
Proceedings of the 9th Widening NLP Workshop, pages 87–99
November 8, 2025 ©2025 Association for Computational Linguistics

ASR Under Noise: Exploring Robustness for Sundanese and Javanese

Salsabila Zahirah Pranida∗,1 Muhammad Cendekia Airlangga∗,1 Rifo Ahmad Genadi∗,1
Shady Shehata2

1 MBZUAI 2 University of Waterloo
{salsabila.pranida, muhammad.airlangga, rifo.genadi}@mbzuai.ac.ae

∗ Equal contribution

Abstract
We investigate the robustness of Whisper-based
automatic speech recognition (ASR) models for
two major Indonesian regional languages: Ja-
vanese and Sundanese. While recent work has
demonstrated strong ASR performance under
clean conditions, their effectiveness in noisy
environments remains unclear. To address this,
we experiment with multiple training strate-
gies, including synthetic noise augmentation
and SpecAugment, and evaluate performance
across a range of signal-to-noise ratios (SNRs).
Our results show that noise-aware training sub-
stantially improves robustness, particularly for
larger Whisper models. A detailed error analy-
sis further reveals language-specific challenges,
highlighting avenues for future improvements.
Code is available at https://github.com/
rifoagenadi/robust_jvsu_asr.

1 Introduction

Automatic Speech Recognition (ASR) systems
have made remarkable progress in recent years,
especially for high-resource languages like English.
While modern ASR handles diverse accents (Rao
and Sak, 2017) and noise (Seltzer et al., 2013) in
high-resource languages, it remains unreliable for
low-resource ones.

Indonesia, with 284M people and over 700 lan-
guages, is among the world’s most linguistically di-
verse countries (Badan Pusat Statistik, 2025; Eber-
hard et al., 2025; PetaBahasa, 2019; BPS, 2024).
Yet, both remain underrepresented in ASR research
and resources.

These languages exhibit high dialectal variation
and are spoken daily in uncontrolled, noisy settings,
which makes them difficult for standard ASR mod-
els, which are mostly trained on Indo-European
data (Sani et al., 2012). Figure 1 right illustrates
how background noise severely degrades transcrip-
tion quality, even with advanced models like Whis-
per. This demonstrates the vulnerability of current
ASR systems to real-world acoustic challenges.

Amid the growing use of large-scale speech-
language models, Whisper has emerged as a strong
multilingual ASR system (Radford et al., 2023).
Unlike prior models such as wav2vec 2.0 and
XLS-R, Whisper demonstrates superior robustness
and generalization, particularly in noisy and low-
resource scenarios (Pratama and Amrullah, 2024;
Shah et al., 2024). These strengths make Whisper
an ideal foundation for exploring ASR robustness
in Javanese and Sundanese.

In this work, we present the first systematic study
of ASR robustness to noise in these languages us-
ing over 60 hours of training data. Our key take-
aways are: (1) evaluating Whisper models across
clean and noisy test conditions; (2) exploring train-
ing strategies like SpecAugment and noise-aware
fine-tuning; (3) analyzing language-specific tran-
scription errors; and (4) releasing our training and
evaluation pipeline for reproducibility. This is the
first work to benchmark ASR robustness to noise
in these languages systematically.

2 Related Works

ASR for Sundanese and Javanese The NusaASR
benchmark (Cahyawijaya et al., 2023) evaluates
ASR models on Javanese and Sundanese primarily
in zero-shot settings. While prior work has fine-
tuned large models like XLS-R and Whisper (Aris-
aputra et al., 2024; Pratama and Amrullah, 2024),
these efforts often rely on limited data and lack
reproducibility. Moreover, they rarely address ro-
bustness under noisy conditions. In contrast, our
work provides a more comprehensive evaluation by
fine-tuning Whisper across both languages.

Noise Robustness Ensuring ASR robustness in
noisy environments is a well-recognized chal-
lenge (Shah et al., 2024; Feng et al., 2021;
Likhomanenko et al., 2020). Prior work addresses
this through data augmentation techniques such
as synthetic noise injection and room impulse re-
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Figure 1: (Left) Training and evaluation pipeline for Whisper-based ASR models. Each fine-tuned model is
evaluated on clean and noisy versions of the OpenSLR test set. (Right) Examples of noisy transcriptions in Javanese
and Sundanese using Whisper. The top boxes show spoken utterances with noise; the bottom boxes show the
corresponding ASR outputs, demonstrating significantly degraded quality under noisy conditions.

sponses. Among these, SpecAugment (Park et al.,
2019) has gained popularity as a simple and effec-
tive method. Other approaches include noise-aware
training (Orel and Varol, 2023) and denoising front-
ends (Dissen et al., 2024). In our work, we indepen-
dently evaluate SpecAugment and noise-aware fine-
tuning, using noise samples from AudioSet (Gem-
meke et al., 2017), as two distinct strategies to
improve ASR robustness.

3 Experimental Setup

3.1 Linguistic Characteristics

Javanese Javanese has more than 80 million
speakers (Eberhard et al., 2021) and is part of the
Austronesian, Malayo Polynesian family (Cohn
and Ravindranath, 2014). It is agglutinative with
extensive affixation that produces many word forms
and is commonly divided into Western, Central,
and Eastern varieties, each with distinct phonol-
ogy and vocabulary (Wedhawati et al., 2001). A
notable feature is its speech levels, such as ngoko
(informal) and krama (polite), which encode social
hierarchy in interaction (Isodarus, 2020).

Sundanese Sundanese, spoken by about 30–40
million people in western Java (Eberhard et al.,
2021), is part of the Austronesian, Malayo Polyne-
sian family and shows agglutinative morphology
with rich affixation. Major dialects include Bogor,
Priangan, and Cirebon, which differ in vocabulary
and pronunciation (Kurniawan, 2013). The lan-
guage also encodes politeness through registers
that guide lexical choice.

3.2 Dataset

Data Overview We use the OpenSLR Javanese
and Sundanese corpora (Kjartansson et al., 2018),
collected with support from Universitas Gadjah
Mada in Yogyakarta and Universitas Pendidikan
Indonesia in Bandung. The recordings are read
speech from volunteers. These corpora are valu-
able but do not cover the full range of dialects or
spontaneous use.

From the full releases (185k utterances / 296
hours for Javanese and 219k utterances / 333 hours
for Sundanese), we selected 10 subsets for train-
ing and 6 for testing (Kjartansson et al., 2018).
This gives about 60 hours of training data and 10
hours of test data per language, with train and
test speakers kept separate (Table 1). The size
is adequate for baseline ASR, but limited cover-
age should be considered when interpreting results.
While we were unable to identify detailed dialec-
tical or speaker variations from the original paper
Kjartansson et al. (2018), we estimated the propor-
tion of female and male speakers using a fine-tuned
version of wav2vec (Baevski et al., 2020)*.

Lang Train Test #Speakers (F%)

JV 37,439 6,276 758 (57%)
SU 39,560 6,563 529 (57%)

Table 1: Number of utterances and unique speakers for
each language, with female speaker proportion.

Synthetic Noise Data Generation To simulate
real-world conditions, we augment clean train-

*https://huggingface.co/prithivMLmods/Common-
Voice-Gender-Detection
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Figure 2: WER performance of Large-v3 Whisper across different SNR levels for Javanese and Sundanese. Models
trained with NoiseTrain consistently outperform others under low-SNR conditions. Higher SNR values indicate
cleaner audio.

ing data with background noise at various Signal-
to-Noise Ratio (SNR) levels, following prior
work (Orel and Varol, 2023; Maas et al., 2012).
The noise types reflect common environments like
traffic and indoor chatter. Details on the noise se-
lection, SNR values, and mixing procedure are
provided in Appendix B.

3.3 Training Pipeline

We fine-tune four Whisper variants—Tiny,
Medium, Large-v3, and Large-v3-Turbo—on Ja-
vanese and Sundanese ASR using OpenSLR. While
these models support the languages, their zero-shot
performance is poor due to limited training expo-
sure. We explore three training strategies to im-
prove robustness, as illustrated in Figure 1.

Clean Fine-tuning Models are trained on un-
modified OpenSLR data as a baseline.

Clean + SpecAugment In this setup, we fine-
tune the models by applying SpecAugment on clean
data, a data augmentation method that applies
time and frequency masking on input spectrograms.
To tune augmentation hyperparameters, we use a
90/10 split of the training data for training and vali-
dation (see details in Appendix A).

Fine-tune in Noisy Audio We synthetically aug-
ment the training set by mixing clean OpenSLR
utterances with background sounds from 24 classes
in AudioSet (Gemmeke et al., 2017), at various
SNR levels. Noise audio in the train splits is shuf-
fled and mapped in a many-to-one manner to SNR
values. It means that one SNR was used for differ-
ent audio files, but the audio files did not repeat.
The resulting noisy dataset is then used to fine-tune
the Whisper models. This setup is referred to as

NoiseTrain.

3.4 Evaluation Pipeline
Models are evaluated on both clean and synthetic
noisy versions of the OpenSLR test set, as shown
on the evaluation side of Figure 1, using word error
rate (WER) as the main metric. Noisy test sets are
created by mixing the clean utterances with back-
ground sounds from 8 held-out noise AudioSet
classes†.

4 Results and Analysis

4.1 Model Robustness
We evaluate Whisper models on Javanese and
Sundanese under varying noise conditions. Fig-
ure 2 shows how WER changes across SNR con-
ditions using the Large-v3 model (see details in
Appendix D), while Tables 2 and 3 report detailed
results for all model variants and training strategies.
Zero-shot performance is poor, with WERs exceed-
ing 70–120 even on clean audio, confirming that
adaptation is critical. We selected SpecAugment
configuration #9 as the best-performing setup (see
Appendix A) and use it for all reported results.
Both NoiseTrain and SpecAugment significantly
improve robustness, especially under low-SNR con-
ditions.

Models trained with NoiseTrain or
SpecAugment consistently outperform clean-
only models, especially under low-SNR conditions.
For instance, in Javanese –SNR, Medium improves
from 225.38 to 111.89 WER, and in Sundanese,
from 199.09 to 56.15. Even larger models
like Large-v3 benefit, dropping from 79.91 to
41.37, showing the importance of noise-aware

†See Appendix E for the list of held-out noise classes.
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training for real-world robustness. Running all
experiments, including SpecAugment tuning,
clean, and noise-aware fine-tuning, required over
240 GPU-hours.

We also the Large variant to be slightly better
than Large-turbo. Whisper large-turbo is a fine-
tuned of pruned whisper large. Thus, they are both
the exact same model except the turbo variant have
reduced number of decoding layers, from 32 to 4.
The turbo model is optimized for faster inference
with a minor degradation. Therefore, the result we
have in Table 3 and Table 2 is expected since we
fine-tune a larger number of parameters in the large
variant.

Model Clean Noisy

+SNR –SNR

Tiny
Zero-shot 128.56 170.65 205.89
Clean 60.42 77.60 133.53
SpecAug + Clean 60.99 78.41 133.59
NoiseTrain 65.09 76.10 106.51

Medium
Zero-shot 92.08 105.33 152.42
Clean 25.40 33.85 225.38
SpecAug + Clean 25.45 32.79 140.05
NoiseTrain 26.87 32.41 111.89

Large-v3
Zero-shot 74.62 82.66 148.12
Clean 21.14 28.47 100.76
SpecAug + Clean 21.45 27.45 88.48
NoiseTrain 22.50 27.10 114.95

Large-v3-Turbo
Zero-shot 67.13 80.29 195.65
Clean 24.12 77.80 134.19
SpecAug + Clean 23.89 31.75 140.82
NoiseTrain 24.79 30.95 153.73

Table 2: WER on the Javanese test set across clean
and noisy conditions. All models are fine-tuned on
Javanese only. “+SNR” refers to high SNR and “–SNR”
to low SNR. Zero-shot results are only evaluated on
clean audio.

4.2 Error Analysis

We conduct error analysis on the best model,
Large-v3, using two views. First, we use character
error rate (CER) to quantify fine grained edits: ex-
tra spaces, vowel changes, consonant changes, and
diacritics, which is appropriate for agglutinative
languages where small affix or spacing differences
can inflate word errors. Second, we use WER to
summarize word insertions, deletions, and substitu-
tions. Table 4 reports the CER-based error distribu-
tion for Javanese and Sundanese(see Appendix C).

Model Clean Noisy

+SNR –SNR

Tiny
Zero-shot 116.79 194.18 360.48
Clean 40.37 68.50 413.56
SpecAug + Clean 40.19 61.64 274.32
NoiseTrain 43.82 58.89 201.79

Medium
Zero-shot 83.20 93.06 282.98
Clean 4.03 8.43 199.09
SpecAug + Clean 4.09 7.84 165.36
NoiseTrain 5.46 8.59 56.15

Large-v3
Zero-shot 78.90 83.62 171.76
Clean 3.72 6.60 79.91
SpecAug + Clean 3.98 6.24 67.59
NoiseTrain 4.10 5.88 41.37

Large-v3-Turbo
Zero-shot 73.20 81.04 187.01
Clean 4.83 9.84 160.43
SpecAug + Clean 4.83 8.95 124.15
NoiseTrain 6.17 8.62 65.42

Table 3: WER on the Sundanese test set across clean
and noisy conditions. All models are fine-tuned on
Sundanese only. “+SNR” refers to high SNR and “–
SNR” to low SNR. Zero-shot results are only evaluated
on clean audio.

Error Type Cased Uncased

jav sun jav sun

Additional Space 900 338 918 351
Consonant Mistake 7702 2284 5815 1952
Vowel Mistake 3722 1214 3660 1236
Diacritics Mistake 1702 4 1680 4

Table 4: Distribution of different types of errors for
Javanese (jav) and Sundanese (sun) language datasets.

Additional Space This error occurs when the
model inserts or removes spaces incorrectly. In
Javanese, examples include dipunpanggihaken be-
coming dipun panggihaken, or adipati split into
adi pati. In Sundanese, errors often involve for-
eign names (e.g., baekhyun → baek hyun) or place
names (e.g., situ lengkong → situlengkong). Com-
mon words like minangka were also occasionally
split into minang ka.

Vowel Mistakes Vowel-related errors often arise
from subtle phonetic variations and orthographic in-
fluences. In Sundanese, confusion among the three
e-like vowels—e (as in lebak), è (bèbèk), and eu
(teuas)—frequently leads to transcription mistakes,
such as heulang being rendered as helang. Foreign
names are also problematic when pronounced with
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local phonology, e.g., Taylor pronounced as Tayler
/["taj.ler]/. In Javanese, vowel shifts and reductions
are common, with examples like permata becom-
ing permato or terus shortened to trus, reflecting
dialectal or colloquial speech that ASR models
struggle to handle. Additionally, Dutch-influenced
spellings, such as oe for /u/—, can cause errors like
Doel being transcribed as Dul.

Consonant Mistake These were far more com-
mon in Javanese, probably because it has more
complex consonant sounds, including digraphs like
dh, ng, ny, and th, which are sometimes simpli-
fied or misheard. Some Javanese examples include
cetha becoming ceto, baut as baud, djoni as jani,
aktris as apris, and putuku written as puduku. In
Sundanese, consonant errors were less frequent,
but often appeared in borrowed or foreign words.
For instance, some speakers pronounce f or v as p,
resulting in words like felton → pelton, pevita →
fevita, or shidqia → shidgya.

Diacritics Mistake Diacritic-related errors were
mainly happen in Javanese. Javanese uses diacrit-
ics more extensively, especially marks like é and
è, which affect pronunciation and meaning. These
are known as sandhangan swara. We found ex-
amples like dhèwèké written as dhaweke, radén
as radenma, warnané as warnane, and saliyané
as saliyane. Additionally, we would like to note
that data from OpenSLR in Sundanese does not
include diacritics, even though diacritics are sup-
posed to be used in Sundanese to differentiate e
and è (pronounced differently). Due to the absence
of diacritics in the Sundanese transcript, we only
observed a few minor cases, involving only the
name Beyoncé, which was predicted without the
accent as Beyonce, since the models are fine-tuned
without any diacritics.

5 Limitations

This study has three main limitations. First, the
OpenSLR corpora were only from limited regions,
which may not reflect spontaneous or dialectal vari-
ation in Javanese and Sundanese. Second, the noisy
conditions are synthetic and cannot fully capture
real-world environments such as conversational
overlap or varied recording devices. Third, our
experiments focus only on Whisper-based models
with a small set of fine-tuning strategies. These fac-
tors constrain the generalizability of the findings
but also motivate directions for improvement.

6 Conclusion

We evaluated Whisper-based ASR models on Ja-
vanese and Sundanese under noisy conditions.
While clean audio performance was strong, WER
degraded by 2–3× in low-SNR scenarios with-
out noise-aware training. Both SpecAugment
and synthetic noise improved robustness, with
NoiseTrain consistently outperforming other
methods on average across models and languages.
Error analysis showed Sundanese struggled with
vowel confusion and name errors, while Javanese
had more digraph and consonant issues, resulting
in higher WER. Future work includes dialect-aware
fine-tuning and speech enhancement for better real-
world robustness.

91



References
Panji Arisaputra, Alif Tri Handoyo, and Amalia Zahra.

2024. Xls-r deep learning model for multilingual
asr on low-resource languages: Indonesian, javanese,
and sundanese. arXiv preprint arXiv:2401.06832.

Badan Pusat Statistik. 2025. Statistik Indonesia 2025, 1
edition. Badan Pusat Statistik (BPS), Jakarta, Indone-
sia. Nomor Katalog: 1101001, Nomor Publikasi:
03200.25004. Tanggal Rilis: 28 Februari 2025.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations.

Indonesian BPS. 2024. Profil suku dan keragaman ba-
hasa daerah, hasil long form sensus penduduk 2020.
https://www.bps.go.id/.

Samuel Cahyawijaya, Holy Lovenia, Alham Fikri Aji,
Genta Winata, Bryan Wilie, Fajri Koto, Rahmad
Mahendra, Christian Wibisono, Ade Romadhony,
Karissa Vincentio, Jennifer Santoso, David Moel-
jadi, Cahya Wirawan, Frederikus Hudi, Muham-
mad Satrio Wicaksono, Ivan Parmonangan, Ika Al-
fina, Ilham Firdausi Putra, Samsul Rahmadani, Yu-
lianti Oenang, Ali Septiandri, James Jaya, Kaustubh
Dhole, Arie Suryani, Rifki Afina Putri, Dan Su, Keith
Stevens, Made Nindyatama Nityasya, Muhammad
Adilazuarda, Ryan Hadiwijaya, Ryandito Diandaru,
Tiezheng Yu, Vito Ghifari, Wenliang Dai, Yan Xu,
Dyah Damapuspita, Haryo Wibowo, Cuk Tho, Ich-
wanul Karo Karo, Tirana Fatyanosa, Ziwei Ji, Gra-
ham Neubig, Timothy Baldwin, Sebastian Ruder, Pas-
cale Fung, Herry Sujaini, Sakriani Sakti, and Ayu Pur-
warianti. 2023. NusaCrowd: Open source initiative
for Indonesian NLP resources. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 13745–13818, Toronto, Canada. Association
for Computational Linguistics.

Abigail C Cohn and Maya Ravindranath. 2014. Local
languages in indonesia: Language maintenance or
language shift. Linguistik Indonesia, 32(2):131–148.

Yehoshua Dissen, Shiry Yonash, Israel Cohen, and
Joseph Keshet. 2024. Enhanced asr robustness to
packet loss with a front-end adaptation network. In
Proc. Interspeech 2024, pages 5008–5012.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig, editors. 2021. Ethnologue: Languages of the
World, 24 edition. SIL International, Dallas, Texas.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig, editors. 2025. Ethnologue: Languages of
the World, twenty-eighth edition. SIL International,
Dallas, Texas. Online version.

Lingyun Feng, Jianwei Yu, Deng Cai, Songxiang Liu,
Haitao Zheng, and Yan Wang. 2021. Asr-glue: A new
multi-task benchmark for asr-robust natural language
understanding. ArXiv, abs/2108.13048.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman,
Aren Jansen, Wade Lawrence, R. Channing Moore,
Manoj Plakal, and Marvin Ritter. 2017. Audio set:
An ontology and human-labeled dataset for audio
events. In Proc. IEEE ICASSP 2017, New Orleans,
LA.

Praptomo Baryadi Isodarus. 2020. Penggunaan
tingkat tutur bahasa jawa sebagai representasi relasi
kekuasaan. Sintesis, 14(1):1–29.

Oddur Kjartansson, Supheakmungkol Sarin, Knot Pi-
patsrisawat, Martin Jansche, and Linne Ha. 2018.
Crowd-sourced speech corpora for javanese, sun-
danese, sinhala, nepali, and bangladeshi bengali. In
SLTU, pages 52–55.

Eri Kurniawan. 2013. Sundanese complementation.
The University of Iowa.

Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap,
Paden Tomasello, Jacob Kahn, Gilad Avidov, Ronan
Collobert, and Gabriel Synnaeve. 2020. Rethinking
evaluation in asr: Are our models robust enough? In
Interspeech.

Andrew L Maas, Quoc V Le, Tyler M O’neil, Oriol
Vinyals, Patrick Nguyen, and Andrew Y Ng. 2012.
Recurrent neural networks for noise reduction in ro-
bust asr. In Interspeech, volume 2012, pages 22–25.

Daniil Orel and Huseyin Atakan Varol. 2023. Noise-
robust automatic speech recognition for industrial
and urban environments. In IECON 2023-49th An-
nual Conference of the IEEE Industrial Electronics
Society, pages 1–6. IEEE.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. In Proc.
Interspeech 2019, pages 2613–2617.

PetaBahasa. 2019. Peta Bahasa. https://
petabahasa.kemdikbud.go.id.

Riefkyanov Surya Adia Pratama and Agit Amrullah.
2024. Analysis of whisper automatic speech recogni-
tion performance on low resource language. Jurnal
Pilar Nusa Mandiri, 20(1):1–8.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.
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A Experimental Configuration

To find the best SpecAugment setup for our training, we ran a series of controlled experiments using
different time and frequency masking combinations. Table 5 lists the configurations we tested, each with
different masking probabilities, lengths, and minimum number of masks applied to the time and frequency
dimensions of the input spectrograms.

We started with individual masking strategies and then explored balanced and mixed configurations.
These ranged from light to aggressive settings to see how much augmentation the model could benefit
from before performance started to drop. Based on the validation WER, the best-performing configuration
was then used to retrain the final model on the whole training set.

Exp Description Time Prob Time Len Time Min Freq Prob Freq Len Freq Min

0 Baseline (no SpecAugment) 0.00 0 0 0.00 0 0
1 Light Time Masking Only 0.05 10 2 0.00 0 0
2 Medium Time Masking Only 0.10 15 2 0.00 0 0
3 Heavy Time Masking Only 0.20 20 3 0.00 0 0
4 Light Frequency Masking Only 0.00 0 0 0.05 10 1
5 Medium Frequency Masking Only 0.00 0 0 0.10 15 2
6 Balanced Light (Time + Freq) 0.05 10 2 0.05 10 1
7 Balanced Medium (Time + Freq) 0.10 12 2 0.10 12 2
8 Time-Heavy Mix 0.15 15 3 0.05 8 1
9 Frequency-Heavy Mix 0.05 8 1 0.15 15 3

10 Aggressive (Heavy Time + Freq) 0.20 20 3 0.15 18 3

Table 5: SpecAugment configurations used in each experiment. Values represent the masking probabilities, lengths,
and minimum number of time and frequency dimensions masks.

B Synthetic Noise Generation

To simulate real-world conditions, we create a set of noisy training data by mixing clean speech from the
OpenSLR dataset with different types of background noise. We follow the general approach of Orel and
Varol (2023) and use samples from AudioSet as our noise source. The noise types we picked were meant
to reflect various environments in which people often speak, such as traffic, crowds, or indoor chatter,
listed in Appendix E.

In our experiments, we use the following Signal-to-Noise Ratio (SNR) values: -20, -15, -10, -5,
0, 5, 10, 15, 20, clean, where clean refers to the original audio without any added noise. Negative
SNR values mean more noise relative to the speech, whereas positive values are closer to clean conditions.
We specifically chose these values, similar to prior work (Maas et al., 2012), since they cover the full
spectrum of acoustic conditions from severe noise corruption to optimal listening environments.

To generate the noisy samples, we use the following formula:

noisy_audio = original_audio+ α · noise

The scaling factor α controls how much noise is added and is calculated based on the target SNR using:

α =

√
10−

SNR
10 · ∥original_audio∥

2
2

∥noise∥22
C Error Analysis

We analyzed the outputs of all Whisper models to understand the kinds of errors made in Javanese and
Sundanese. To focus on more meaningful mistakes, we ignored casing differences.

C.1 Character-level error analysis (CER)
We analyze CER to capture small edits common in agglutinative morphology, grouping aligned character
edits into four types: extra spaces, vowel errors, consonant errors, and diacritic errors. Table 6 reports
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counts by model and language: Javanese is dominated by consonant and diacritic changes, whereas
Sundanese shows relatively more vowel and consonant changes; lowercasing the text (uncased CER)
consistently reduces total character edits by about 7–18% across models, indicating that many mismatches
are orthographic rather than full lexical substitutions. For computation, we normalize reference and
hypothesis to NFC, collapse repeated whitespace, apply casefolding for uncased scoring, and compute
CER = S+D+I

N , where S, D, and I are minimal character substitutions, deletions, and insertions from
the alignment and N is the number of reference characters; error types are assigned from aligned edits:
whitespace → space; {a, i, u, e, o} → vowel; base–diacritic pairs (e.g., e vs. é) → diacritics; remaining
letters → consonant.

Error Type Tiny Medium Large-v3 Large-v3-turbo

jav sun jav sun jav sun jav sun

Cased
Additional space 6249 6110 1278 419 900 338 1039 391
Consonant mistake 32881 30614 9611 2552 7702 2284 8632 2810
Vowel mistake 15744 14417 4742 1494 3722 1214 4168 1563
Diacritics mistake 3343 8 1797 0 1702 4 1799 1

Uncased
Additional Space 6355 6402 1308 439 918 351 1057 391
Consonant mistake 26693 21061 7157 2135 5815 1952 6392 2408
Vowel mistake 15650 14606 4661 1416 3660 1236 4119 1578
Diacritics mistake 3300 7 1759 0 1680 4 1793 1

Reduction (%) 10.68 17.65 14.56 8.19 13.88 7.45 14.52 7.48

Table 6: Character-level error type counts for Javanese (jav) and Sundanese (sun) across model sizes under cased
and uncased evaluation; the bottom row shows the relative CER reduction (%) from cased to uncased per column.

C.2 Word-level error analysis (WER)
We decompose word errors into insertions (I), deletions (D), and substitutions (S) under cased and uncased
scoring, Table 7 reports per-language counts across model sizes, and the bottom row gives the relative
reduction in total word edits when lowercasing is applied. For computation, we normalize reference
and hypothesis to NFC, collapse repeated whitespace, apply casefolding for uncased scoring, tokenize
by whitespace, and obtain minimal word-level alignments to count I , D, and S; word error rate is then
WER = S+D+I

Nref words
.

Error Type Tiny Medium Large-v3 Large-v3-turbo

jav sun jav sun jav sun jav sun

Cased
Insertion 1541 1551 472 105 344 63 376 104
Deletion 2587 2615 592 224 414 227 526 191
Substitution 22178 17563 9995 1842 8445 1713 9600 2305

Uncased
Insertion 1546 1562 472 105 345 63 377 105
Deletion 2592 2625 592 224 415 227 527 192
Substitution 20535 15339 8715 1767 7386 1640 8359 2208

Reduction (%) 6.21 10.13 11.57 3.45 11.49 3.64 11.80 3.65

Table 7: Word-level error type counts (WER components) for Javanese (jav) and Sundanese (sun) across model
sizes under cased and uncased evaluation. The bottom row shows the relative reduction (%) in total word edits per
column.

D Experimental Result

We report WER across SNR levels in Tables 8 and 9 and visualize the trends in Fig. 3. The tables
cover four Whisper variants (Tiny, Medium, Large-v3, Large-v3-Turbo), each trained with Clean,
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SpecAug+Clean, and NoiseTrain. Figure 3 shows Tiny, Medium, and Large-v3-Turbo for both lan-
guages, and Figure 2 presents the Large-v3 curves. As expected, WER increases as SNR decreases,
and smaller models degrade more. Noise aware training reduces this drop, especially at low SNR.
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Figure 3: WER performance of Whisper variants across different SNR levels for Javanese and Sundanese: (a) Tiny -
Javanese, (b) Medium - Javanese, (c) Large-v3-Turbo - Javanese, (d) Tiny - Sundanese, (e) Medium - Sundanese, (f)
Large-v3-Turbo - Sundanese.

Tiny

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 121.82 134.56 148.93 128.82 101.47 84.04 72.20 67.04 63.23 60.43
SpecAug + Clean 119.60 133.37 146.66 134.74 106.40 82.98 72.57 66.73 63.35 60.99
NoiseTrain 108.62 108.27 108.63 100.52 90.94 80.02 73.16 69.26 67.10 65.09

Medium

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 363.54 307.64 156.21 74.14 48.35 36.37 30.47 27.55 26.50 25.40
SpecAug + Clean 210.88 174.37 108.62 66.32 46.00 34.79 29.76 27.26 26.14 25.45
NoiseTrain 178.90 135.18 79.08 54.38 41.56 33.90 30.32 28.50 27.76 26.87

Large-v3

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 119.07 122.72 98.30 62.93 41.02 30.40 25.48 23.27 22.16 21.14
SpecAug + Clean 108.07 102.49 86.18 57.19 38.08 29.06 24.93 22.95 22.21 21.45
NoiseTrain 219.07 123.84 68.47 48.41 35.18 28.37 25.16 23.73 23.06 22.50

Large-v3-Turbo

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 146.75 147.43 137.47 105.12 89.64 79.23 75.50 72.72 71.89 24.12
SpecAug + Clean 171.69 179.26 137.23 75.10 46.84 33.47 28.01 25.51 24.93 23.89
NoiseTrain 225.05 198.41 126.32 65.12 41.59 32.99 28.48 26.25 25.42 24.79

Table 8: WER across SNR levels for Javanese

E Noise Classes from AudioSet

We provide a list in Table 10 of environmental and synthetic noise classes used during training and
evaluation, sourced from AudioSet. These include a variety of real-world and synthetic sound events,
some of which were used as held-out classes for testing generalization. Held-out classes are marked with
a superscript *.
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Tiny

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 441.91 489.04 442.65 280.62 133.43 70.98 51.23 44.68 42.19 40.37
SpecAug + Clean 306.70 313.82 288.70 188.06 104.14 66.37 51.04 44.50 42.13 40.19
NoiseTrain 269.09 232.61 184.20 121.24 84.40 62.44 53.18 48.26 46.15 43.82

Medium

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 329.53 278.64 145.19 43.01 16.69 9.23 6.33 5.23 4.66 4.03
SpecAug + Clean 271.12 247.21 107.82 35.27 15.73 8.55 5.91 4.74 4.29 4.09
NoiseTrain 81.13 69.27 47.81 26.37 14.39 9.19 7.06 6.25 6.06 5.46

Large-v3

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 107.27 100.49 79.05 32.81 12.80 7.08 4.94 4.26 3.91 3.72
SpecAug + Clean 96.16 87.53 61.77 24.88 11.16 6.49 4.99 4.40 4.14
NoiseTrain 65.07 51.02 32.23 17.15 9.30 6.16 5.07 4.54 4.31 4.10

Large-v3-Turbo

Model -20 -15 -10 -5 0 5 10 15 20 Clean

Clean 197.83 201.34 180.01 62.52 21.10 10.45 6.64 5.70 5.33 4.83
SpecAug + Clean 143.48 156.14 149.58 47.39 18.35 9.06 6.51 5.60 5.24 4.83
NoiseTrain 112.65 80.81 45.48 22.72 13.16 8.99 7.47 6.93 6.53 6.17

Table 9: WER across SNR levels for Sundanese

Class Name Description Count

Siren The sound of a loud noise-making device
used to provide warnings to people nearby.
A siren typically consists of a single pitch
that changes either smoothly or abruptly on
timescales around one second.

2188

Car passing by The sound of a motorized vehicle as it passes
by a listener close to the vehicle’s path. The
sound may include engine and tire noise and
will typically involve a clear build-up and/or
decay of intensity as the vehicle approaches
and retreats, as well as possible Doppler
shift.

1010

Clatter An irregular rattling noise, often produced
by rapid movement, consisting of a cluster of
transient sounds.

772

White noise A random, unstructured sound in which the
value at any moment provides no informa-
tion about the value at any other moment.
White noise has equal energy in all frequency
bands.

738

Crackle An irregular sequence of sharp sounds, as
from sudden vaporization of liquids trapped
in a burning solid, or from a collection of
snapping noises.

662

Continued on next page
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Table 10 – continued from previous page
Class Name Description Count

Wind noise (micro-
phone)

The noise produced when a strong air current
passes over a microphone, causing large am-
plitude local turbulence, normally recorded
as mechanical clipping as the microphone
element exceeds its limits of linearity.

548

Environmental
noise*

The combined sounds of transport, industrial,
and recreational activities.

322

Pink noise* Unstructured noise whose energy decreases
with frequency such that equal amounts of
energy are distributed in logarithmic bands
of frequency, typically octaves.

283

Boom* A deep prolonged loud noise. 283
Firecracker The sound of a small explosive device pri-

marily designed to produce a large amount of
noise, especially in the form of a loud bang.

279

Microwave oven Sounds made by a kitchen appliance that
heats food by exposing it to microwave radi-
ation, including the noise of the fan, rotation
mechanism, and microwave source, as well
as the alert sound used to indicate that cook-
ing is complete.

250

Traffic noise, road-
way noise

The combined sounds of many motor vehi-
cles traveling on roads.

196

Air horn, truck horn The sound of a pneumatic device mounted
on large vehicles designed to create an ex-
tremely loud noise for signalling purposes.

161

Hubbub, speech
noise, speech
babble

Loud, disordered, unintelligible speech noise
from many sources.

146

Static A crackling or hissing noise caused by elec-
trical interference.

101

Inside, public
space*

Sounds that appear to have been recorded in
a public space such as store, restaurant, or
travel terminus, often characterized by both
reverberation and continuous background
noise.

98

Rumble A loud, low-pitched, dull, continuous noise. 90
Grunt* A short low gruff noise, resembling the

sound made by animals such as pigs. Specifi-
cally refers to humans.

73

Stomach rumble* A rumbling, growling or gurgling noise pro-
duced by movement of the contents of the
gastro-intestinal tract.

64

Noise A sound that has no perceptible structure and
that typically interferes with the perception
of more interesting or important sounds.

58

Continued on next page
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Table 10 – continued from previous page
Class Name Description Count

Knock A sharp noise of a rigid surface being struck,
usually without damage and deliberately,
most often with the knuckles of the hand.

54

Clang* A loud, resonant, discordant noise, as of a
large and partly hollow metal structure being
struck.

49

Bang A brief and loud noise. 38
Squeak* A short, high-pitched noise without a sharp

attack.
27

Creak A high-pitched noise with a perceptible vari-
ation in pitch as a result of pressure being
shifted or applied on a surface, most com-
monly on wood.

16

Table 10: Descriptions and counts of noise classes used from AudioSet. Held-out classes are marked with *.
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