Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including Visual Question Answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which required specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLM on all benchmarks, reducing the performance gap while maintaining computational efficiency. We shall make our code and MPA-aligned models publicly available upon acceptance of this work.
We introduce MMCRICBENCH-3K, a benchmark for Visual Question Answering (VQA) on cricket scorecards, designed to evaluate large vision-language models (LVLMs) on complex numerical and cross-lingual reasoning over semi-structured tabular images. MMCRICBENCH-3K comprises 1,463 synthetically generated scorecard images from ODI, T20, and Test formats, accompanied by 1,500 English QA pairs. It includes two subsets: MMCRICBENCH-E-1.5K, featuring English scorecards, and MMCRICBENCH-H1.5K, containing visually similar Hindi scorecards, with all questions and answers kept in English to enable controlled cross-script evaluation. The task demands reasoning over structured numerical data, multi-image context, and implicit domain knowledge. Empirical results show that even state-of-the-art LVLMs, such as GPT-4o and Qwen2.5VL, struggle on the English subset despite it being their primary training language and exhibit a further drop in performance on the Hindi subset. This reveals key limitations in structure-aware visual text understanding, numerical reasoning, and cross-lingual generalization. The dataset is publicly available via Hugging Face at https://huggingface.co/ datasets/DIALab/MMCricBench, to promote LVLM research in this direction.
We revisit knowledge-aware text-based visual question answering, also known as Text-KVQA in the light of modern advancements in large multimodal models (LMMs), and make the following contributions: (i) We propose VisTEL – a principled approach to perform visual text entity linking. The proposed VisTEL module harnesses a state-of-the-art visual text recognition engine and the power of a large multimodal model to jointly reason using textual and visual context obtained using surrounding cues in the image to link visual text entity to the correct knowledge base entity. (ii) We present KaLMA – knowledge-aware large multimodal assistant that augments an LMM with knowledge associated with visual text entity in the image to arrive at an accurate answer. Further, we provide a comprehensive experimental analysis and comparison of our approach with traditional visual question answering, pre-large multimodal models, and large multimodal models, as well as prior top-performing approaches. Averaging over three splits of Text-KVQA, our proposed approach surpasses the previous best approach by a substantial 23.3% on an absolute scale and establishes a new state of the art. We make our implementation publicly available.
One characteristic that makes humans superior to modern artificially intelligent models is the ability to interpret images beyond what is visually apparent. Consider the following two natural language search queries – (i) “a queue of customers patiently waiting to buy ice cream” and (ii) “a queue of tourists going to see a famous Mughal architecture in India”. Interpreting these queries requires one to reason with (i) Commonsense such as interpreting people as customers or tourists, actions as waiting to buy or going to see; and (ii) Fact or world knowledge associated with named visual entities, for example, whether the store in the image sells ice cream or whether the landmark in the image is a Mughal architecture located in India. Such reasoning goes beyond just visual recognition. To enable both commonsense and factual reasoning in the image search, we present a unified framework namely Knowledge Retrieval-Augmented Multimodal Transformer (KRAMT) that treats the named visual entities in an image as a gateway to encyclopedic knowledge and leverages them along with natural language query to ground relevant knowledge. Further, KRAMT seamlessly integrates visual content and grounded knowledge to learn alignment between images and search queries. This unified framework is then used to perform image search requiring commonsense and factual reasoning. The retrieval performance of KRAMT is evaluated and compared with related approaches on a new dataset we introduce – namely COFAR.