Anda Cheng


2025

pdf bib
A Fully Probabilistic Perspective on Large Language Model Unlearning: Evaluation and Optimization
Anda Cheng | Wei Huang | Yinggui Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Model Unlearning (LLMU) is a promising way to remove private or sensitive information from large language models. However, the comprehensive evaluation of LLMU remains underexplored. The dominant deterministic evaluation can yield overly optimistic assessments of unlearning efficacy. To mitigate this, we propose a Fully Probabilistic Evaluation (FPE) framework that incorporates input and output distributions in LLMU evaluation. FPE obtains a probabilistic evaluation result by querying unlearned models with various semantically similar inputs and multiple sampling attempts. We introduce an Input Distribution Sampling method in FPE to select high-quality inputs, enabling a stricter measure of information leakage risks. Furthermore, we introduce a Contrastive Embedding Loss (CEL) to advance the performance of LLMU. CEL employs contrastive learning to distance latent representations of unlearned samples from adaptively clustered contrast samples while aligning them with random vectors, leading to improved efficacy and robustness for LLMU. Our experiments show that FPE uncovers more unlearned information leakage risks than prior evaluation methods, and CEL improves unlearning effectiveness by at least 50.1% and robustness by at least 37.2% on Llama-2-7B while retaining high model utility.

pdf bib
Mitigating Catastrophic Forgetting in Large Language Models with Forgetting-aware Pruning
Wei Huang | Anda Cheng | Yinggui Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advancements in large language models (LLMs) have shown impressive capabilities in various downstream tasks but typically face Catastrophic Forgetting (CF) during fine-tuning. In this paper, we propose the Forgetting-Aware Pruning Metric (FAPM), a novel pruning-based approach to balance CF and downstream task performance. Our investigation reveals that the degree to which task vectors (i.e., the subtraction of pre-trained weights from the weights fine-tuned on downstream tasks) overlap with pre-trained model parameters is a critical factor for CF. Based on this finding, FAPM employs the ratio of the task vector to pre-trained model parameters as a metric to quantify CF, integrating this measure into the pruning criteria. Importantly, FAPM does not necessitate modifications to the training process or model architecture, nor does it require any auxiliary data. We conducted extensive experiments across eight datasets, covering natural language inference, General Q&A, Medical Q&A, Math Q&A, reading comprehension, and cloze tests. The results demonstrate that FAPM limits CF to just 0.25% while maintaining 99.67% accuracy on downstream tasks. We provide the codes of FAPM at an anonymous repository(https://anonymous.4open.science/r/FAPM-65CF).

pdf bib
DPF-CM: A Data Processing Framework with Privacy-Preserving Vector Databases for Chinese Medical LLMs Training and Deployment
Wei Huang | Anda Cheng | Zhao Zhang | Yinggui Wang
Findings of the Association for Computational Linguistics: EMNLP 2025

Current open-source training pipelines for Chinese medical language models predominantly emphasize optimizing training methodologies to enhance the performance of large language models (LLMs), yet lack comprehensive exploration into training data processing. To address this gap, we propose DPF-CM, a holistic Data Processing Framework for Chinese Medical LLMs training and deployment. DPF-CM comprises two core modules. The first module is a data processing pipeline tailored for model training. Beyond standard data processing operations, we (1) introduce a chained examples context-learning strategy to generate question-oriented instructions to mitigate the lack of instruction content, and (2) implement an ensemble-based filtering mechanism for preference data curation that averages multiple reward models to suppress noisy samples. The second module focuses on privacy preservation during model deployment. To prevent privacy risks from the inadvertent exposure of training data, we propose a Privacy Preserving Vector Database (PPVD) approach, which involves model memory search, high-risk database construction, secure database construction, and match-and-replace, four key stages to minimize privacy leakage during inference collectively. Experimental results show that DPF-CM significantly improves model accuracy, enabling our trained Chinese medical LLM to achieve state-of-the-art performance among open-source counterparts. Moreover, the framework reduces training data privacy leakage by 27%.