-of-Thought (CoT) prompting, and further explore a Rational Speech Act (RSA) approach to incorporating Bayesian pragmatic reasoning into LM inference. We find that state-of-the-art LMs, but not smaller ones, achieve strong performance on language comprehension, obtaining similar-to-human accuracy and exhibiting high correlations with human judgments even without CoT prompting or RSA. On language production, CoT can outperform direct prompting, and using RSA provides significant improvements over both approaches. Our study helps identify the strengths and limitations in LMs’ pragmatic reasoning abilities and demonstrates the potential for improving them with RSA, opening up future avenues for understanding conceptual representation, language understanding, and social reasoning in LMs and humans.

pdf bib
Language-Informed Synthesis of Rational Agent Models for Grounded Theory-of-Mind Reasoning On-the-fly
Lance Ying | Ryan Truong | Katherine M. Collins | Cedegao E. Zhang | Megan Wei | Tyler BrookeWilson | Tan Zhi-Xuan | Lionel Wong | Joshua B. Tenenbaum
Findings of the Association for Computational Linguistics: EMNLP 2025

Drawing real world social inferences usually requires taking into account information from multiple modalities. Language is a particularly powerful source of information in social settings, especially in novel situations where language can provide both abstract information about the environment dynamics and concrete specifics about an agent that cannot be easily visually observed. In this paper, we propose Language-Informed Rational Agent Synthesis (LIRAS), a framework for drawing context-specific social inferences that integrate linguistic and visual inputs. LIRAS frames multimodal social reasoning as a process of constructing structured but situation-specific agent and environment representations – leveraging multimodal language models to parse language and visual inputs into unified symbolic representations, over which a Bayesian inverse planning engine can be run to produce granular probabilistic judgments. On a range of existing and new social reasoning tasks derived from cognitive science experiments, we find that our model (instantiated with a comparatively lightweight VLM) outperforms ablations and state-of-the-art models in capturing human judgments across all domains.

2024

pdf bib
Conditional and Modal Reasoning in Large Language Models
Wesley H. Holliday | Matthew Mandelkern | Cedegao E. Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The reasoning abilities of large language models (LLMs) are the topic of a growing body of research in AI and cognitive science. In this paper, we probe the extent to which twenty-nine LLMs are able to distinguish logically correct inferences from logically fallacious ones. We focus on inference patterns involving conditionals (e.g., '*If* Ann has a queen, *then* Bob has a jack’) and epistemic modals (e.g., ‘Ann *might* have an ace’, ‘Bob *must* have a king’). These inferences have been of special interest to logicians, philosophers, and linguists, since they play a central role in the fundamental human ability to reason about distal possibilities. Assessing LLMs on these inferences is thus highly relevant to the question of how much the reasoning abilities of LLMs match those of humans. All the LLMs we tested make some basic mistakes with conditionals or modals, though zero-shot chain-of-thought prompting helps them make fewer mistakes. Even the best performing LLMs make basic errors in modal reasoning, display logically inconsistent judgments across inference patterns involving epistemic modals and conditionals, and give answers about complex conditional inferences that do not match reported human judgments. These results highlight gaps in basic logical reasoning in today’s LLMs.