Beibei Yu
2025
A Survey of Large Language Models in Psychotherapy: Current Landscape and Future Directions
Hongbin Na
|
Yining Hua
|
Zimu Wang
|
Tao Shen
|
Beibei Yu
|
Lilin Wang
|
Wei Wang
|
John Torous
|
Ling Chen
Findings of the Association for Computational Linguistics: ACL 2025
Mental health is increasingly critical in contemporary healthcare, with psychotherapy demanding dynamic, context-sensitive interactions that traditional NLP methods struggle to capture. Large Language Models (LLMs) offer significant potential for addressing this gap due to their ability to handle extensive context and multi-turn reasoning. This review introduces a conceptual taxonomy dividing psychotherapy into interconnected stages–assessment, diagnosis, and treatment–to systematically examine LLM advancements and challenges. Our comprehensive analysis reveals imbalances in current research, such as a focus on common disorders, linguistic biases, fragmented methods, and limited theoretical integration. We identify critical challenges including capturing dynamic symptom fluctuations, overcoming linguistic and cultural biases, and ensuring diagnostic reliability. Highlighting future directions, we advocate for continuous multi-stage modeling, real-time adaptive systems grounded in psychological theory, and diversified research covering broader mental disorders and therapeutic approaches, aiming toward more holistic and clinically integrated psychotherapy LLMs systems.
STA-CoT: Structured Target-Centric Agentic Chain-of-Thought for Consistent Multi-Image Geological Reasoning
Beibei Yu
|
Tao Shen
|
Ling Chen
Findings of the Association for Computational Linguistics: EMNLP 2025
Reliable multi-image geological reasoning is essential for automating expert tasks in remote-sensing mineral exploration, yet remains challenging for multimodal large language models (MLLMs) due to the need for locating target areas, accurate cross-image referencing, and consistency over long reasoning chains. We propose STA-CoT, a Structured Target-centric Agentic Chain-of-Thought framework that orchestrates planning, execution, and verification agents to decompose, ground, and iteratively refine reasoning steps over geological and hyperspectral image sets. By aligning each reasoning step to specific image target areas and enforcing consistency through agentic verification and majority voting, STA-CoT robustly mitigates tool errors, long-chain inconsistencies, and error propagation. We rigorously evaluate STA-CoT on MineBench, a dedicated benchmark for multi-image mineral exploration, demonstrating substantial improvements over existing multimodal chain-of-thought and agentic baselines. Our results establish STA-CoT as a reliable and robust solution for consistent multi-image geological reasoning, advancing automated scientific discovery in mineral exploration.
Search
Fix author
Co-authors
- Ling Chen 2
- Tao Shen 2
- Yining Hua 1
- Hongbin Na 1
- John Torous 1
- show all...