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Abstract
This paper presents the submissions of Huawei
Translate Services Center (HW-TSC) to the
WMT 2025 Segment-level quality score pre-
diction Task. We participate in 16 language
pairs. For the prediction of translation qual-
ity scores for long multi-sentence text units,
we propose an automatic evaluation framework
based on alignment algorithms. Our approach
integrates sentence segmentation tools and dy-
namic programming to construct sentence-level
alignments between source and translated texts,
then adapts sentence-level evaluation models to
document-level assessment via sliding-window
aggregation. Our submissions achieved com-
petitive results in the final evaluations of all
language pairs we participated in.

1 Introduction

Recent advances in large language models (LLMs)
(OpenAI, 2023; Touvron et al., 2023; Yang et al.,
2024) have opened new possibilities for document-
level machine translation (doc-mt) (Kim et al.,
2019; Maruf et al., 2022; Fernandes et al., 2021).
Leveraging their robust language generation ca-
pabilities and profound contextual understanding,
LLMs can produce translations that are more natu-
ral, fluent, and semantically coherent. These mod-
els have demonstrated remarkable proficiency in
processing long-form texts, thereby significantly
enhancing the quality of document-level transla-
tion.

However, this approach also introduces several
challenges. Since LLMs translate entire docu-
ments holistically rather than processing sentences
sequentially, the output may suffer from issues
such as over-translation (excessive paraphrasing)
or under-translation (omissions). Furthermore,
the absence of sentence-level alignment between
source and target texts—combined with the inher-
ent length of both—makes it difficult to assess
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Figure 1: src3 and src7 lack corresponding translations
in T , while src5 aligns with a combined tgt4 + tgt5
segment.

translation quality accurately. Robust evaluation
methods for document-level machine translation
(MT) remain an unresolved critical problem.

While human evaluation remains the gold stan-
dard for assessing translation quality due to its
nuanced understanding of language and context,
it faces inherent limitations in scalability, subjec-
tivity, and cost-efficiency, particularly for large-
scale document-level translation tasks. Auto-
mated metrics like BERTScore (Zhang et al., 2019)
and COMET (Rei et al., 2020a,b), though capa-
ble of capturing semantic nuances and demon-
strating strong correlation with human judgments,
are constrained by input length restrictions and
their reliance on sentence-level alignment between
source and reference texts. While (Vernikos et al.,
2022) pioneered the adaptation of these metrics
to document-level translation evaluation, its appli-
cability remains severely constrained by its fun-
damental requirement for perfect sentence-level
alignment among source texts, translations, and
reference translations. This strict one-to-one cor-
respondence prerequisite significantly limits its
practical utility in real-world scenarios where such
ideal alignments rarely exist. Recent attempts to
leverage large language models (LLMs) as eval-
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Figure 2: For the segmented text pair (8 source fragments and 7 target fragments), we first compute a full 8× 7
score matrix using COMET KIWI to evaluate all possible pairwise alignments(subfigure a). We then apply dynamic
programming to identify the optimal alignment path (visualized as the red trajectory in Figure). This optimization
yields final sentence-level alignments, resulting in 8 properly aligned source-target pairs as demonstrated in subfigure
(b).

uators through carefully designed prompts show
promising alignment with professional human as-
sessments across multiple dimensions including ac-
curacy, fluency, and stylistic consistency (Gu et al.,
2025). However, these methods suffer from high
computational costs, sensitivity to training data bi-
ases, and instability across different prompts or
model runs, raising concerns about their reliability
and reproducibility for practical applications.

In this work, we employ an innovative align-
ment algorithm to automatically construct sentence-
level alignment between source and translated texts.
Our approach(Guo et al., 2025) involves: (1) sen-
tence segmentation of source and target texts, (2)
alignment metric computation, (3) anchoring of
source text segmentation information, and (4) re-
constructed target text segmentation (including
merging and gap filling). By subsequently applying
sliding-window-based sentence-level evaluation,
we achieve document-level assessment effective-
ness, thereby successfully adapting sentence-level
pretrained model evaluation methods to document
translation.

2 Approach

2.1 Alignment
Since our source text, translation, and reference
translation are all document data, the sentence-level
alignment between the source text and translation
that we automatically construct can be divided into

the following three parts:

• Sentence segmentation: Segment both orig-
inal and translated texts into sentence se-
quences.

• Calculate alignment metrics: Measure align-
ment similarity between original and trans-
lated sentences using metrics like COMET
KIWI (Rei et al., 2022) or LABSE (Feng et al.,
2022).

• Reconstruct translated text segmentation:
Based on the original text’s segmentation, re-
construct the translated text’s segmentation,
involving possible merging or filling gaps.
This is done using a dynamic programming
algorithm.

As shown in Figure 2, for a source text S and its
target translation T , we first perform sentence seg-
mentation using spaCy 1, yielding m source sen-
tences S = (s1, s2, ..., sm) and n target sentences
T = (t1, t2, ..., tn). For these m × n sentence
pairs, we compute a KIWI matrix KIWIm×n us-
ing COMET KIWI. When m = n with one-to-one
correspondence, the diagonal path of this matrix
should yield the maximum values. In document-
level translation scenarios, the number of source
segments and target segments typically differs

1https://spacy.io/
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Figure 3: For the reconstructed source-target pairs, Compute Score Slide 1 on 5 original aligned pairs. Generate 4
concatenated pairs using window size 2 to calculate Score Slide 2 Generate 3 concatenated pairs using window size
3 to calculate Score Slide 3 Generate 2 concatenated pairs using window size 4 to calculate Score Slide 4. The final
document-level metric is derived by averaging these four window-level scores, providing comprehensive coverage
of local and contextual translation quality.

(m ̸= n). Nevertheless, we can identify an op-
timal alignment mapping T = (t1, t2, ..., tm) =
F (s1, s2, ..., sn) - represented as the optimal path
in our framework - that maximizes the COMET
KIWI score.

This alignment task can be abstracted as a path
optimization problem: Given an [mn] matrix where
each cell (i, j) contains a score value, we seek the
optimal path from (0, 0) to (m − 1, n − 1) under
the following constraints:

• Monotonicity Constraint: y-coordinate must
increase by exactly 1 at each step (∀t, yt+1 =
yt + 1). x-coordinate must increase by a non-
negative integer (∀t, xt+1 ≥ xt)

• Boundary Conditions: Path originates at the
top-left corner (0, 0) and terminates at the
bottom-right corner (m− 1, n− 1)

• Optimization Objective: Maximize the cu-
mulative score:

argmaxp
∑

(x,y)∈p
matrix[x][y] (1)

Using the dynamic programming algorithm, we
can obtain a translation whose segmentation aligns
one-to-one with the source text, as well as the seg-
mentation information of the reference translation.

2.2 Sliding Evaluation
After obtaining the alignment information in the
previous step, we follow a procedure similar to
(Raunak et al., 2024), calculating sentence-level
scores using a sliding window approach. As il-
lustrated in Figure 3, for m source sentences

S = (s1, s2, ..., sm) and their aligned translations
T

′
= (t

′
1, t

′
2, ..., t

′
m), given a window size n, we

compute m groups of sentence-level evaluation
metrics, each incorporating n − 1 preceding sen-
tences as contextual information. The mean of
these scores serves as the document-level evalua-
tion result, expressed formally as follows:

1

n

n∑
i=1

fi(S, T
′
) (2)

Where fi corresponds to the Slide Score measured
when the window is i, corresponding to Score Slide
i in Figure 3.

3 Results

We participated in all language pair competi-
tions within the Segment-level Quality Score Pre-
diction Task, which included a total of 16 lan-
guage pairs. After the alignment phase, we ob-
tained new sentence-level text pairs correspond-
ing to each paragraph text pair. At this point,
we conducted respective predictions using wmt22-
cometkiwi-da(ASD-KIWI), wmt23-cometkiwi-da-
xl(ASD-KIWI-XL), and wmt23-cometkiwi-da-
xxl(ASD-KIWI-XXL), with the results shown in
Table 1. As shown in the Table 1, ASD-KIWI-XL
demonstrates superior correlation to ASD-KIWI
across most of the 16 language pairs, indicating
that post-alignment sentence-pair quality scoring
plays a critical role. While larger parameter mod-
els generally achieve better performance (as evi-
denced by KIWI-XL’s gains), this trend is not abso-
lute—ASD-KIWI-XXL fails to further outperform
ASD-KIWI-XL.
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Languages Pairs ASD-KIWI ASD-KIWI-XL ASD-KIWI-XXL ASD-KIWI-ENSEMBLE
EN-ZH 0.6800 0.6467 0.5600 0.7467
CS-UK 0.7382 0.5418 0.7164 0.7818
EN-KO 0.7067 0.7600 0.7267 0.7733
EN-IT 0.7169 0.600 0.5077 0.7169
EN-ET 0.7018 0.7164 0.6436 0.7455
EN-BHO 0.9316 0.9031 0.8348 0.9316
EN-IS 0.8667 0.7667 0.7400 0.7933
EN-SR 0.8974 0.8575 0.8519 0.9031
CS-DE 0.719 0.5820 0.6676 0.7418
EN-RU 0.6710 0.6017 0.3853 0.8355
EN-JA 0.7933 0.6533 0.4933 0.7667
EN-AR 0.8551 0.8696 0.7681 0.8551
EN-UK 0.7524 0.7238 0.5048 0.8190
EN-MAS 0.7628 0.5652 0.5889 0.5968
EN-CS 0.5942 0.6087 0.5362 0.6957
JA-ZH 0.7245 0.5042 0.6177 0.6978

Table 1: Results for 16 Languages Pairs in the Segment-Level Quality Score Prediction Task

To leverage both models, we propose an en-
semble method that averages the per-sentence
scores of ASD-KIWI and ASD-KIWI-XL. Empir-
ical results confirm that ASD-KIWI-ENSEMBLE
achieves the best overall performance.

4 Conclusion

This paper presents the methodology behind HW-
TSC’s submission to the WMT 2025 Segment-
Level Quality Score Prediction Task. Our ap-
proach integrates sentence segmentation tools and
dynamic programming algorithms to construct
sentence-level alignments between source and
translated texts, then adapts sentence-level evalua-
tion models to document-level assessment through
sliding-window aggregation. By incorporating an
ensemble strategy, our method achieved the highest
correlation scores across all 16 languages in this
task.
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