Bhiman Kumar Baghel
2025
Resolving UnderEdit & OverEdit with Iterative & Neighbor-Assisted Model Editing
Bhiman Kumar Baghel
|
Emma Jordan
|
Zheyuan Ryan Shi
|
Xiang Lorraine Li
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Language Models (LLMs) are widely deployed in downstream tasks, but keeping their knowledge up-to-date via retraining or fine-tuning is often computationally expensive. Model editing provides a more efficient alternative by updating a targeted subset of parameters, which often follows the locate-and-edit paradigm. Despite this efficiency, existing methods are limited: edits may fail to inject knowledge (UnderEdit) or unintentionally disrupt unrelated neighboring knowledge (OverEdit). To address these challenges, we propose two complementary methods: **iterative model editing**, which applies successive edits to mitigate UnderEdit, and **neighbor-assisted model editing**, which incorporates neighboring knowledge during editing to reduce OverEdit. Our extensive experiments show that these techniques improve editing performance across multiple LLMs, algorithms, and benchmarks, reducing UnderEdit by up to 38 percentage points and OverEdit by up to 6, while remaining broadly applicable to any locate-and-edit method.
2024
A Fairness Analysis of Human and AI-Generated Student Reflection Summaries
Bhiman Kumar Baghel
|
Arun Balajiee Lekshmi Narayanan
|
Michael Miller Yoder
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
This study examines the fairness of human- and AI-generated summaries of student reflections in university STEM classes, focusing on potential gender biases. Using topic modeling, we first identify topics that are more prevalent in reflections from female students and others that are more common among male students. We then analyze whether human and AI-generated summaries reflect the concerns of students of any particular gender over others. Our analysis reveals that though human-generated and extractive AI summarization techniques do not show a clear bias, abstractive AI-generated summaries exhibit a bias towards male students. Pedagogical themes are over-represented from male reflections in these summaries, while concept-specific topics are under-represented from female reflections. This research contributes to a deeper understanding of AI-generated bias in educational contexts, highlighting the need for future work on mitigating these biases.