A* Decoding for Machine Translation in LLMs - SRPOL Participation in WMT2025
Adam Dobrowolski, Paweł Przewłocki, Paweł Przybysz, Marcin Szymański, Dawid Siwicki
Abstract
SRPOL team submission to WMT2025 introduces innovative approach using A* (A-star) algorithm of decoding in EuroLLM which gives diverse set of translation hypotheses. Subsequent reranking by Comet-QE and NLLB chooses the best of the diversed hypotheses which gives significant improvement of translation quality. The A* algorithm can be applied to decoding in any LLMs or other translation models. The experiment shows that by using free, openly accessible MT models you can achieve translation quality of the best online translators and LLMs using just a PC under your desk.- Anthology ID:
- 2025.wmt-1.42
- Volume:
- Proceedings of the Tenth Conference on Machine Translation
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Barry Haddow, Tom Kocmi, Philipp Koehn, Christof Monz
- Venue:
- WMT
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 666–670
- Language:
- URL:
- https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.wmt-1.42/
- DOI:
- 10.18653/v1/2025.wmt-1.42
- Cite (ACL):
- Adam Dobrowolski, Paweł Przewłocki, Paweł Przybysz, Marcin Szymański, and Dawid Siwicki. 2025. A* Decoding for Machine Translation in LLMs - SRPOL Participation in WMT2025. In Proceedings of the Tenth Conference on Machine Translation, pages 666–670, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- A* Decoding for Machine Translation in LLMs - SRPOL Participation in WMT2025 (Dobrowolski et al., WMT 2025)
- PDF:
- https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.wmt-1.42.pdf