SemEval 2025

The 19th International Workshop on Semantic Evaluation
(SemEval-2025)

Proceedings of the Workshop

July 31 - August 1, 2025



The SemEval organizers gratefully acknowledge the support from the following
SpONsors.

Gold

SIGLE

pecial Interest Group

ey
A
-
A
e

ii



©2025 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S

Suite 400 - 134

Kerrville, TX 78028

USA

Tel: +1-855-225-1962

acl@aclweb.org

ISBN 979-8-89176-273-2

iii



Introduction

The 2025 edition of the International Workshop on Semantic Evaluation (SemEval) is the nineteenth wo-
rkshop in the series. SemEval focuses on the evaluation and comparison of systems that analyze diverse
semantic phenomena creating high quality annotated datasets in a range of increasingly challenging pro-
blems in natural language semantics.

The workshop began in 1998 and was originally known as SensEval and focused on word sense disam-
biguation. In 2007, the workshop was renamed SemEval, and evolved to include semantic tasks beyond
word sense disambiguation. Starting in 2012, SemEval has been organized every year.

SemEval-2025 is co-located with the 2025 Annual Meeting of the Association for Computational Lingui-
stics (ACL-2025) in Vienna, Austria (and with hybrid sessions). SemEval-2025 includes the following
11 tasks grouped by area:

¢ Semantic Relations

— Task 1: ADMIRE: Advancing Multimodal Idiomaticity Representation
— Task 2: EA-MT: Entity-Aware Machine Translation

* LLM Capabilities

— Task 3: Mu-SHROOM, the Multilingual Shared-task on Hallucinations and Related Observable
Overgeneration Mistakes

— Task 4: Unlearning sensitive content from Large Language Models

— Task 5: LLMs4Subjects: LLM-based Automated Subject Tagging for a National Technical Li-
brary’s Open-Access Catalog

* Fact Checking and Knowledge Verification

— Task 6: PromiseEval: Multinational, Multilingual, Multi-Industry Promise Verification
— Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval

— Task 8: Question-Answering over Tabular Data

— Task 9: The Food Hazard Detection Challenge

* Knowledge Representation and Reasoning

— Task 10: Multilingual Characterization and Extraction of Narratives from Online News
— Task 11: Bridging the Gap in Text-Based Emotion Detection

This volume contains a total of 332 papers. It features 11 task description papers that describe each of
the above tasks. It also features 11 system description papers that present the systems that participated in
the tasks.

We are grateful to the task organizers for their dedication in carrying out ten very successful tasks and to
the large number of participants whose enthusiastic participation has made SemEval-2025 a successful
event. We also appreciate the efforts of the task organizers and participants who reviewed the paper sub-
missions. These proceedings have greatly benefited from their detailed and thoughtful feedback. Finally,
we also thank the members of the program committee who reviewed the submitted task proposals and
helped us to select this exciting set of tasks, the ACL-2025 conference organizers for their support, and
the ACL Special Interest Group on the Lexicon (SIGLEX) for sponsoring and supporting this event.

Sara Rosenthal, Aiala Rosd, Marcos Zampieri, and Debanjan Ghosh (SemEval-2025 Organizers and
Co-Chairs)
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Keynote Talk
Lessons in generics: how language models grapple with
human generalisation

Emily Allaway
Chancellor’s Fellow at the School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK

Abstract: The ability to generalise is a crucial aspect of human cognition, allowing us to derive broader
understandings from specific instances. In language, generalised knowledge over particular instantiations
and exceptions can be flexibly expressed through generics — generalisations without quantifiers. Howe-
ver, the flexibility of generics also comes with puzzling properties that have been extensively studied in
areas such as linguistics and philosophy of language. This talk will explore the specific challenges that
this language of generalisation poses for language models (LMs). I will begin by examining whether
language models recognise the quantificational variation inherent in generics. Specifically, I will discuss
how accurately LMs process and recognise the quantification in generic expressions, with a particular
focus on the phenomenon of overgeneralisation — unwarranted universal quantification. One critical
area of overgeneralisation is with stereotypes and I will touch on the implications for LMs of stereotypes
that are expressed as generics. Next, I will present evaluations on the capacity of LMs to reason about
generics and related examples, probing LMs’ ability to both maintain and override their generalisations.
In the final part of the talk, I will expand the discussion to visual-language models (VLMs) to determine
whether their struggles with generics mirror those of traditional LMs and what the broader implications
of these findings might be.

Bio: Emily Allaway is a Chancellor’s Fellow at the University of Edinburgh in the School of Informatics,
where she is affiliated with both Edinburgh NLP and the Institute for Language, Cognition and Com-
putation (ILCC). Her research is on reasoning about and understanding implicit meaning in language,
with a recent focus on generics and their role in reasoning. Emily received her PhD from Columbia
University under the supervision of Kathleen McKeown. Her doctoral work there was supported by an
NSF Graduate Research Fellowship. Her previous work includes research positions at the University of
Washington, the Allen Institute for Artificial Intelligence, and Amazon Science. She is currently a chair
for the WiNLP workshop.
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Abstract

Ensuring food safety requires effective detec-
tion of potential hazards in food products. This
paper presents the participation of VerbaNexAl
in the SemEval-2025 Task 9 challenge, which
focuses on the automatic identification and clas-
sification of food hazards from descriptive texts.
Our approach employs a machine learning-
based strategy, leveraging a Random Forest
classifier combined with TF-IDF vectorization
and character n-grams (n=2-5) to enhance lin-
guistic pattern recognition. The system a no-
table performance in hazard and product clas-
sification tasks, obtaining notable macro and
micro F1 scores. However, we identified chal-
lenges such as handling underrepresented cate-
gories and improving generalization in differ-
ent contexts. Our findings highlight the need
to refine preprocessing techniques and model
architectures to enhance food hazard detection.
We made the source code publicly available to
encourage reproducibility and collaboration in
future research.

1 Introduction

Detecting food hazards is an essential challenge
to ensure the safety and quality of food products
globally (FAO and WHO, 2007; Nogales et al.,
2020). Following this line, the task proposed in
SemEval-2025 Task 9: The Food Hazard Detec-
tion Challenge focuses on identifying and classify-
ing different types of hazards associated with food
products through the analysis of descriptive texts.
This task is of great relevance due to the growing
need to monitor and ensure food safety and the
need for automated systems that can process large
volumes of data, which facilitates the early detec-
tion of potential hazards in food products globally
(Randl et al., 2025). The ability to accurately and
efficiently detect these hazards contributes directly
to preventing public health incidents and improv-
ing food safety standards (WHO, n.d.; USDA, U.S.
Department of Agriculture, 2024).

1

Our system employs a strategy based on ma-
chine learning and supervised classification using a
Random Forest classifier combined with a TF-IDF
vectorization to represent textual features. We im-
plemented an n-gram character analysis approach
(n=2-5) to capture relevant linguistic patterns to
distinguish between different categories of hazards
and products, hazard and product. This method
facilitated the extraction of contextual information.
It improved the model’s ability to generalize from
training data, thus optimizing prediction accuracy
on new unlabeled datasets. By participating in this
task, our system a notable performance compared
to other teams, obtaining outstanding micro and
macro F1 scores in hazard and product categories
and hazard and product detection sub-tasks. How-
ever, we identified specific challenges, such as the
difficulty in handling underrepresented categories
and the need to improve the model’s generalization
in broader contexts. These findings underscore the
importance of refining preprocessing techniques
and model architecture to address the inherent com-
plexity of food hazard detection effectively.

Participation in this task revealed promising re-
sults, positioning our system competitively against
other participating teams. Quantitatively, our
model obtained outstanding macro and micro F1
scores in the hazard and product category classifi-
cation sub-tasks, reflecting high accuracy and ro-
bustness. However, significant challenges were
identified, such as difficulty in handling linguis-
tic ambiguities, difficulty in handling underrepre-
sented categories, and variability in textual descrip-
tions, suggesting areas of improvement for future
developments. These findings underscore the im-
portance of refining preprocessing techniques and
model architecture to address the complexity in-
herent in food hazard detection. We published the
source code used for developing and training our
model to encourage reproducibility and collabora-
tion in future work related to food hazard detection.
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It is available through the following link !.

2 Background

SemEval 2025 Task 9: The Food Hazard Detec-
tion Challenge focuses on automatically identifying
and classifying food hazards from textual descrip-
tions of food products. The input type for this task
consists of descriptive texts detailing food safety-
related incidents, such as reports of contaminants
in food products or warnings about unsafe food
handling practices see Tablel.

The datasets used in this task include mainly
training and validation divisions, covering various
textual genres related to food incidents. The genre
of the data encompasses food safety incident re-
ports from multiple sources, ensuring a varied rep-
resentation of contexts and scenarios. In terms of
size, the training set contains approximately 5,082
samples. In contrast, the test set includes about
5,984 examples, allowing for robust training and
accurate model performance evaluation. The com-
petition has two sub-tasks focused on detecting
different levels of granularity in the hazard and
product categories. We participated in sub-task
ST1, which focused on text classification for food
hazard prediction, predicting the type of hazard
and product, and sub-task ST2, which focused on
food hazard and product vector detection, predict-
ing the exact hazard and product. These approaches
contribute to strengthening safety in the food sup-
ply chain, reducing the incidence of hazards, and
protecting consumer health. In addition, it is pos-
sible to design and implement more targeted and
effective prevention strategies by having a precise
classification and accurate identification of affected
products. Also, by clearly identifying the risks and
products involved, companies and regulators can
allocate resources more efficiently to address the
most significant risk areas.

In developing our system, we have employed
supervised classification methods that have demon-
strated efficacy in similar natural language pro-
cessing tasks. This approach aligns with previ-
ous studies showing the effectiveness of Random
Forest-based methods for text classification tasks
(He et al., 2024; Onyeaka et al., 2024; Qiu et al.,
2025) providing a solid foundation for our method-
ology. Furthermore, using TF-IDF vectorization
techniques combined with Random Forest classi-
fiers is not novel. Research such as (Sabri et al.,

"https://github.com/VerbaNex Al/SemEval2025

2022; Sathishkumar et al., 2023) highlighted the
effectiveness of these methods in text classifica-
tion. However, in our contribution, we have imple-
mented a vectorization strategy based on n-grams
of characters in the TF-IDF vectorizer, which im-
proves the capture of complex and contextual lin-
guistic patterns present in food incident descrip-
tions. Furthermore, integrating preprocessing tech-
niques and hyperparameter optimization for the
Random Forest classifier represents innovations
that enhance the accuracy and robustness of the
model in different environments.

3 System Overview

This section details how we integrated advanced
natural language processing techniques and robust
machine learning models to transform and analyze
the information, allowing the accurate identifica-
tion of incidents and addressing inherent challenges
such as semantic ambiguity. It explains, step by
step, the key components from vectorization and
the application of the RandomForestClassifier to
the modular organization of the pipeline, providing
a clear and complete overview of the process see
figurel.

3.1 Algorithms

The proposed system combines advanced natural
language processing (NLP) techniques with robust
machine learning models to address the task of
food hazard detection and classification from tex-
tual data. The main components of the system are
detailed below:

Text Vectorization: TfidfVectorizer with
Character N-grams. The representation of tex-
tual data is a fundamental step in any PLN system.
In this work, the TfidfVectorizer from the scikit-
learn library transforms food incident titles into
numerical feature vectors. The specific configura-
tion employs n-character frames ranging from 2
to 5, which allows for capturing local and contex-
tual patterns in the texts. In addition, the following
parameters strip_accents="unicode’ are applied to
remove accents from characters to reduce linguistic
variability, max_df=0.5 to ignore terms that appear
in more than 50% of the documents, which helps to
eliminate overly frequent and uninformative words,
and min_df=5 which considers only terms that oc-
cur in at least five documents, ensuring that features
are relevant and representative. This configuration
allows a rich and discriminative representation of
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Table 1: Expected inputs and outputs.

Input Output
Title hazard- product- hazard product
category category
Imported frozen duck tongue sample meat, egg
tested positive for COVID-19 virus biological and dairy virus duck
in Macao products
P&B (Foods) recalls Ahmed Foods mustard and
Garlic Pickle in Oil and Mango Pickle| allergens herbs and products garlic
in Qil because of undeclared mustard spices thereof pickle
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Figure 1: Outline of the proposed model.

the texts, facilitating the subsequent classification
task.

Classifier: RandomForestClassifier. For the
classification stage, we used RandomForestClassi-
fier from the scikit-learn library. We selected this
ensemble model for several reasons. Firstly, it can
handle high-dimensional data and provide accurate
results without exhaustive hyperparameter tuning.
The reduction of overfitting follows this because
by training multiple decision trees and averaging
their predictions, we decreased the probability of
overfitting, improving the model’s generalization.
Finally, due to the ease of interpretation, it offers
some interpretability through feature importance,
which can be helpful in understanding which text
patterns are most relevant for classification (Nair
et al., 2024; Spangenberg et al., 2024). The classi-
fier is set up with 100 estimators and a fixed seed
(random_state=42) to ensure the reproducibility of
the results.

Machine Learning Pipeline. The system in-
tegrates text vectorization and classification into
a pipeline that simplifies the training and predic-

tion process. The pipeline is composed of two
main stages: 1. vectorization: application of the
TfidfVectorizer to transform texts into feature vec-
tors. 2. Classification: Training and prediction
using the RandomForestClassifier. This modular
approach facilitates experimentation and tuning of
each system component independently. It ensures
that the system takes full advantage of the informa-
tion available in the data provided without relying
on external sources that may introduce biases or
inconsistencies.

3.2 Challenges and Solutions

The detection and classification of food hazards
from textual descriptions present several inherent
challenges. Below are described these issues and
the strategies implemented to address them.

3.2.1 Semantic Ambiguity

Challenge: Incident descriptions may be ambigu-
ous or contain terms that have multiple meanings
depending on the context.

Solution: Using character n-grams in vectoriza-
tion allows capturing specific patterns that help dis-



ambiguate terms based on their local context within
the text. In addition, the RandomForestClassifier
can identify combinations of features that represent
specific contexts, improving the model’s ability to
handle ambiguity.

3.2.2 Linguistic Variability

Challenge: Diversity in linguistic expression, in-
cluding synonyms, grammatical variations, and ty-
pographical errors, can make the classification task
difficult.

Solution: Preprocessing includes accent removal
and text normalization to reduce variability. In ad-
dition, character n-grams allow capturing patterns
even in the presence of typographical errors, as
they consider more minor character sequences that
can be robust to such variations.

3.2.3 Handling Multiple Classification
Categories

Challenge: The task involves classifying multiple
labels simultaneously, such as hazard categories,
product categories, hazards, and specific products.

Solution: Implement a multi-label classification
approach by training separate models for each tar-
get label within the same pipeline. It allows each
model to specialize in a specific task, maintain-
ing consistency and improving the system’s overall
accuracy.

3.2.4 Data Shortage for Some Categories

Challenge: Some categories may have less data
available, affecting the model’s ability to learn rep-
resentative patterns.

Solution: Setting min_df=5 in the Tfidf Vector-
izer helps to focus on terms that appear frequently
enough, preventing the model from being affected
by extremely rare categories. In addition, using
RandomForestClassifier with multiple estimators
contributes to better generalization even in unbal-
anced classes.

4 Experimental Setup

4.1 Division of the Data

We divided the data set provided into three
main subsets: training, development, and test-
ing. Initially, we loaded training data from
incidents_train.csv and test data from inci-
dents_labelled.csv. Then, we used an additional
validation set called incidents.csv to evaluate the
final performance of the model. For the division of
the training set into training and development, the

train_test_split function of scikit-learn is employed
with a ratio of 80% for training and 20% for devel-
opment, using a fixed seed (random_state=2024)
to ensure reproducibility of the results.

4.2 Evaluation Measures

We evaluated system performance using two pri-
mary metrics: Flmacro and Flmicro. These met-
rics are suitable for multi-class and multi-label clas-
sification tasks, as they consider both accuracy and
recall of predictions. In this sense, F1macro calcu-
lates the average Flscore for each class, treating
all classes equally, regardless of frequency. It is
beneficial for evaluating performance in scenarios
with unbalanced classes, and Flmicro calculates
the overall Flscore considering the total of true
positives, false negatives, and false positives. This
metric is more sensitive to frequent classes and pro-
vides a global view of model performance. Overall,
these metrics allow for a comprehensive evaluation
of the system, ensuring that the model is broadly
accurate and balanced in its performance across all
target classes.

5 Results

The official results of our submission for the ST1
and ST2 sub-tasks are shown in Table 2. We report
the macro average F1 score and overall ranking of
our system, as well as those of the best-performing
team for comparison.

Table 2: Results of tasks ST1 and ST2.

System F1 Rank
ST1

Task Best System | 0.8223 | 1/27

VerbaNexAl 0.5165 | 24/27
ST2

Task Best System | 0.5473 | 1/26

VerbaNexAl 0.3223 | 16/26

Our system obtained a macro average F1 score
of 0.5165 in Sub-task ST1, ranking 24 out of 27
participating teams. In Sub-task ST2, we achieved
a macro F1 score of 0.3223, ranking 16 out of 26
teams. These results compare with the reference
system, which led the competition with average
macro F1 scores of 0.8223 in ST1 and 0.5473 in
ST2, respectively.



We conducted several ablation tests and com-
parisons of different design decisions to optimize
system performance. The ablation tests included
varying the vectorizer parameters and using dif-
ferent classifiers. We observed that using longer
n-grams improved the capture of specific patterns
in the incident titles, albeit at the cost of an increase
in the dimensionality of the feature space. Also,
the random forest classifier proved robust regarding
data variability, providing an appropriate balance
between accuracy and recall.

Error analysis revealed that our system presented
difficulties in classifying hazard categories and
products with semantic similarities or specific tech-
nical terms not sufficiently represented in the train-
ing set. For example, incidents related to food
allergies were frequently confused with bacterial
contaminations due to the similarity in terminology
used. In addition, we observed that product cate-
gory predictions showed higher variability, possibly
attributed to the diversity and specificity of food
products mentioned in the data. To address these
errors, we propose future incorporation of more
advanced natural language processing techniques,
such as contextualized embeddings, which could
better capture the semantic subtleties of the terms
used in the incidents. Although our system did not
achieve a top ranking in the competition, the results
provide a solid foundation for future improvements.
Quantitative and error analysis has identified key
areas where significant improvements can be im-
plemented, such as optimizing text representation
and exploring more sophisticated classifiers. These
strategies and further enrichment of the training
data could boost system performance in future iter-
ations of the SemEval 2025 Task 9 challenge.

6 Limitations of the Approach

The proposed approach is subject to several limita-
tions that could be addressed in future versions to
enhance its performance. A primary challenge is
the management of under-represented categories,
which is prevalent in unbalanced classification
problems. Despite adjustments made to param-
eters such as min_df=5 in the TF-IDF vectoriser to
mitigate this issue, under-represented classes still
exert an influence on the model’s accuracy. Fur-
thermore, the presence of semantic ambiguity in
texts, where terms may possess multiple meanings
depending on the context, poses an additional chal-
lenge. While the utilization of character n-grams

assists in capturing contextual patterns, the disam-
biguation of terms in complex texts remains an
area for enhancement. Linguistic variability, aris-
ing from synonyms, typos and grammatical vari-
ations, also exerts a negative influence on model
performance, despite pre-processing endeavors.

7 Conclusion

Our system implemented a strategy based on TF-
IDF vectorization and Random Forest classifier
to address the food hazard detection and product
classification tasks in SemEval-2025 Task 9. The
performed tests and error analysis underline the im-
portance of optimizing the text representation and
exploring more advanced approaches, such as con-
textualized embeddings, to improve the classifica-
tion accuracy of poorly represented categories. In
future work, we plan to expand the training dataset,
integrate architectures based on deep neural net-
works, and evaluate new natural language process-
ing methods that effectively address the complexity
of textual data. These efforts will lay the founda-
tion for more robust and generalizable systems in
the food safety domain.
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Abstract

Hallucinations in large language model (LLM)
outputs severely limit their reliability in
knowledge-intensive tasks such as question an-
swering. To address this challenge, we intro-
duce REFIND (Retrieval-augmented Factuality
hallucINation Detection), a novel framework
that detects hallucinated spans within LLM out-
puts by directly leveraging retrieved documents.
As part of the REFIND, we propose the Con-
text Sensitivity Ratio (CSR), a novel metric that
quantifies the sensitivity of LLM outputs to re-
trieved evidence. This innovative approach en-
ables REFIND to efficiently and accurately de-
tect hallucinations, setting it apart from existing
methods. In the evaluation, REFIND demon-
strated robustness across nine languages, in-
cluding low-resource settings, and significantly
outperformed baseline models, achieving su-
perior IoU scores in identifying hallucinated
spans. This work highlights the effectiveness of
quantifying context sensitivity for hallucination
detection, thereby paving the way for more reli-
able and trustworthy LLM applications across
diverse languages. Our code is available at
https://github.com/oneonlee/REFIND.

1 Introduction

Detecting hallucinated information in responses
generated by large language models (LLMs) has
emerged as a critical challenge in the field of nat-
ural language generation (Ji et al., 2023; Zhang
et al., 2023). Hallucination, in this context, refers
to the generation of content that is factually incor-
rect or lacks grounding in verifiable sources (Li
et al., 2024). This issue is particularly pronounced
in knowledge-intensive tasks that demand high fac-
tual accuracy, such as question answering (Lee
et al., 2022; Sun et al., 2024). The consequences
of unmitigated hallucination are significant, rang-
ing from the propagation of misinformation to a
decline in trust in Al systems, underscoring the

*Corresponding author
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Figure 1: An overview of the proposed REFIND
method. (1) Given a question g, a set of relevant
documents D is retrieved using a retriever R. (2) A
frozen language model My computes token probabil-
ities pg(t; | -) for each token ¢;, with and without the
retrieved context D. (3) The Context Sensitivity Ratio
(CSR) is calculated for each token ¢;. Tokens with the
CSR exceeding a predefined threshold § are classified
as hallucinations.

need for effective hallucination detection for the
development of safe and trustworthy Al.

Prior research has explored various approaches
for hallucination detection. Token-level classifiers,
for example, leveraging pre-trained language mod-
els like RoBERTa (Liu et al., 2019), have been
employed for binary classification, labeling indi-
vidual tokens as either factual or hallucinated (Liu
et al., 2022). However, these models often exhibit
limitations when applied to low-resource languages
and tend to rely heavily on internal knowledge with-
out effectively utilizing external evidence, which
can hinder their performance. Extrinsic methods,
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such as retrieval-augmented models, aim to miti-
gate hallucinations by integrating external knowl-
edge. Nevertheless, existing retrieval-augmented
approaches, such as FAVA (Mishra et al., 2024),
can potentially lead to inaccuracies in aligning the
modified responses with the original LLM output,
due to their multi-step processes involving retrieval,
comparison, and editing.

To address these limitations, we introduce
REFIND (REtrieval-augmented Factuality hal-
IucINation Detection), a novel framework specifi-
cally designed to identify hallucinated spans within
LLM-generated text. REFIND achieves this by
quantifying the context sensitivity of each token
at the token level. By leveraging retrieved docu-
ments, REFIND calculates a Context Sensitivity
Ratio (CSR) for each token in the LLM’s response,
measuring the token’s dependence on external con-
textual information. Tokens exhibiting high CSR
values are identified as likely hallucinations, offer-
ing a more direct and efficient approach to factual-
ity verification.

Our contributions can be summarized as follows:

* We present REFIND, a novel framework for de-
tecting hallucinated spans in LLM responses by
leveraging an external retriever and calculating
the CSR at the token level.

* We conduct a comprehensive evaluation of RE-
FIND using the SemEval 2025 Task 3: Mu-
SHROOM dataset (Vazquez et al., 2025), a mul-
tilingual benchmark for detecting hallucinated
spans. REFIND is rigorously tested across nine
diverse languages — Arabic, Czech, German,
Spanish, Basque, Finnish, French, Italian, and
English — demonstrating its robustness in both
high- and low-resource settings.

» Experimental results demonstrate that REFIND
significantly outperforms baseline models such
as token-level classifiers and FAVA, achieving
superior Intersection-over-Union (IoU) scores.
This highlights the efficacy of the CSR in accu-
rately identifying hallucinated content.

2 Related Work

Detection of Hallucinated Responses Several
studies have proposed methods to detect whether
a response contains hallucinated information. Far-
quhar et al. (2024); Han et al. (2024); Arteaga et al.
(2025) leveraged semantic entropy (Kuhn et al.,
2023) to estimate uncertainty and identify halluci-
nations. These approaches utilize entropy-based

metrics to assess the reliability of generated re-
sponses. SelfCheckGPT (Manakul et al., 2023)
introduces a method that employs the language
model itself to sample multiple responses and de-
tect inconsistencies among them, thus identifying
hallucinated outputs. However, this method relies
solely on the internal knowledge of the language
model, making it less effective when the model’s
knowledge is limited or incomplete.

Detection of Hallucinated Spans Beyond iden-
tifying whether a response is hallucinated, other
works aim to detect specific spans of hallucinated
content within a response of LLMs. Token-level
classification approaches (Liu et al., 2022) utilized
pre-trained language models to classify individual
tokens as factual or hallucinated. These methods
focus on analyzing attention patterns, demonstrat-
ing that query input tokens (defined as constraint
tokens) exhibit strong correlations with factual an-
swer tokens (Yuksekgonul et al., 2024).

FAVA (Mishra et al., 2024) proposes a retrieval-
augmented pipeline that integrates retrieval, com-
parison, and editing steps to identify and correct
hallucinated spans. While effective, the multi-step
process introduces complexity and alignment chal-
lenges, particularly in ensuring that the corrected
responses remain consistent with the semantics of
the original output.

3 Method

3.1 Task Description

The SemEval 2025 Task 3: Mu-SHROOM
(Vazquez et al., 2025) focuses on detecting hal-
lucinated spans in responses generated by LLMs.
Given an input question ¢ and its corresponding
LLM-generated response (along with the model’s
identifier), the goal is to identify spans in the re-
sponse that are hallucinated. Details of the Mu-
SHROOM dataset are provided in Section 4.1.

3.2 Retrieval-Augmented Factuality
Hallucination Detection

To address the challenge of factual hallucination
detection in LLM outputs, we introduce REFIND
(REtrieval-augmented Factuality hallucINation
Detection). The overall workflow of the REFIND
method is illustrated in Figure 1. REFIND lever-
ages external knowledge retrieved from a relevant
document set to assess the context sensitivity of
each generated token.



The core principle behind REFIND is to quantify
the influence of external context on the token gener-
ation process. We do this by measuring the change
in the conditional probability of generating a token
as information from retrieved documents is incor-
porated. This change is captured by the Context
Sensitivity Ratio (CSR). It quantifies the degree to
which the conditional probability of generating a
token is altered by the inclusion of external contex-
tual information from retrieved documents.

Let My denote an LLM parameterized by 0, ¢
represent the input question, and ¢; denote the i-th
token in the LLM’s response to ¢. We use pg(t; | -)
to represent the probability of generating token ¢;
given the input. Furthermore, let R be a retriever
that provides relevant documents based on ¢, and
let D = R(q) be the set of retrieved documents.
The CSR for each token ¢; is defined as:

_ Ingg(tl | qu’t<i)
logpg(ti | ¢,t<i) +¢

CSR(t;) ()
where t; represents the sequence of preceding to-
kens. The numerator computes the log-probability
of generating ¢; conditioned on the question g,
the preceding tokens t.;, and the retrieved doc-
ument set D. The denominator computes the log-
probability of generating ¢; conditioned solely on
the question ¢ and preceding tokens t;, excluding
the retrieved documents.'

By comparing these two probabilities, the CSR
effectively quantifies the sensitivity of ¢; to the ex-
ternal context provided by the D. A higher CSR
indicates a stronger influence of the retrieved con-
text on the generation of the token.

Finally, to determine whether a token is a hal-
lucination, we compare its CSR value to a prede-
fined threshold, denoted as d. If the CSR value for
the given token ¢; is greater than or equal to the
threshold 9, we classify that the token as a halluci-
nation. Conversely, if the CSR value is less than
d, the token is not considered a hallucination. This
threshold § serves as a hyperparameter that can be
tuned to optimize the balance between precision
and recall in hallucination detection.

4 Experimental Setup

4.1 Dataset

We conduct our experiments on the Mu-SHROOM
dataset (Vazquez et al., 2025), which consists of

"To prevent division by zero, we use a small constant ¢,
which is set to 1078,

outputs generated by various LLMs in response
to specific input questions. Each output is anno-
tated by human annotators to identify spans that
correspond to hallucinations.

The dataset includes multiple languages, and
for our study, we focus on the following nine lan-
guages: Arabic (AR), Czech (CS), German (DE),
English (EN), Spanish (ES), Basque (EU), Finnish
(FI), French (FR), and Italian (IT). This multilin-
gual diversity enables a comprehensive evaluation
of our method across diverse linguistic contexts.

Each data point in the dataset contains the lan-
guage identifier, the input question posed to the
LLM, the model name, the generated output text,
and its token-level probabilities. Additionally, bi-
nary annotations specify the start and end indices
of hallucinated spans, marking each such span as a
hallucination.

4.2 Evaluation Metric

To evaluate the performance of our hallucination
detection method, we adopt the IoU metric, a stan-
dard measure for span-based evaluation.

Given the set of character indices predicted as
hallucinations, H .4, and the set of character in-
dices labeled as hallucinations in the gold reference,
H go14- the IoU is calculated as:

’Hpred N Hgold |

TIoU =
’Hpred U 7'[gold|

2)

This metric quantifies the overlap between the
predicted and ground truth hallucinated spans. To
handle cases where both H,..q and Hy,q are
empty (i.e., no hallucinations are present in either
prediction or reference), we define IoU = 1.0 to
signify perfect agreement.

4.3 Baseline Models

Token-level Hallucination Classifier (XLM-R)
We employ a token-level hallucination classifier
(Liu et al., 2022) based on XLLM-RoBERTa (XLM-
R) (Conneau et al., 2020), a multilingual trans-
former model. The model is fine-tuned to per-
form binary classification at the token level, where
each token is labeled as either hallucinated or non-
hallucinated.

FAVA  We also include FAVA (Mishra et al., 2024)
as a baseline model. FAVA is a retrieval-augmented
language model designed to detect and correct hal-
lucinations in outputs generated by LLMs. The
model is built upon Llama2-Chat 7B (Touvron



Method AR CS DE EN ES EU FI FR IT Average
XLM-R | 0.0418 0.0957 0.0318 0.0310 0.0724 0.0208 0.0042 0.0022 0.0104 | 0.0345
FAVA 0.2168 0.2353 0.3862 0.2812 0.2348 0.3869 0.2300 0.2120 0.3255 | 0.2787
REFIND | 0.3743 0.2761 0.3518 0.3525 0.2152 0.4074 0.5061 0.4734 0.3127 | 0.3633

Table 1: Evaluation results on the Mu-SHROOM dataset (Vazquez et al., 2025) using the IoU metric across eight
languages: Arabic (AR), Czech (CS), German (DE), English (EN), Spanish (ES), Basque (EU), Finnish (FI), French
(FR), and Italian (IT). The proposed method, REFIND, achieves the highest average IoU score, outperforming
the baselines XLM-R and FAVA in most languages, demonstrating its effectiveness for multilingual hallucination

detection.

et al., 2023) and employs a two-step process: re-
trieval and editing. To detect hallucinations in text,
we compare the edited text produced by FAVA with
the original text and get the span of H,¢4.

4.4 Implementation Details

The retriever R used to retrieve context for RE-
FIND and FAVA employs a hybrid approach, com-
bining sparse and dense retrieval methods. Ini-
tially, a Wikipedia corpus is preprocessed for each
language, including chunking, to serve as the re-
trieval corpus. The retriever first retrieves the top
10 relevant documents using BM25 (Robertson and
Zaragoza, 2009). Subsequently, a document rerank-
ing step is performed using a pre-trained language
model to select the final 5 documents to D. To
maintain consistency across the multilingual set-
ting, we utilize multilingual-e5-large” (Wang
et al., 2024) for the reranking process.

When calculating py(t; | q,t<;) in REFIND, we
utilize the token probabilities of the LLM’s output
response provided in the Mu-SHROOM dataset.
The computation of py(t; | D, q, t<;) is performed
using PyTorch 2 (Ansel et al., 2024). The specific
prompt template employed for REFIND is illus-
trated in Figure 4 (Appendix A.1). More details for
baselines will be discussed in Appendix A.

5 Result and Analysis

5.1 Performance Comparison

Table 1 presents the evaluation results of our
proposed method, alongside the baseline models,
XLM-R and FAVA, on the Mu-SHROOM dataset.
The results are reported across nine languages (AR,
CS, DE, EN, ES, EU, FI, FR, IT) and averaged to
provide an overall assessment of performance.
REFIND outperforms the baseline models in
terms of average IoU scores. The improvements are

2https ://huggingface.co/intfloat/
multilingual-e5-large
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particularly notable in low-resource languages such
as Arabic, Finnish, and French, where REFIND
achieves IoU scores of 0.3743, 0.5061, and 0.4734,
respectively, compared to significantly lower scores
from the baselines. This indicates that REFIND
effectively leverages retrieval-augmented informa-
tion to enhance hallucination detection in diverse
linguistic settings.

5.2 Baseline Comparison

The XLM-R-based token classifier performs poorly
on average, with an IoU of 0.0345. Its reliance
solely on intrinsic model knowledge without lever-
aging external context limits its ability to identify
hallucinated spans accurately, particularly in low-
resource languages.

FAVA exhibits better performance than XLM-R,
with an average IoU of 0.2787. This improvement
can be attributed to its use of retrieval-augmented
information for detecting and editing hallucinated
text. However, FAVA’s two-step process introduces
complexity and potential inaccuracies in aligning
the edited text with the original output.

REFIND outperforms both baselines with an av-
erage loU of 0.3633, highlighting its superior abil-
ity to integrate retrieved context directly into the
token generation process for hallucination detec-
tion. This streamlined approach ensures accurate
and efficient identification of hallucinated spans.

5.3 Analysis of Multilingual Performance

REFIND demonstrates robust performance across
both high-resource and low-resource languages.
This indicates the generalizability of its retrieval-
augmented approach to varying linguistic contexts.
Notably, performance varies considerably across
languages for all methods; for instance, XLM-R
and FAVA struggle significantly with low-resource
languages like Arabic, Finnish, and French. In con-
trast, REFIND’s integration of external retrieval


https://huggingface.co/intfloat/multilingual-e5-large
https://huggingface.co/intfloat/multilingual-e5-large

Question g:
When did Chance the Rapper debut?

Retrieved Documents D = R(q):

LLM’s Output Mo (g):
Chance the rapper debuted in 2011.

Gold Reference H 14:
Chance the rapper debuted in 2011.

Document 1. Chance the Rapper discography The discography of American rapper Chance the Rapper consists of one studio album, five mixtapes and 27
singles (including 14 singles as a featured artist). Chance the Rapper released his debut mixtape, "10 Day" on April 3, 2012. - - -

Document 2. Juice (Chance the Rapper song) "Juice" is a song by American rapper Chance the Rapper, released on January 31, 2013 as the lead - - -
Document 3. signs of advertisements and department stores appear in the background, some of which provide imagery and visual references of the - - -
Document 4. Cocoa Butter Kisses "Cocoa Butter Kisses" is a song by American rapper Chance the Rapper from his second mixtape "Acid Rap" - - -
Document 5. (eight) in several of those categories. One of the most closely watched races will be Best New Hip-Hop Artist, whose nominees including - - -

REFIND’s Prediction HrRgrIiND:
Chance the rapper debuted in 2011.

Figure 2: Example result of REFIND’s hallucination detection. The gold reference H 4,14 highlights the correct
hallucinated span, while REFIND successfully identifies the hallucinated span in the output, demonstrating its
alignment with the gold annotations. The complete text of the retrieved documents is available in Appendix B.
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Figure 3: Analysis of IoU scores across different thresh-
old values (§ € 0.1,0.2,0.3,0.4). Each subplot rep-
resents a different language, showing the relationship
between threshold values and IoU scores.

with the LLM’s internal knowledge helps mitigate
performance drops in these settings.

5.4 Analysis of Threshold Sensitivity

Figure 3 illustrates the performance of REFIND
across varying threshold values (0.1-0.4) for nine
languages. Most languages exhibit consistent IoU
scores, indicating robustness to threshold changes.
High-resource languages like English and German
maintain stable scores around 0.35, while low-
resource languages such as Arabic and Finnish
show slightly larger variations, especially at lower
thresholds. This suggests that the choice of thresh-
old may have a more significant impact on low-
resource languages, potentially due to their inher-
ent linguistic challenges and data scarcity. Over-
all, these findings emphasize REFIND’s ability to
maintain reliable performance across a range of
threshold values while highlighting potential areas
for optimization in low-resource scenarios.
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5.5 Case Study

Figure 2 illustrates REFIND’s ability to detect hal-
lucinations by utilizing retrieved evidence. The
question asks about Chance the Rapper’s debut
year. The LLM’s output contains a hallucinated
span ("2011"), which is inconsistent with the re-
trieved documents. By comparing the generated
output with external knowledge, REFIND effec-
tively identifies spans that deviate from factual in-
formation.

6 Conclusion

In this study, we introduced REFIND, a novel
framework for detecting hallucinated spans in
LLM-generated outputs by leveraging retrieved
documents to compute the Context Sensitivity Ra-
tio (CSR) at the token level. REFIND was rigor-
ously evaluated on the multilingual SemEval 2025
Task 3: Mu-SHROOM dataset, demonstrating su-
perior performance across nine languages, includ-
ing low-resource settings, compared to baseline ap-
proaches. By directly integrating retrieved context
into the token probability calculation, REFIND ef-
fectively identifies hallucinated spans with greater
precision and efficiency.

Our experimental results highlight the robust-
ness and scalability of REFIND in multilingual
environments, offering a promising solution for en-
hancing the factuality of LLM outputs. Moreover,
the streamlined detection process avoids the com-
plexities associated with multi-step frameworks,
enabling practical deployment in real-world appli-
cations.

For future work, we aim to extend REFIND by
exploring adaptive thresholding mechanisms to fur-
ther optimize the balance between precision and
recall in hallucination detection.



Limitations

While REFIND achieves notable improvements in
hallucination detection, there are limitations to con-
sider. First, the reliance on retrieved documents
means that the quality of the retriever directly im-
pacts performance. Errors in retrieval or limited
availability of relevant documents may lead to sub-
optimal CSR calculations and misclassification of
hallucinated spans. Second, the approach involves
computational overhead associated with calculating
token probabilities with and without retrieved con-
text, which could pose challenges in low-latency
applications. Lastly, REFIND focuses on detect-
ing factual hallucinations, and its performance in
non-factoid question answering (Bolotova et al.,
2022; Lee et al., 2025) remains unexplored. Fur-
ther studies are needed to assess its ability to detect
hallucinations in non-factoid QA tasks.
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A Implementation Details

All experiments are conducted using NVIDIA A100 80GB GPUs.

For training the XLM-R-based (Conneau et al., 2020) system, we leverage the Trainer from the Hugging
Face Transformers library (Wolf et al., 2020). We train the model using token-aligned hallucination
annotations from our dataset, with the model parameters optimized using cross-entropy loss and AdamW
optimizer with a learning rate of 2e-5 for 5 epochs.

Inference for FAVA (Mishra et al., 2024) is conducted using vLLM (Kwon et al., 2023), adhering to the
original settings with temperature=0, top_p=1.0, and max_tokens=1024. The prompt template used for
FAVA inference is detailed in Figure 5 (Appendix A.1).

A.1 Prompt Details

Prompt template for REFIND

You are an assistant for answering questions.
Refer to the references below and answer the following question.

### References
{reference_passages}

### Question
{question}

### Answer

\

Figure 4: Prompt template of REFIND used to compute per-token probabilities under the conditions provided in the
input context.

Prompt template for FAVA

Read the following references:

{reference_passages}

Please identify all the errors in the following text using the information in the references provided
and suggest edits if necessary:

[Text] {output}

[Edited]

Figure 5: Prompt template for using FAVA (Mishra et al., 2024).



B Full Text of Retrieved Documents D for Case Study (§5.5)

Document 1. Chance the Rapper discography he discography of American rapper Chance
the Rapper consists of one studio album, five mixtapes and 27 singles (including 14 singles
as a featured artist). Chance the Rapper released his debut mixtape, "10 Day" on April 3,
2012. The mixtape was followed up with the release of "Acid Rap" the following year,
which saw universal acclaim from music critics. Chance the Rapper then released his third
mixtape, "Coloring Book" on May 13, 2016. The mixtape peaked at number eight on the
"Billboard" 200 chart to continued acclaim and was supported by the singles "Angels"

Document 2. Juice (Chance the Rapper song) "Juice" is a song by American
rapper Chance the Rapper, released on January 31, 2013 as the lead single from his second
mixtape "Acid Rap" (2013). It was written by Chance and Nate Fox, who also produced
the song. "Juice" is a midtempo song, built around a loop of Donny Hathaway’s live
performance of "Jealous Guy" by John Lennon. Chance the Rapper sings and raps in a
comedic manner; his verses in the song have been described as having a "freewheeling,
bluesy sway" that "gives way to raucous call-and-response choruses". He references the
1992 film "Juice" (of

Document 3. signs of advertisements and department stores appear in the back-
ground, some of which provide imagery and visual references of the lyrics. For example,
when Chance lyrically alludes to the film "Juice", a portrait of rapper Tupac Shakur (who
starred in the film) flashes across a billboard. When "Acid Rap" was first re-released
on streaming services on June 28, 2019, "Juice" was replaced with a 30-second spoken
message, in which Chance the Rapper explains the song is excluded from the mixtape be-
cause of an uncleared sample. Chance then adds that all streaming proceeds for the alternate

Document 4. Cocoa Butter Kisses "Cocoa Butter Kisses" is a song by American
rapper Chance the Rapper from his second mixtape "Acid Rap" (2013). The song features
American rappers Vic Mensa and Twista, and was produced by Cam O’bi and Peter
Cottontale. It is one of Chance the Rapper’s most popular songs to date. At the time when
the song was written, Vic Mensa was staying at an apartment in Humboldt Park, Chicago
with his manager Cody Kazarian. Chance the Rapper visited one day and showed Mensa a
verse and hook he had written earlier. Soon, Mensa began composing his part for the song.
In an interview

Document 5. (eight) in several of those categories. One of the most closely
watched races will be Best New Hip-Hop Artist, whose nominees including Anderson
.Paak, Bryson Tiller (who won that award and Best Male R&B/Pop Artist at June’s BET
Awards), Chance the Rapper, Desiigner and Tory Lanez. Drake — "Hotline Bling" Fat Joe
& Remy Ma featuring French Montana & Infared — "All the Way Up" Kendrick Lamar
Kendrick Lamar Director X DJ Khaled Metro Boomin DJ Khaled "All the Way Up" —
Produced by Cool & Dre and Edsclusive Drake — "Views" Chance the Rapper DJ Khaled
Kanye West Chance the Rapper

Figure 6: Complete text of documents retrieved for the input question "When did Chance the Rapper debut?" as
referenced in the case study in Section 5.5.
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Abstract

This paper presents our solution for SemEval-
2025 Task 1: Learning to Rank Idiomatic Ex-
pressions, which addresses the challenge of
ranking visual representations for figurative
language understanding. We propose a mul-
timodal approach that combines textual context
with image caption analysis through system-
atic data augmentation and model fine-tuning.
Our method includes three main components:
(1) an option-shuffling strategy to eliminate po-
sitional bias in ranking tasks, (2) lexical per-
turbation through synonym replacement and
back-translation to enhance linguistic diversity,
and (3) parameter-efficient fine-tuning of large
language models optimized for cross-modal
ranking. The system achieved first place in Por-
tuguese (Top-1 Acc: 0.92, DCG: 3.43) and sec-
ond place in English (Top-1 Acc: 0.87, DCG:
3.51) on the CodaBench leaderboard. Through
extensive experimentation with models ranging
from 7B to 72B parameters, we demonstrate
that mid-sized 32B models achieve optimal per-
formance by balancing capacity and trainability.
Our analysis reveals that while larger models
(72B) suffer from overfitting and optimization
challenges, traditional knowledge distillation
approaches using GPT-4 prove ineffective for
this task. The results highlight the importance
of controlled data augmentation and parameter
scaling for idiomatic representation learning,
providing valuable insights for future work in
multimodal figurative language processing.

1 Introduction

Idiomatic expressions are a fundamental compo-
nent of natural language and often pose challenges
to human interpreters and computational models.
Unlike literal expressions, idioms convey meanings
that are not directly inferred from the individual
words, but are instead shaped by cultural and con-
textual usage. These expressions are essential for

*Corresponding Author.

16

natural language understanding, influencing tasks
such as sentiment analysis, machine translation,
and automated summarization. However, despite
significant advances in large-scale language models
(LLMs), understanding and accurately interpreting
idioms remains a key challenge in NLP.

The AdMIRe (Aesthetic Multi-modal Idiomatic
Representation) task(Pickard et al., 2025) was in-
troduced to address these challenges by combining
textual and visual information to better represent
idiomatic expressions. This multimodal approach
aims to move beyond traditional text-only mod-
els, which often struggle with the figurative mean-
ings of idioms. Through the use of images along-
side context sentences, AdMIRe seeks to improve
model comprehension by providing a richer, more
nuanced understanding of idiomatic expressions.

In this paper, we present our approach to Sub-
task A - Static Images, where we were tasked with
ranking a set of images based on their ability to rep-
resent the meaning of a given idiomatic expression
in a specific context. We participated in the com-
petition in both English and Portuguese, achieving
notable results: first place in Portuguese with a
score of 0.93 and second place in English with
a score of 0.86. Our approach leverages state-of-
the-art language models that integrate textual cues,
offering an improved representation of idiomatic
expressions.

This paper outlines our methodology for tackling
the task, discusses the challenges we encountered,
and provides insight into how the integration of
visual information can significantly enhance the
performance of language models in understanding
figurative language.

2 Related Work

Idiomatic expressions are a key component of nat-
ural language, posing significant challenges for
both human interpreters and computational mod-
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els. Early research highlighted the cognitive diffi-
culty of processing idioms, with Lakoff and John-
son(Lakoff and Johnson, 1980) emphasizing that
idioms often carry meanings beyond their literal
interpretations.

Although previous tasks have explored how lan-
guage models represent idioms, Boisson (Boisson
et al., 2023) argue that artifacts in these datasets
may enable models to perform well on idiomaticity
detection without producing high-quality semantic
representations.

Traditional NLP models struggled with id-
iomaticity due to their reliance on literal word
meanings, but recent advancements in deep learn-
ing have improved idiom detection. Models
like BERT(Devlin et al., 2019) and GPT-3 have
shown progress in leveraging large-scale contex-
tual embeddings. Currently, generative models
in the realm of NLP, exemplified by the GPT se-
ries(Brown et al., 2020; Bai et al., 2023; Yang et al.,
2023; Wang et al., 2023; Y et al., 2024c,b,a), have
shown remarkable abilities in interpreting and pro-
ducing natural language.

More recently, multimodal approaches have
gained attention, integrating visual information to
enhance understanding of idioms. AdMIRe demon-
strated that combining text and images can signifi-
cantly improve idiomatic representation, suggest-
ing that multimodal models may offer a promising
direction for future research.

3 Method

3.1 Preprocessing

During the data pre-processing stage, we first pro-
cessed each input record by extracting the idiomatic
expressions, contextual sentences, and descrip-
tions and names of five images, constructing input-
output pairs from the image description data. For
each record, we extractedmpound words, sentences,
image captions, and image names formulated an
English prompt. The prompt asks: Which caption
best represents the meaning of the phrase com-
pound in the sentence? Provide the ranking of the
options using only numbers 1, 2, 3, 4, 5 without ad-
ditional content. Optionl:... Option5, as shown in
fig. 1. Using this data, we trained a large language
model (LLM) to perform the ranking task.

In the testing phase, we applied the trained
model to the test set for inference, prompting the
LLM to generate a context-based ranking of the
five image captions. The resulting ranking, repre-
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Instruction:Which caption best
represents the meaning of the phrase
compound in the sentence? Provide the
ranking of the options using only
numbers 1, 2, 3, 4, 5 without additional
Options:...}

—> [2,3,5,1,4]

Large Language Model

Figure 1: Prompt Construction.

sented by numbers from 1 to 5, was then mapped
to the corresponding image names and saved as the
final ordered output.

However, relying solely on the original data may
lead to model overfitting to specific linguistic ex-
pressions, limiting its generalization capability. To
mitigate this issue, we introduced a series of data
augmentation strategies to enhance model robust-
ness and adaptability.

/Example 1 Randomly Reordered

Option 1: The image depicts a hand holding a sponge and cleaning a glass
cooktop stove. Option 2: The image depicts a hand wearing a yellow work
glove holding a rusty metal pipe. Option 5: The image depicts a person

wearing a black outfit.
‘ Random Resort

Option 5: The image depicts a person wearing a black outfit.

Option 2: The image depicts a hand wearing a yellow work glove
holding a rusty metal pipe. Option 1: The image depicts a hand holding
a sponge and cleaning a glass cooktop stove.

-

J

Figure 2: Randomly reordered method.

3.2 Enhancing Ranking Diversity

To prevent the model from developing a depen-
dency on fixed option positions and improve its
generalization in ranking, we applied an option-
shuffling strategy to augment the dataset. Specif-
ically, we randomly reordered Options 1-5 while
simultaneously adjusting the expected_order field
to reflect the new arrangement, as shown in Fig.
2. This process reduces the model’s reliance on
positional biases and encourages it to focus on the
actual content of the options rather than learning
patterns from their fixed order.

3.3 Data Self-Augment

Furthermore, to enhance model robustness and en-
rich data diversity, we perform lexical perturbations
in the option texts. We randomly selected words
from each input-output pair and replaced them with
synonyms, introducing minor variations in the im-
age captions while preserving their core seman-
tics. Additionally, we employed back-translation,

—_—— e ——



Text Only - Portuguese

CodaBench Username Top 1 Acc. DCG Score Top 1 Acc. (Extended) DCG Score (Extended)
CTYUN-AI 0.92 3.43 0.56 2.97
artrsousa 0.85 3.27 0.44 2.78

GPT4 0.6 3.06 - -

Text Only - English

CodaBench Username Top 1 Acc. DCG Score Top 1 Acc. (Extended) DCG Score (Extended)
dd101bb 0.93 3.52 0.83 343
CTYUN-AI 0.87 3.51 0.64 3.10

GPT4 0.7 3.17 - -
phuongnm 0.67 3.04 0.51 2.86
dadonapo97 0.67 3.07 0.59 3.04
artrsousa 0.53 2.82 0.51 2.86

wiepet 0.47 2.82 0.54 3.04
gladysflacks 0.40 2.61 0.39 2.69
arash3908 0.27 2.41 0.20 2.38

Table 1: CodaBench Evaluation Results for Portuguese and English

where captions were translated into other languages
(e.g., Chinese) and then translated back into En-
glish. This approach introduces linguistic varia-
tions, allowing the model to better adapt to differ-
ent paraphrases and reducing the risk of overfitting
to specific expressions.

4 Experiment Results

We conducted an evaluation of Portuguese and En-
glish text only data on the CodaBench platform,
as presented in Table 1. The primary evaluation
metrics were Top-1 accuracy and DCG score, with
additional extended criteria also considered. For
the Portuguese dataset, the CTYUN-AI system
achieved the highest performance, achieving a Top-
1 accuracy of 0.92 and a DCG score of 3.43 in
the base test set. In the English setting, CTYUN-
Al ranked second, with a Top-1 accuracy of 0.87
and a DCG score of 3.51, showcasing its strong
competitive edge. Moreover, under the extended
evaluation criteria, CTYUN-AI scored 0.56/2.97
for Portuguese and 0.64/3.10 for English, further
reinforcing its robustness and stability. These re-
sults underscore the significant advantages of our
approach in text-processing tasks. Furthermore,
we performed a ranking using GPT-4 on the task
data, with scores of 0.6 and 0.7 for English and
Portuguese, respectively, which were lower than
those achieved by our proposed method.

We employed the Qwen2.5(Bai et al., 2023)
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Model Size Top-1 Acc. (PT) DCG Score (PT)
7B 0.70 3.06
14B 0.67 3.14
32B 0.92 3.61
72B 0.87 342

Table 2: Performance of Different Model Sizes on Por-
tuguese Data

model series as the backbone and trained our mod-
els using the dataset constructed in the Method
section. Specifically, we conducted training and
inference using four Ascend-910B nodes, each
equipped with eight GPUs. The learning rate was
set to Se-6, the gradient accumulation steps were
configured as 8, and the models were trained for a
total of five epochs. We experimented with mod-
els of different parameter scales, as summarized in
Table 2.

4.1 Unsuccessful Attempts

Larger Models and Parameter Scaling: We experi-
mented with models of different parameter sizes, in-
cluding the Qwen2.5(Bai et al., 2023) model series,
ranging from 7B to 72B parameters. While the 72B
model had a significantly larger capacity, it did not
outperform the 32B model. We hypothesize that
this is due to an optimal balance between param-
eter size and dataset scale, allowing the model to
learn complex patterns effectively while avoiding



excessive optimization challenges. In contrast, the
7B and 14B models likely lacked sufficient param-
eters to fully capture the intricate relationships in
the input data, thereby limiting their performance.
Meanwhile, although the 72B model featured a
larger parameter size, it did not outperform the 32B
model. We attribute this to two potential factors:
first, larger models tend to overfit when trained on
a limited dataset, resulting in reduced generaliza-
tion ability. Second, the computational overhead
of training and inference with the 72B model was
significantly higher, which may have constrained
the batch size and negatively impacted the stability
of the gradient.

Leveraging GPT-4 for Data Augmentation and
Knowledge Distillation: We initially intended to
leverage GPT-4 to augment our dataset and distill
its capabilities for improved performance. How-
ever, GPT-4’s performance in this context was sub-
optimal, likely due to its inherent limitations when
applied to this specific task. This was particularly
disappointing given the recent surge in interest
around knowledge distillation techniques (e.g., DS-
R1(DeepSeek-Al and et al., 2025)) for transferring
model knowledge. Despite these efforts, GPT-4
did not provide the anticipated improvements, and
we decided to focus on optimizing the core model
instead.

These explorations underscore the challenges of
scaling up the model parameters and using exter-
nal models such as GPT-4 for distillation, which,
although promising in some contexts, did not yield
the expected benefits for this particular task.

5 Conclusion

In this paper, we present our approach to SemEval-
2025 Task 1, focusing on ranking idiomatic ex-
pressions using a multimodal framework. By inte-
grating textual and visual information, along with
data augmentation and fine-tuning, we achieved
strong results, securing first place in Portuguese
and second place in English on the CodaBench
platform. Our approach demonstrated improved
understanding of idiomatic expressions and better
generalization. Although experiments with larger
models and GPT-4 for knowledge distillation were
less effective, they provided valuable information.
This work highlights the potential of multimodal
models in enhancing figurative language process-
ing, and we plan to refine these methods further in
future work.
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Abstract

With the rapid advancement of global digitaliza-
tion, users from different countries increasingly
rely on social media for information exchange.
In this context, multilingual multi-label emo-
tion detection has emerged as a critical research
area. This study addresses SemEval-2025 Task
11: Bridging the Gap in Text-Based Emotion
Detection. Our paper focuses on two sub-tracks
of this task: (1) Track A: Multi-label emo-
tion detection, and (2) Track B: Emotion in-
tensity. To tackle multilingual challenges, we
leverage pre-trained multilingual models and
focus on two architectures: (1) a fine-tuned
BERT-based classification model and (2) an
instruction-tuned generative LLM. Addition-
ally, we propose two methods for handling
multi-label classification: the base method,
which maps an input directly to all its cor-
responding emotion labels, and the pairwise
method, which models the relationship between
the input text and each emotion category indi-
vidually. Experimental results demonstrate the
strong generalization ability of our approach in
multilingual emotion recognition. In Track A,
our method achieved Top 4 performance across
10 languages, ranking 1st in Hindi. In Track B,
our approach also secured Top 5 performance
in 7 languages, highlighting its simplicity and

effectiveness!.

1 Introduction

With the rapid proliferation of social media, partic-
ularly in the context of global digital communica-
tion, online platforms have emerged as the primary
medium for information dissemination (Nandwani
and Verma, 2021). Users from diverse linguis-
tic backgrounds frequently express their opinions
through comments, highlighting the growing need
for cross-lingual sentiment detection (Nandwani
and Verma, 2021). Consequently, multilingual

'Our code is available at https://github.com/
yingjie7/mlingual_multilabel_emo_detection
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sentence-level sentiment analysis has become a crit-
ical task for tracking public sentiment (Wankhade
et al., 2022). Sentiment analysis is one of the most
extensively studied applications in natural language
processing (NLP). In text emotion recognition, it
is common for a single sentence to express mul-
tiple emotions with varying intensities (Deng and
Ren, 2020). However, developing reliable multi-
label emotion analysis systems remains particu-
larly challenging due to the scarcity of training
data, especially for low-resource languages. Ad-
ditionally, pre-trained language models often have
limited knowledge of these languages, further com-
plicating the task. To address these challenges,
this paper presents our approach for SemEval-2025
Task 11, "Bridging the Gap in Multilingual Multi-
Label Emotion Detection from Text Using Large
Language Models" (Muhammad et al., 2025b). We
participated in two tracks: Track 1 (Multi-Label
Emotion Detection) using the BRIGHTER dataset,
which includes 28 languages (Muhammad et al.,
2025a; Belay et al., 2025), and Track 2 (Emotion
Intensity Prediction), which covers 11 languages.

In this study, to address the challenges of mul-
tilingual sentiment analysis, we leveraged pre-
trained models (such as RoBERTa) and large lan-
guage models (LLMs) to perform multi-label senti-
ment analysis on both high-resource languages like
English and Chinese, as well as low-resource lan-
guages such as African languages. We formulated
multi-label emotion recognition as a text genera-
tion task. To overcome the challenge of limited
training data, we utilize the capabilities of multilin-
gual pre-trained language models to enhance both
semantic understanding and the recognition of emo-
tional tone, especially in low-resource languages.
Furthermore, to tackle the multi-label classification
challenge, we propose two methods: the pairwise
method and the base method. Our findings also
indicate that training the model on a combined mul-
tilingual dataset improves performance compared

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 20-27
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics


mailto:phuongnm@jaist.ac.jp
https://github.com/yingjie7/mlingual_multilabel_emo_detection
https://github.com/yingjie7/mlingual_multilabel_emo_detection

to training on individual language datasets. We
present experiments comparing the applicability
of these methods and conduct ablation studies to
validate their effectiveness. Our approach demon-
strates strong performance in both multi-label emo-
tion recognition and emotion intensity detection.
In Track A, it achieved top-four rankings in 10 lan-
guages, including first place in Hindi. In Track
B, our method ranked within the top five for 7 lan-
guages, further highlighting its simplicity and effec-
tiveness. Moreover, our approach exhibits strong
generalization across both competition sub-tasks,
making it particularly beneficial for low-resource
languages.

2 Background

Sentence-level sentiment analysis (SLSA) has ad-
vanced significantly with the rise of deep learn-
ing and multilingual sentiment detection. Early re-
search primarily focused on extracting handcrafted
sentiment features such as n-grams (Tripathy et al.,
2016), lexicons, rule-based heuristics (Chikersal
et al., 2015) to enhance SVM-based classifiers (Ku-
mari et al., 2017) and deep neural networks, such
as CNNs and RNNs (Chikersal et al., 2015; Mi-
naee et al., 2019). Nonetheless, their reliance on
static word embeddings limited their ability to han-
dle complex linguistic phenomena such as long-
range dependencies and cross-lingual variations.
To address these limitations, researchers turned
to Transformer-based pretrained language mod-
els (PLMs) such as BERT (Devlin et al., 2019)
and TS5 (Raffel et al., 2020), which more effec-
tively capture fine-grained emotional representa-
tions (Zhou et al., 2016; Li et al., 2018) by mod-
eling richer linguistic semantics. In multilingual
sentiment analysis, models like mT5 (Xue et al.,
2021) and XLM-RoBERTa (XLM-R) (Conneau
et al., 2020) further advanced the field by learn-
ing cross-lingual representations, making them the
standard for multilingual applications (Hu et al.,
2020). More recently, the widespread adoption of
large language models (LLMs) such as LLaMA
2 (Touvron et al., 2023) has driven major break-
throughs in various NLP tasks (Upadhye, 2024;
Sharma et al., 2023). These models exhibit remark-
able zero-shot and few-shot learning capabilities,
making them highly adaptable to new sentiment
analysis tasks (Maceda et al., 2024). Furthermore,
in the domain of Emotion Recognition in Conver-
sations, LLMs have been leveraged with prompt-
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based techniques to extract latent supplementary
knowledge from text, injecting this information to
facilitate emotion recognition (Xue et al., 2024). In
the broader NLP landscape, various methodologies
including fine-tuning, prompting, transfer learning,
and domain adaptation have been pivotal in adapt-
ing pre-trained LL.Ms for sentiment analysis across
specific domains and languages.

However, as most PLMs are predominantly pre-
trained on English text, their effectiveness in multi-
lingual sentiment analysis is often limited without
additional fine-tuning is performed to optimize per-
formance across diverse linguistic contexts (Zhang
et al.,2023). Numerous studies have explored lever-
aging embeddings from LL.Ms for sentiment clas-
sification, using various low-resource datasets to
assess their adaptability across languages (Dadure
et al., 2025; Mujahid et al., 2023). In our work,
we leverage BERT-based multilingual models to
extend multi-label classification tasks, enabling
knowledge transfer across languages. By integrat-
ing LLMs, we also present a pairwise emotional
recognition method, which efficiently captures both
emotional intensity and sentiment polarity within
each sentence. This approach ensures that the
model concentrates on one label at a time. Ad-
ditionally, we reformulate the multi-label classifi-
cation task as a text generation problem, enhancing
the model’s adaptability and generalization across
NLP tasks.

3 System Description

In this work, the target task involves the percep-
tion of emotions in various languages, which aims
to identify the emotion that most people would at-
tribute to the speaker based on a given sentence or
short text snippet. Given a text input (z), a machine
learning system needs to retrieve all the multi-label
emotions (y.) expressed in the given text (Track A)
and the intensity (y;) of each class (Track B).

3.1 System Overview

In general, we leverage the capabilities of pre-
trained multilingual models to tackle cross-lingual
challenges. Our system primarily focuses on two
architectures: fine-tuning BERT-based classifica-
tion models (Devlin et al., 2019) and instruction
fine-tuning generative LLMs, building upon recent
SOTA methods in the field of emotion recognition
(Xue et al., 2024). To handle multi-label classifica-
tion, we design two strategies: (1) the base method,



which maps a given input to all its corresponding
labels, and (2) the pairwise method, which models
the relationship between the input text and each
label class individually.

Pi({ye} [2)  Pp({{ye,w)} |z) (1)
]PA({O7 1} ‘ LL‘,ye) ]PB(yi | 3072/@) 2)

where x is the given input text; IP 4, IPp are prob-
ability models for track A and B; y.,y; are the
emotional label and its corresponding emotional
intensity from a pre-defined label set, respectively.

base:

pairwise:

3.2 Methods

BERT-based method. For the baseline, we de-
sign a BERT-based multi-label classification model.
In detail, fully connected layers with nonlinear ac-
tivation functions (sigmoid (o) and tanh) are added
to the top layer of the BERT architecture to trans-
form the [CLS] feature vector (Devlin et al., 2019)
from the hidden representation to the output dimen-
sion (number of labels).

hCES prords — BERT (x) 3)
ho" = o(tanh(hS - Wh) - W°) (4)

Finally, during the fine-tuning process, the learn-
able weights (W*) are optimized using cross-
entropy loss on annotated data to maximize the
log-likelihood of the model.

LLM-based method. Leveraging the robust nat-
ural language understanding capabilities of large
language models (LLMs) (Touvron et al., 2023),
we employ instruction prompting (highlighted in
blue in Table 1) to guide the model in comprehend-
ing the task requirements. Our methodology fol-
lows instruction fine-tuning as outlined by Chung
et al. (2022), using a causal language modeling
objective to train the LLM to generate emotional
label text, which is highlighted in red in Table 1.

4)
(6)

s = instruction-prompting(z, y)

P(s) = 1L P(s.|s0, 51, ..., 52—1)

where s, z represent a sequence of tokens, and z
denotes the token index within the prompting input
(Table 1). To optimize efficiency, we employ LoRA
(Hu et al., 2022), a lightweight training methodol-
ogy that reduces the number of trainable param-
eters. The fine-tuned LLM is designed to learn
the distribution of emotional labels (or emotional
intensity) based on the given prompt (s). During
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inference, the emotional label (y), which is omitted
from the input prompt, is generated by the fine-
tuned model.

system

You are an expert in analyzing the emotions expressed in a natural
sentence. The emotional label set includes {anger, fear, joy, sadness,
surprise}. Each sentence may have one or more emotional labels, or
none at all.

user

Given the sentence: “{input text:
pressed in it?

assistant

{emotional label in text: ye. or (ye, )}

x}”, which emotions are ex-

Table 1: Instruction prompting with the base template
(track A).

Task Strategy Input Output Output example

Track A base x {ye} “disgust, sadness”

Track B base T {{ye,yi)} “moderate degree of anger,
low degree of sadness”

Track A pairwise z,y. {0,1} “yes”

Track B pairwise z,y. i “moderate”

Table 2: Examples of output format for text generation.

As outlined in the overview section, we have de-
vised two approaches, base and pairwise, to tackle
this task. Both approaches employ the same train-
ing techniques across tracks A and B and between
the two approaches themselves. We provide ex-
ample outputs designed for both tracks in Table 2.
Detailed examples for each track are provided in
Appendix A.

4 Experimental Setup

Dataset. To evaluate our methods, we use the
original emotional data provided by the SemEval
Task 11 organization. This dataset consists of three
subsets: training, development, and test sets, span-
ning two competition phases: development and
test. However, to ensure greater generalization,
we consistently set aside 10% of the training data
from each language as an internal development set.
This held-out portion is used for hyper-parameter
tuning, ensuring that the optimized checkpoints
are selected based on this internal dev set. Ad-
ditionally, to handle multilingual data, we design
two settings: (1) separated langs, where a separate
model is trained for each language, and (2) mixed
langs, where a single model is trained to learn all
languages simultaneously.

Evaluation Metric. According to the competi-
tion guidelines, the evaluation metric for Track A
is the macro-averaged F1-score, while for Track B,
it is the Pearson correlation coefficient between the
predicted and gold-standard labels.



Model Strategy Data afr amh arq ary chn deu eng esp hau hin ibo kin mar  orm
(development)

Qwen 32b pairwise  separated langs  0.5143  0.5049 0.6574 0.5242  0.6909 0.7187 0.8189 0.8366 0.5724 0.8694 0.5049 0.4274 0.9507

Qwen 32b base separated langs  0.4610 - - - - - 0.8054 - - - - - - -
Qwen 32b base mixed langs  0.5140 0.557 0.64 0.537 0.732 0.677 0.751 0.839 0.57 0.899 0.509 0.477 0.959 0478
Qwen 14b base mixed langs  0.4320 0.594  0.588 0.567 0.643 0.691 0.743 0.835 0.606 0.887 0.498 0.454 0924 0.503
xml-roberta base mixed langs  0.5070 0.66 0.607 0.548 0.623 0.654 0.703 0.786 0.687 0.855 0.488 0.328 0948 0.513
INLP (test) 0.5925 0.6767 0.6407 0.609 0.6805 0.6990" 0.8036 0.8303 0.6504 0.9257 0.5404 04289 0.878 0.573
Model Strategy Data pem ptbr ptmz ron rus som sun swa swe tat tir ukr vmw yor Average
(development)

Qwen 32b pairwise  separated langs  0.6202  0.6407 0.5161 0.7548 0.8809 0.3571 0.5307 0.2658 0.5915 0.6282 0.4581 0.6761  0.1265  0.4554 0.5933
Qwen 32b base  separated langs 0.611 - - 0.7230 - - - - - - - - - - -
Qwen 32b base mixed langs  0.638  0.546  0.571 0.902 0416 0557 0332 0.509 072 0.429 0.639  0.114 0355 0.5933
Qwen 14b base mixed langs  0.622  0.576  0.553 0.895  0.394 0.51 0319 0494 0764 0485 0.64 0.19  0.348 0.5863
xml-roberta base mixed langs 0.574 0.502 0.579 0.876 0.499 0.539 0.348 0.501 0.692 0.5 0.594 0.074 0.198 0.5718
INLP (test) 0.6343  0.6184 0.4535 0.7787 0.8912  0.4965 0.4596 0.2949 0.6186 0.7223 0.4849 0.6873" 0.2261  0.3608 0.6163

Table 3: Results of Sub-task A. For a fair comparison, the average column is computed based on all languages
except for orm, ron, ptbr, and ptmz, as these languages are missing in some settings. The red color indicates the
best setting used for submission to obtain the test result. The notation (-) indicates that the experiment was not
conducted. The asterisk (*) denotes results obtained during the post-evaluation phase.

Model Strategy Data amh arq chn deu eng esp hau ptbr ron rus ukr  Average
(development)

Llama2-13b pairwise  separated langs 0.4411 0.73857 0.6197 0.8207 0.7221 0.5691 0.4938  0.691 0.8719 0.6229 0.6757
Qwen-32b pairwise  separated langs  0.5433  0.6147 0.75 0.6793 0.8101 0.7715 0.6143 - 0.7245 09051 0.6428 0.7234
Qwen-32b base mixed langs  0.542  0.566 0.711 0.658 0.802  0.761 0.595 0.718 - 0.898 0.659 0.7063
Qwen-32b pairwise mixed langs 0.563 0.627 0.727 0.705 0.787 0.779 0.665 0.6 - 0.906 0.694 0.7363
INLP (test) 0.6038  0.5873 0.6589  0.725 0.8129 0.7747 0.6496 0.6512 0.7055 0.9074 0.6719 0.7044

Table 4: Results of Sub-task B. The meanings of the denotations and colors are the same as in Table 3.

Experimental Environments. We implement all
our experiments using widely adopted libraries
such as PyTorch and HuggingFace. For pre-
trained LLMs, we primarily experiment with XLM-
RoBERTa-Large, Llama2 (7B-13B), and Qwen2.5
(14B-32B). For hyper-parameters, we train the
model with a learning rate of 3e~*, using the
AdamW optimization algorithm, 5—6 epochs.

5 Results

Overall, we evaluate our methods and their variants
on the development set to select the best model
and setting for each language (indicated in red in
Tables 3, 4) for the final test submission.

5.1 Track A: Multi-label Emotion Detection.

Development Result. As shown in Table 3, we
conducted experiments using both the base and
pairwise methods on Qwen-32B, Qwen-14B, and
RoBERTa models. The results indicate that the
Qwen models with the pairwise method achieved
the best overall performance. However, in datasets
where the majority of samples contain zero or only
one emotion label, the base method outperformed
the pairwise approach. We attribute this to the
fact that the pairwise method is inherently more
suited for multi-label emotion recognition tasks.
Additionally, in low-resource languages, LLMs
performed poorly, whereas the RoBERTa-based
approach yielded better results.
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Test Result. Overall, our approach achieved 4th
place in Track A for CHN, ESP, PCM, and PT-
BR, secured 3rd place in ARQ, ARY, RON, and
RUS, and ranked 2nd and 1st for SWE and HIN,
respectively. These results demonstrate the strong
generalization ability of our method, highlighting
its simplicity and efficiency.

5.2 Track B: Emotion Intensity.

The results of Track A demonstrated the strength
of LLMs compared to the XLM-RoBERTa model,
leading us to primarily experiment with LLMs
rather than XLM-RoBERTza in this track.

Development Result. As shown in Table 4, we
conducted experiments using both the base and
pairwise strategies on LLaMA 2 and Qwen-32B
models. The results indicate that Qwen-32B out-
performs LLaMA 2, and the pairwise strategy con-
sistently achieves better overall performance com-
pared to the base method.

Test Result. In Track B across 11 languages, our
model achieved 3rd place in Ukrainian (ukr) and
Algerian Arabic (arq), 4th place in Romanian (ron),
and 5th place in Russian (rus), Brazilian Portuguese
(ptbr), English (eng), and German (deu). With
top-five rankings in seven languages, these results
demonstrate the effectiveness and generalizability
of our approach.

5.3 Result Analyses

Strategies Comparison. To gain a comprehen-
sive understanding of the base and pairwise strate-
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Figure 1: Distribution of improved samples between
strategies base and pairwise with respect to the number
of emotions (track A).
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Figure 2: Distribution of improved samples between
strategies base and pairwise with respect to the number
of emotions (track B).

gies, we conducted experiments to analyze the dis-
tribution of improved examples, measured by the
F1 score for each sample, across four languages:
English, Swedish, Chinese, and Kinyarwanda (Fig-
ure 1 for Track A and Figure 2 for Track B). Our
findings indicate that the pairwise strategy predom-
inantly improves samples in languages that convey
various emotions within a sentence, particularly in
English and Swedish. Conversely, in languages
or datasets with a limited variety of emotional la-
bels, such as Chinese and Kinyarwanda (where
each sample typically contains O to 2 emotions),
the base strategy demonstrates a distinct advantage.
We argue that this is because the pairwise strategy
evaluates only one emotion at a time, making it
more sensitive to label imbalance, which in turn
leads to lower performance in languages with a lim-
ited variety of emotion labels compared to the base
strategy. In contrast, the base strategy generates
all emotions present in a sample simultaneously,
highlighting its advantage in languages with fewer
distinct emotion categories.

Emotional Type. To evaluate the model’s effec-
tiveness concerning emotional intensity across var-
ious emotions, we plotted the distribution of emo-
tional labels alongside their corresponding intensi-
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Figure 3: Overall performance of the pairwise strategy
across all emotional labels in all languages (Track B).

ties (Fig 3). We conducted experiments by aggre-
gating all the languages and examined the correla-
tion between performance and emotions, as well as
their respective intensities. Our analysis revealed
that classes with limited data, such as high-surprise
or high-joy, typically exhibited poorer performance
in our system. Conversely, the major emotional
class, “disgust”, achieved the highest performance
compared to other emotional classes, such as sur-
prise, particularly high-surprise.

Mixed languages. In both Sub-tasks A and B,
mixed-language training, where a single model is
fine-tuned for all languages, demonstrates superior
performance compared to training separate models
(Tables 3, 4). This improvement can be attributed
to a more balanced distribution of emotion types
across languages and the model’s enhanced ability
to generalize across linguistic variations.

6 Conclusion

In this work, we present a multilingual emotion
recognition system for SemEval-2025 Task 11,
which demonstrates strong performance and re-
mains competitive with the top-performing teams.
To address multilingual challenges, we design two
architectures, BERT-based and LL.M-based, and
introduce two strategies, pairwise and base, for
handling the multi-label classification task. We
conduct extensive experiments to analyze the ef-
fectiveness and limitations of each approach, aim-
ing to provide valuable insights for multilingual
emotion recognition research. The results validate
the simplicity and effectiveness of our methods,
highlighting their strong generalization ability and
applicability to other tasks.



Limitations and potential improvements. De-
spite the promising results achieved in our work,
several limitations remain. First, the LLM-based
approach is heavily dependent on the knowledge
and capabilities within the LLMs themselves,
which may limit its adaptability to evolving data.
Furthermore, compared to BERT-based methods,
LLM-based approach incurs higher computational
costs, making it less efficient for large-scale or real-
time applications.

There are several directions for future improve-
ment. One potential enhancement lies in the uti-
lization of finer-grained information contained in
the logits output. Specifically, for the LLM Pair-
wise strategy, instead of relying solely on the final
"yes" or "no" response, it is better to aggregate
the logits corresponding to the tokens generating
"yes" and compute a probability distribution via
softmax. This would enable a more nuanced and
probabilistic interpretation of the model’s predic-
tions, potentially improving robustness.

Another limitation is the incomplete handling of
label imbalance. Our current framework does not
fully address the issue, which may cause the model
to overfit to dominant emotional categories. Future
work could incorporate targeted data augmentation
strategies, such as generating additional samples
for underrepresented emotions, to mitigate this im-
balance and enhance the overall performance and
stability of the system.
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A Examples of prompting

system

You are an expert in analyzing the emotions expressed in a
natural sentence. The emotional label set includes {anger, fear,
joy, sadness, surprise}. Each sentence may have one or more
emotional labels, or none at all.

user

Given the sentence: “bro dont do this to us”, which
emotions and their corresponding intensities are expressed in
it?

assistant

fear

system

You are an expert in analyzing the emotions expressed in a
natural sentence. The emotional label set includes {anger, fear,
joy, sadness, surprise}. Each sentence may have one or more
emotional labels, or none at all.

user

Given the sentence: “I could not unbend my knees.”,is
the emotion anger expressed in it?

assistant

No

Table 5: Instruction prompting template in track A of
base (top) and pairwise (bottom) strategies, respectively.

system

You are an expert in analyzing the emotions expressed in a
natural sentence. The emotional label set includes {anger,
fear, joy, sadness, surprise}, with three levels of intensity: low,
moderate, and high. Each sentence may have one or more
emotional labels, or none at all.

user

Given the sentence: “A penny hit me square in the
face.”, which emotions and their corresponding intensities
are expressed in it?

assistant

moderate degree of anger, low degree of sadness

system

You are an expert in analyzing the emotions expressed in a
natural sentence. The emotional label set includes {anger,
fear, joy, sadness, surprise}, with three levels of intensity: low,
moderate, and high. Each sentence may have one or more
emotional labels, or none at all.

user

Given the sentence: “Totally creeped me out.”, what is
the intensity of the emotion fear expressed in it?

assistant

high

Table 6: Instruction prompting template in track B of
base (top) and pairwise (bottom) strategies, respectively.
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Abstract

This study reports the YNU-HPCC team’s
participation in SemEval-2025 shared task 3,
which focuses on detecting hallucination spans
in multilingual instruction-tuned Large Lan-
guage Models (LLMs) outputs. This task dif-
fers from typical hallucination detection tasks
in that it does not require identifying the en-
tire response or pinpointing which sentences
contain hallucinations generated by the LLM.
Instead, the task focuses on detecting hallu-
cinations at the character level. In addition,
this task differs from typical hallucination de-
tection based on binary classification. It re-
quires not only identifying hallucinations but
also assigning a likelihood score to indicate
how likely each part of the model output is hal-
lucinatory. Our approach combines Retrieval-
Augmented Generation (RAG) and zero-shot
methods, guiding LLMs to detect and extract
hallucination spans using external knowledge.
The proposed system achieved first place in
Chinese and fifteenth place in English for track
3t

1 Introduction

Hallucination in large language models refers gen-
erating of information that appears plausible but
is factually incorrect or fabricated. This issue is
common in open-domain tasks, such as question an-
swering and summarization, where the model may
produce answers inconsistents with the provided
context or external knowledge.

Hallucinations can be categorized into two main
types (Ji et al., 2023): intrinsic, which conflicts
with the source content, and extrinsic, which can-
not be verified from the source content. These
errors are closely related to the nature of knowl-
edge. Some knowledge is static, such as the date
of the Civil War, while other knowledge evolves

'our code is available at https://github.com/
deepdarklowtech/YNU-HPCC-SemEval2025-Task3
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over time, such as the current population of China.
The distinction between these two types of knowl-
edge implies that hallucinations cannot be elimi-
nated—especially for the latter—unless the model
adopts a Retrieval-Augmented Generation (RAG)-
based (Lewis et al., 2020) approach.

As a result, much effort has been dedicated to
hallucination detection. These detection methods
can be broadly classified into the following cat-
egories (Huang et al., 2025): 1) Methods based
on model output logits, such as uncertainty and
semantic entropy; 2) Fact-based detection meth-
ods, which generally calculate the similarity be-
tween factual documents and the model’s output.
The shortcomings of both approaches are evident:
the former can only detect hallucinations but can-
not correct them, and it requires the detection pro-
cess to be tightly coupled with model generation.
The latter, on the other hand, struggles in domains
where factual documents are difficult to retrieve.

This task evaluated whether the model’s output
addressed the question and whether the answer
was accurate. Neither of these approaches effec-
tively addresses the task’s minimum interval re-
quirement because both focus on the entire model
output rather than specific spans within the answer.

Therefore, our team’s approach initially com-
bined fact-based documentation with Machine
Reading Comprehension (MRC) (Kenton and
Toutanova, 2019), followed by integrating the fac-
tual document-based method with zero-shot detec-
tion. The final experimental results demonstrated
that our solution was both effective and competitive
(Vazquez et al., 2025).

2 Related Work

Machine Reading Comprehension. Machine
reading comprehension is often applied in tasks
that answer questions based on context, and we
similarly use it to detect erroneous content. As men-
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@
-

5

Figure 1: Combining MRC and RAG system architec-
ture approach

Query by Search Engine Ax_l

Where 15 the capital of France?
The capital of France 1s Pans.

Input:
Context:

Inference by Llama

Where is the capital of France?
The capital of France 1s Pans.
The capital of France is Berlin.

Input:
Context:
Qutput:

L

tioned in the Introduction, the task requires identi-
fying hallucinations at the character-level interval,
rather than evaluating the entire answer, which is
more common in hallucination detection.
Zero-shot Learning. (Brown et al., 2020) The
Zero-Shot Prompting approach is highly flexible
and generalizable, eliminating the need for task-
specific training across new tasks or domains. In-
stead, it relies on pre-trained language models com-
bined with carefully designed examples or prompts
to facilitate reasoning and generate outputs. Al-
though the validation set for the task initially con-
tained up to 807 Q&A pairs when categorized by
language, filtering for unique questions reduced
the dataset to around 50 distinct entries. Given this
constraint, we adopted the zero-shot approach as
our solution.

3 Approach

MRC Combined with RAG for
Hallucination Detection

3.1

Our initial approach combined MRC techniques
with an RAG strategy to label hallucination inter-
vals,as shown in the flow in Figurel. The core of
this approach focused on the retrieval-augmented
component. While interfaces like Google and Bing
required extensive data cleansing, our team opted
for a more direct method: we manually queried
the model input field. We filtered the generated
answers to ensure they were concise and directly
addressed the question. Additionally, since the
interval-based hallucination detection dataset is
only available in English, the fine-tuned LLM must
possess cross-linguistic capabilities. For this rea-
son, we selected LLaMA3 (Dubey et al., 2024) as
the model for our approach.

To meet the task’s minimum interval require-
ment, we used BIO tagging (Ramshaw and Marcus,
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1999) for individual tokens. However, a limitation
of this approach was that it did not allow us to pop-
ulate the soft labels field with probability values.
To overcome this, we used the softmax value of
the hallucination end token as a proxy. This deci-
sion was informed by two factors: (1) LlamaForTo-
kenClassification?, uses Cross-Entropy as the loss
function for multi-label training, and (2) marking
the end token marginally improved the CoR score
in the final evaluation.

3.2 Zero-shot Combined with RAG for
Hallucination Detection

Following the previous phase, we created a
question-answer pair document based on the test
set. In the next step, we applied prompt engineer-
ing to guide the LLM in directly categorizing the
contents of the model output text field. The model
was instructed to output the soft and hard labels
fields separately, as shown in the flow in Figure2.
Our team selected four models for this solution:
OpenAl-ol, Claude-3.5, Gemini and DeepSeek V3
(Liu et al., 2024).

We also explored using the task-provided train-
ing set, along with data from the validation set or
open-source datasets (e.g., RAGTruth (Niu et al.,
2023) and HaluEval (Li et al., 2023)) for a few-shot
learning approach. However, based on our previous
experience with MRC, we found that some entries
in the official dataset contain hallucination spans
shorter than a token. Additionally, open-source
datasets often lack the probability values required
for the soft labels field. While we attempted to
annotate these datasets with probability values, we
encountered a challenge: assigning error proba-
bilities to clearly incorrect content and assigning
probabilities to valid content. Furthermore, when
the text is known to be incorrect, it is challenging
for the LLM to provide the required probability
values for the soft labels field.

The task organizers explicitly stated that 12 re-
viewers annotated the probability values for both
English and Chinese. Therefore, using a prompt,
we instructed the model to select a probability value
between 0.0833 (1/12) and 1.0 (12/12) for the soft
labels field. The organizers’ statement aligns with
the challenges we described in the previous para-
graph. This method of assigning probabilities is

https://huggingface.co/docs/
transformers/en/model_doc/1lama#transformers.
LlamaForTokenClassification
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Step 1: Building Augmented Text

| Extract from test set document

Model input: Where is the capital
of France?

The capital of France is Paris.
which is located in the north-
central part of the country.

}

Model mput:" Where 1s the capital
of France?’

Context: Pans’

Model output:'The capital of

France 1s Berlin*

o~
7

Step 2: Prompt for LLMs

‘ Prompt LLM te detect hallucination

You are an expert in hallucination detection.
please identify the hallucination in the
model_output field based on model_input and
context.

v

c=. @ 1 can definitely help with hallucination
<A|l detection. I'll analyze them to identify any

potential hallucinations in the output based on
.' o| the input and context provided.

You should evaluate the text sentence by
sentence. assigning likelihood values of
hallucinations to each segment. The
probability values should range from 0.0833
(1/12) to 1.0 (12/12), . Parts that you are
confident are hallucinations should be
assigned probability values greater than 0.5

Step 3: Mapping sentences to the original interval

Collecting LLM’s response

The hallucination span 1s “The capital of France
1s Berlin'. And the probability 1s 1.0."

v

The span is from 0 to 32.

l

Model input:" Where 1s the capital of France?"
Context:"Paris’

Model output:"The capital of France 1s Berlin "
Soft labels-{"Start":0,"Prob’:1.0."End":32}
Hard labels:[0.32]

(Al ) Got it! Based on the updated guidelines, I'1l
adjust the probability values accordingly.
.- : Let’s get it start.

Figure 2: Combining zero-shot and RAG system architecture approach

virtually infeasible, as it relies on aggregating multi-
ple binary labels to approximate probability values.

Both models naturally use sentences as the unit
for the minimum hallucination span during the re-
sponse collection process. Although this approach
does not fully meet the "minimum" span require-
ment set by the organizers, it aligns with our team’s
intuition about hallucinations. We typically don’t
distinguish between correct and incorrect informa-
tion at the word level; instead, we usually make
distinctions at least at the sentence or clause level.

As widely known, the strawberry challenge re-
vealed LLMs’ weakness in counting. The results
are often unreliable when directly asked to generate
soft and hard labels in JSON format. Fortunately,
both models apply chain-of-thought (CoT) (Wei
et al., 2022) reasoning to generate responses, im-
proving accuracy. To mitigate counting errors in
the LLM outputs, we required both OpenAl-ol and
DeepSeek V3 to provide the spans and the cor-
responding textual content for each span. After
collecting the LL.M responses, we used the KMP
algorithm to map the text to its corresponding posi-
tion in the model output text field.

4 Experiment Detail

Datasets. In our MRC solution, we fine-tuned the
LLaMA model using RAGTruth and HaluEVAL
datasets. RAGTruth explicitly labels hallucination
intervals in numerical form, closely aligning with
the task requirements, while HaluEVAL only iden-
tifies the text segments containing hallucinations
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without specifying precise intervals.

Evaluation Metric. This task adopts IoU and Cor
as evaluation metrics during the assessment phase.
The scoring criteria for IoU are outlined below:

ol — Intersection(Gold, Prediction)
"~ Union(Gold, Prediction)

ey

where Gold refers to the intervals marked by the
organizers as hard labels, while Prediction refers to
the intervals marked by participants as hard labels.
Cor’s score was calculated using the Spearman
Rank Correlation Coefficient, which is calculated
as follows:

63 d?

COT:l_n(nQ—l)

2
where d; refers to the difference in probability val-
ues between the soft labels published by the orga-
nizers and the soft labels submitted by the partici-
pants, while n represents the character-level length
of all soft label intervals marked by the organizers.

5 Result

In the final evaluation phase, the tournament orga-
nizers used Intersection-over-Union (IoU) to eval-
uate the hard_labels, while Spearman correlation
was used to assess the soft_labels.Table 2 and 3
presents the results achieved using different mod-
els and methods.

As shown in the table 1 and 2, OpenAl-ol out-
performs the other models by a significant margin.
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Figure 3: Performance of different LLMs on the EN test set. Blue bars represent sentences correctly labeled by
the model, red bars indicate sentences incorrectly labeled, and yellow bars show sentences that the model failed to

detect.

LLM IoU Cor

OpenAl-ol(Prompt) 0.5540 0.3518
DeepSeek V3(Prompt) 0.1219 0.0497
Gemini V2(Prompt) 0.3265 0.0664
Claude-3.5(Prompt) 0.4769 0.0795
LLaMA-3(MRC) 0.4565 0.1846
Baseline(mark all) 0.4772 0.0000

Table 1: Results obtained with different LLMs in the
ZH test set.

LLM IoU Cor

OpenAI-O1(Prompt) 0.4807 0.4075
DeepSeek V3(Prompt) 0.3220 0.1802
Gemini V2(Prompt) 0.3025 0.1722
Cluade-3.5 (Prompt) 0.4248 0.3391
LLaMA-3(MRC) 0.3800 0.3974
Baseline(mark all) 0.3489 0.0000

Table 2: Results obtained with different LLMs in the
EN test set.

The MRC-based approach using LLaMA for hallu-
cination interval detection also performs well.

To better demonstrate the effectiveness of our
team’s solution, we also performed a more refined
data analysis at the end of the evaluation phase. Our
analysis is based on the labeled test set released by
the organizers at the end of the evaluation phase.
As we stated in Section 3.2, the granularity of the
labels provided by the organizers is lower than our
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Model Rank IoU Cor
Chinese(Mandarin)
OpenAl-ol 1 0.5540 0.3518
Claude-3.5 5 0.4769 0.0795
LLaMA-3 14 0.4565 0.1846
Gemini V2 21 0.3265 0.0664
DeepSeek V3 26 0.1219 0.0497
English
OpenAl-ol 15 0.4807 0.4075
Cluade-3.5 24 0.4248 0.3391
LLaMA-3 26  0.3800 0.3974
DeepSeek V3 32 0.3220 0.1802
Gemini V2 35 0.3025 0.1722

Table 3: Ranking of our practices in the official ranking
table

team’s judgment of the LLMs’ hallucination phe-
nomenon, and also Tables 3 have demonstrated
the accuracy and relevance at the character level.
Therefore, we split the model output text by sen-
tence and analyze it at the sentence level, as shown
in Figure 3 and Figure 4. In terms of detection
ability at the sentence level, Claude-3.5 performs
ahead of all other models. However, OpenAl-ol
scores higher under the IoU metric due to its fewer
false positive results. Meanwhile, Figures 3 and 4
show a disproportionate increase in sentences that
were not detected by the Gemini and DeepSeek V3
models in the Chinese track. However, the opposite
trend is observed under the IoU metric. This dis-
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Figure 4: Performance of different LLMs on the ZH test set. Blue bars represent sentences correctly labeled by
the model, red bars indicate sentences incorrectly labeled, and yellow bars show sentences that the model failed to

detect.

crepancy is primarily due to the fact that the model
responses in the Chinese test set often include more
Markdown syntax for structured, point-by-point re-
sponses to questions. This is also reflected in the
overall length of the text, which is 48040 for the
Chinese test set and 36745 for the English dataset.
As a result, regular expressions struggle to segment
the text according to human linguistic conventions.

6 Analysis

The data in the table indicates a low correlation in
our solution, which can be attributed to at least the
following factors:

* Following the example provided by the task
organizers, if the text in the model output text
is The capital of France is Berlin, the halluci-
nation interval we provide should only include
the token "Berlin." This tokenization approach
is, of course, correct. We replace Berlin with
Faris to correct the LLM’s response.

Similarly, for hallucination detection, fitting
the probability of a binary classification task
to the results derived from 12 individuals’
votes proves too challenging. We also con-
sidered using multiple rounds of sampling
(Shanahan et al., 2023), where the discrimina-
tive results of 12 judgments made by the same
model would be used to fit the final probabil-
ity; however, this exceeded our team’s budget.

¢ As shown in Tables 1 and 2, our team’s re-
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sults in the English track were not as strong as
those in the Chinese track, which seems con-
tradictory considering the training data used
by the relevant models. This discrepancy may
be related to the quality of the augmented doc-
uments we created. Specifically, for the test
set, there were 12 instances in the English por-
tion where content could not be retrieved or
was overly verbose, while only 4 were present
in the Chinese portion. This difference could
have a significant impact, given that the test
set contains only 150 entries.

7 Conclusion

This study describes the work conducted by
the YNU-HPCC team for participation in "Mu-
SHROOM (SemEval 2025)." The methods we em-
ployed include Augmented Document-based MRC
and Augmented Document-based Prompt Engineer-
ing. The final results showed that using OpenAl-ol
with Augmented Document-based Prompt Engi-
neering achieved first place in the Chinese track,
with an IoU score of 0.5540 and a Cor score of
0.3518. In the English track, the model achieved
15th place, with an IoU score of 0.4807 and a Cor
score of 0.4075.

Future work attempts to adopt a knowledge
graph-based approach for self-checking LLM-
generated answers in the future. After all, com-
pared to a simplistic model, a more intelligent
model that outputs incorrect answers tends to cause
more significant harm to society and the economy.



Therefore, integrating online retrieval-augmented
generation (RAG) with offline knowledge graphs
will be key for mitigating hallucination.
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Abstract

This study addresses multi-label emotion clas-
sification in Moroccan Arabic. We developed
a lightweight computational approach to de-
tect and categorize emotional content in seven
distinct categories: anger, fear, joy, disgust,
sadness, surprise, and neutral. Our findings re-
veal that our efficient, subword-aware model
achieves 46.44% accuracy on the task, demon-
strating the viability of lightweight approaches
for emotion recognition in under-resourced
language variants. The model’s performance,
while modest, establishes a baseline for emo-
tion detection in Moroccan Arabic, highlight-
ing both the potential and challenges of apply-
ing computationally efficient architectures to di-
alectal Arabic processing. Our analysis reveals
particular strengths in handling morphological
variations and out-of-vocabulary words, though
challenges persist in managing code-switching
and subtle emotional distinctions. These re-
sults offer valuable insights into the trade-offs
between speed and accuracy in multilingual
emotion detection systems, particularly for low-
resource languages.

1 Introduction

Emotion detection in natural language process-
ing (NLP) presents significant challenges, partic-
ularly for low-resource languages like Moroccan
Darija (Moroccan Arabic). As digital communi-
cation proliferates, understanding emotional nu-
ances becomes crucial for applications in senti-
ment analysis, social media monitoring, and psy-
chological research (Gandhi et al., 2023). De-
spite extensive research in emotion classification
for well-resourced languages, Moroccan Darija re-
mains under-explored due to several challenges.
Its linguistic complexity, marked by high context-
dependency and significant deviations from Mod-
ern Standard Arabic, complicates NLP tasks. The
unique code-switching patterns, blending Berber,
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French, Spanish, and Arabic, further hinder tra-
ditional approaches (Zaidan and Callison-Burch,
2014). A major bottleneck is the scarcity of anno-
tated datasets, linguistic tools, and computational
resources. Unlike well-studied languages, Darija
lacks sentiment lexicons and annotated corpora
necessary for emotion detection. Additionally, di-
alectal variability introduces regional and social
variations, making generalization difficult. Lastly,
Darija’s nuanced emotional expression, deeply tied
to prosody, idiomatic speech, and cultural context,
remains a challenge for conventional NLP tech-
niques.

For these reasons, traditional machine learning
approaches often struggle with Darija’s unique di-
alectal characteristics, requiring specialized compu-
tational techniques to navigate its intricate linguis-
tic landscape. Developing robust emotion detection
models for Darija is not only a technical challenge
but also a crucial step toward preserving and under-
standing the linguistic and emotional nuances of
Moroccan Arabic communication.

This paper presents the following contributions:

* Multi-label Emotion Classification: We de-
velop! a multi-label emotion classification
model for Moroccan Darija using FastText
(Joulin et al., 2016), achieving 46.44% accu-
racy in a low-resource setting.

Linguistic Adaptation: We introduce a spe-
cialized preprocessing and modeling approach
that handles the linguistic complexities of Mo-
roccan Arabic, including code-switching, non-
standard spellings, and dialectal variations.

Low-Resource NLP Insights: We provide in-
sights into the challenges of multi-label emo-
tion detection in under-resourced languages,

'Our implementation is open-sourced at https: //github.
com/atlasia-ma/semeval-emotion-detection
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highlighting the trade-offs between model ac-
curacy and computational constraints.

2 Background

SemEval 2025 Task 11 (Muhammad et al., 2025b)
focuses on emotion classification in Moroccan Ara-
bic (Darija), requiring systems to categorize text
into seven emotions: anger, fear, joy, disgust, sad-
ness, surprise, and neutral. For example:

Input: "Sde o> dad S L]

e K Js8 fhslaey”
Label: joy

Moroccan Darija presents distinct challenges
due to its lack of standardization, extensive dialec-
tal variability, and frequent code-switching with
French, Berber, and Spanish. These factors make
traditional NLP techniques less effective, requiring
specialized preprocessing and modeling strategies.
Successfully addressing this task not only advances
emotion detection for under-resourced languages
but also enhances the accessibility and understand-
ing of sentiment in Moroccan Arabic social media
and digital communication.

3 System Overview

Our system leverages FastText (Joulin et al., 2016)
for multi-label emotion classification, chosen for
its efficiency and ability to handle dialectal varia-
tions. A key advantage of FastText is its subword-
aware representations, which are particularly ben-
eficial for dialectal Arabic, where words exhibit
high morphological variability (Bojanowski et al.,
2017). Additionally, its lightweight architecture
makes it well-suited for resource-constrained envi-
ronments, ensuring scalability for real-world appli-
cations. Another crucial factor is its robustness to
out-of-vocabulary (OOV) words, a common issue
in informal Moroccan darija text due to spelling
variations, transliterations, and code-switching.
The system follows a structured pipeline, begin-
ning with text preprocessing to clean and normal-
ize input, addressing noise, non-standard spellings,
and multilingual elements. The processed text is
then used to train the FastText model, leveraging
subword embeddings. Finally, during inference,
emotion labels are predicted and post-processed
to refine outputs, ensuring interpretability and bet-
ter alignment with the nuances of Moroccan Dar-
ija. This approach effectively tackles the linguistic
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challenges of the task, making emotion detection
in Darija more robust and scalable.

4 Data Preparation and Model Training

Our study is based on the SemEval 2025 Task 11
(of SemEval-2025 Task 11, 2025) dataset (Muham-
mad et al., 2025a), which focuses on emotion de-
tection in Moroccan Arabic (Darija). The dataset is
loaded using the Hugging Face datasets library,
allowing for efficient and reproducible data han-
dling. We specifically work with the Moroccan
Arabic (Cary’) subset, ensuring that our approach
directly addresses the challenges posed by dialectal
variation and code-switching in Darija.

4.1 Dataset Statistics

The dataset is relatively small compared to high-
resource languages, highlighting the challenges of
training robust emotion classification models for
underrepresented languages. It consists of:

* Training set: 1,608 samples
* Validation set: 267 samples
* Test set: 812 samples

Each text sample is annotated with one or more
emotion labels from seven categories: anger, fear,
joy, disgust, sadness, surprise, and neutral. The
multi-label nature of the task reflects the complex-
ity of emotional expression, where a single utter-
ance may convey overlapping sentiments.

4.2 Data Processing Pipeline

To effectively handle noisy and informal text, we
employ a structured data processing pipeline using
Python. The preprocessing pipeline is designed to
normalize noisy user-generated text while preserv-
ing relevant linguistic information. The processing
in Algorithm 1 was applied.

This approach ensures that irrelevant symbols
and formatting inconsistencies are removed, im-
proving the model’s ability to generalize across
different textual styles.

4.3 Label Processing

Emotion detection in Moroccan Darija is partic-
ularly challenging due to the subtle interplay be-
tween linguistic and cultural factors. Our multi-
label classification framework captures overlapping
emotions by assigning one or more labels from the
following categories:



Algorithm 1 Tweet Preprocessing Parameter Value
Require: tweet: input string containing raw tweet Learning rate 0.40
text Dimension 8
Ensure: cleaned and preprocessed tweet string Window size 5
1: function PreprocessTweet(tweet) Epochs 100
2:  // Remove @mentions (user handles) Min word count 1
3:  tweet < REGEX_REPLACE(tweet, "@+", ~ Character n-grams 3-6
"y Word n-grams 1
4. // Remove URLs Loss function One-vs-All (OVA)
s:  tweet ¢ REGEX_REPLACE(tweet,  Bucketsize 2,247,558
"https?:§+www§+", "") Threads 7
6:  // Remove hashtags, including hashtagged Learning rate update rate 100
words T value 0.0001
7 "")tweet < REGEX_REPLACE(tweet, "+, Table 1: FastText model configuration parameters
8:  // Normalize whitespace
9: tweet +— REGEX_REPLACE(tweet, "+", " baseline for future research and model improve-
") ments in the context of under-resourced dialectal
10:  tweet < TRIM(tweet) languages.
11:  // Normalize punctuation (remove excessive
spaces around punctuation) 5.2 Analysis of Errors
12:  tweet <+ REGEX_REPLACE(tweet, A thorough qualitative error analysis revealed sev-
"EDES, T eral factors contributing to model misclassifica-
13: return tweet tions:
14: end function

* Primary emotions: anger, fear, joy, disgust,
sadness, surprise

* Neutral category: for texts that do not explic-
itly express emotion

Given the inherent subjectivity of emotion anno-
tation, the model must learn to distinguish between
subtle variations in sentiment while accounting for
dialectal expressions, code-switching, and informal
speech patterns. By structuring our label process-
ing accordingly, we enhance the model’s ability to
capture the nuances of Moroccan Arabic emotional
expression.

4.4 Model Configuration
The FastText model was trained with the optimized

parameters outlined in Table 1.

5 Results
5.1

Our system achieved a validation accuracy of
46.44% , demonstrating the viability of using Fast-
Text for emotion classification in Moroccan Ara-
bic. Despite the challenges of working with a low-
resource language, this result serves as a promising

Model Performance
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* Handling of Code-Switched Text: The
model struggles with tweets containing mul-
tiple languages, particularly when sentiment-
laden words are in French or Berber rather
than Arabic.

* Ambiguity Between Similar Emotions:
Emotions such as anger and surprise, or
fear and sadness, share overlapping linguistic
markers and contextual cues, making differen-
tiation challenging.

* Performance on Multi-Label Cases: The
model tends to focus on the most domi-
nant emotion, neglecting secondary emotions
when multiple labels are present in a sample.

For example, the following error case illustrates
the model’s difficulty in distinguishing between
closely related emotions:

Input:

UK Bt gl e TG S
Predicted: anger )
True label: surprise

Analysis: The model misclassified sur-
prise as anger, likely due to the intense
tone and overlapping intensity between



the two high-arousal emotions. This
example underscores the challenges in
capturing subtle emotional distinctions
in informal, dialectal speech.

These insights point to opportunities for improv-
ing the model’s handling of ambiguous emotions
and code-switching, suggesting potential avenues
for enhancing the model’s robustness and accuracy
in future iterations.

6 Conclusion and Future Work

Our emotion detection system for Moroccan Ara-
bic faces several limitations, including difficulty
handling code-switching between Arabic, French,
and Berber, reduced performance on informal text
variations, and challenges in capturing context-
dependent emotional nuances. The current model
architecture also struggles with Darija’s complex
morphology, and the evaluation is limited to ac-
curacy, which does not fully reflect the model’s
performance.

Future work should focus on developing emotion
lexicons specific to Moroccan Arabic, integrating
Darija-specific linguistic features, and exploring
hybrid approaches combining FastText with trans-
former models like AraBERT (Antoun et al., 2020).
Cross-lingual transfer learning, larger and more
diverse emotion datasets, and the adoption of ad-
vanced evaluation metrics will further improve the
model’s effectiveness and robustness.
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Abstract

This paper presents the Irapuarani team’s par-
ticipation in SemEval-2025 Task 10, Subtask
2, which focuses on hierarchical multi-label
classification of narratives from online news ar-
ticles. We explored three distinct strategies: (1)
a direct classification approach using a multilin-
gual Small Language Model (SLM), disregard-
ing the hierarchical structure; (2) a translation-
based strategy where texts from multiple lan-
guages were translated into a single language
using a Large Language Model (LLM), fol-
lowed by classification with a monolingual
SLM; and (3) a hybrid strategy leveraging an
SLM to filter domains and an LLM to assign
labels while accounting for the hierarchy. We
conducted experiments on datasets in all avail-
able languages, namely Bulgarian, English,
Hindi, Portuguese and Russian. Our results
show that Strategy 2 is the most generalizable
across languages, achieving test set rankings
of 22st in English, 8th in Bulgarian, 9th in Por-
tuguese, 10th in Russian, and 11th in Hindi.

1 Introduction

Trusting online content has become increasingly
difficult due to the rise of misinformation, disinfor-
mation, deceptive content, and deliberate attempts
at manipulation (Marwick and Lewis, 2017; An-
derson, 2019). Not only is it more challenging
to distinguish between credible information and
fake news, but the sophisticated techniques used to
shape perceptions can intensify conflicts and influ-
ence political opinions, potentially swaying voter
behavior (Stanley, 2015; Rutheford, 2023). The
vast amount of online disinformation highlights the
urgent need for automated tools to identify such
content (Piskorski et al., 2022).

Our research is centered on SemEval-2025 Task
10 (Piskorski et al., 2025), which addresses the
Multilingual Characterization and Extraction of
Narratives from Online News. Specifically, we
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focus on Subtask 2, which involves classifying nar-
ratives and sub-narratives within a two-level tax-
onomy. The primary objective of the task is to
foster the development of classification methodolo-
gies capable of identifying narratives designed to
manipulate readers, instantiated this year in the do-
mains of Climate Change and the Ukraine-Russia
War. Additionally, the task provides resources and
enables participants to work in at least one of five
languages: Bulgarian (BG), English (EN), Hindi
(HI), Portuguese (PT), and Russian (RU). Our team,
however, has chosen to evaluate our approaches
across all available languages, aiming to achieve a
multilingual analysis.

We evaluated three distinct methodologies lever-
aging both Small Language Models (SLMs) and
Large Language Models (LLMs) to address this
task. Moreover, we intend to assess whether the
strategies exhibit generalizability across different
languages, pursuing a general framework rather
than a language-specific strategy. The approaches
are as follows: (1) a direct classification method
employing a multilingual SLM; (2) a translation-
based approach, where texts in multiple languages
were translated into a single target language using
an LLM, followed by classification with a monolin-
gual SLM; and (3) a hybrid strategy that integrated
the strengths of both model types, utilizing an SLM
for domain filtering and an LLM for hierarchical
label assignment. Our experiments on the devel-
opment set show that Strategy 2 is the most gen-
eralizable across languages among the approaches
we evaluated, ranking 8th in Bulgarian, 9th in Por-
tuguese, 10th in Russian, 11th in Hindi and 22st in
English on the test set!.

2 Related Work

Research on the detection and classification of mis-
/disinformation, narratives and propaganda has in-

"https://github.com/MeLLL-UFF/irapuarani

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 38—48
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/MeLLL-UFF/irapuarani

creasingly leveraged the advanced capabilities of
language models. Encoder-based SLMs have been
successfully employed in narrative classification
tasks. For instance, Coan et al. (2021) explored
combining the RoBERTa model (Liu et al., 2019)
with the traditional machine learning algorithm lo-
gistic regression, utilizing a taxonomy within the
climate change domain. Similarly, Kotseva et al.
(2023), working in the context of COVID-19, re-
ported success with a fine-tuned BERT (Devlin
et al., 2019) model for classifying narratives.

In addition to encoder-based SLMs, LLMs have
also been applied in analyzing narratives and pro-
paganda (Liu et al., 2025). Hasanain et al. (2024)
experimented with GPT-4 for annotating spans of
propaganda in Arabic news articles, highlighting
the model’s potential when provided with addi-
tional contextual information. Jones (2024) eval-
uated GPT-3.5-turbo’s performance in identify-
ing up to 18 possible persuasion techniques in
news articles, reporting promising results while
noting that the model’s ability to detect these tech-
niques varied across some categories. Further-
more, Sprenkamp et al. (2023) compared the per-
formance of RoOBERTa with GPT-3 and GPT-4
for propaganda detection, emphasizing that GPT-4
ranked among the best-performing models, along-
side RoBERTa.

Our work aims to evaluate strategies that inte-
grate both SLMs and LLMs for classifying nar-
ratives in news articles within a multilingual con-
text. Moreover, we aim to determine whether the
strategies exhibit generalizability across different
languages, pursuing a general approach over a nar-
rowly specialized one. More details are in the sec-
tions below.

3 Background

The data utilized in this work was provided by
the SemEval-2025 Task 10, which comprises a
multilingual corpus of news articles. The corpus
spans articles collected between 2022 and mid-
2024, focusing on two primary topics: the Ukraine-
Russia War and Climate Change. In the context
of the addressed subtask, namely Subtask 2, the
data also includes labels associated with Narrative
Classification, structured into a two-level hierar-
chy dataset based on the provided annotations (Ste-
fanovitch et al., 2025) . The Ukraine-Russia War
(URW) domain includes 11 narrative labels and
38 sub-narratives. In contrast, the Climate Change
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(CC) domain has 10 narrative labels and 36 sub-
narratives. The label Other can be used at the narra-
tive level to indicate that a narrative does not match
any available labels. It can also be paired with a
narrative label to indicate that the corresponding
sub-narrative does not fit the predefined categories.
Finally, the task organizers pre-divided the set as
outlined in Table 1.

Table 1: Distribution of the dataset across languages
and its partitioning into train, dev and test sets.

Se¢ BG EN HI PT RU Total
Train 401 400 366 400 348 1915
Dev. 35 41 35 35 32 178
Test 100 101 99 100 60 460
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Figure 1: Distribution of the train set across domains.

The dataset exhibits an imbalance across do-
mains, as illustrated in the Figure 1, which high-
lights the predominance of the URW class over
the CC class both overall and across languages.
EN and PT are the closest to achieving balance
among the analyzed languages. However, even
within these relatively balanced languages, a signif-
icant observation arises when examining the label
taxonomy more closely: not all labels are repre-
sented across all languages. For instance, the label
associated with the pair {narrative: Amplifying Cli-
mate Fears, subnarrative: Whatever we do, it is
already too late} is entirely absent from the train-
ing instances in English. Despite this, our data
analysis confirms that each label is present in the
training set for at least one language. Consequently,



any approach aiming to comprehensively cover all
labels across all languages, must address the label
underrepresentation. Our approach is detailed in
the next section.

4 System Overview

This section outlines the methodology employed
for the multilabel classification of narratives within
the task’s two-level hierarchy. Based on the data
characteristics previously described, we evaluated
three strategies to ensure comprehensive label and
language coverage. The (a) Single-Model Strat-
egy, following Vasconcelos et al. (2024), uses a
multilingual SLM to classify narratives without
considering their hierarchical structure. The (b)
Translation Strategy involves translating texts
into a single target language with an LLM, fol-
lowed by classification using a monolingual SLM.
Lastly, the (c) Hierarchical Strategy applies a hy-
brid approach: an SLM first classifies texts into
URW or CC domains, guiding an LLM to assign
the final label based on the hierarchy.

4.1 Single-Model Strategy

This approach aims to evaluate the performance of
a simplified solution to the problem, deliberately
disregarding hierarchical structures (Vasconcelos
et al., 2024). To achieve this, a label engineer-
ing process is applied, combining each narrative
with its respective sub-narratives to create a single,
flattened level of possible labels. Formally, let N
represent a narrative and S = {5y, So,..., Sk}
represent its associated sub-narratives. For each
pair (N, S;), a new label is generated in the form
N-S;, where i € {1,2,...,k}. Additionally, for
each narrative N, a corresponding “Other” label
N-Other is created to represent cases where no
specific sub-narrative is identified. Finally, a global
label Other-Other is included to handle instances
where neither the narrative nor its sub-narratives
are recognized.

For the classification process, we employed the
multilingual version of the DeBERTa (He et al.,
2021a,b) model?, with linear layers appended to
the top of the model’s language representation
stack. For this approach, we leverage supervised
fine-tuning, allowing the weights of both the lan-
guage model and the newly added linear layers to
be jointly optimized. The selection of this model
was motivated by its effectiveness as a robust al-

*https://huggingface.co/microsoft/mdeberta-v3-base
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ternative for classification tasks, owing to its ad-
vanced ability to encode and represent contextual
information (He et al., 2021a).

4.2 Translation Strategy

Given that the previously presented approach as-
signed the classifier the dual responsibility of han-
dling both multilingual representation and multil-
abel classification within the hierarchy, the present
approach seeks to decouple these two tasks. The
goal is to determine whether such a separation leads
to any observable improvement in performance.

To achieve this, non-English texts were first
translated into English. The decision to translate
into English was based on the extensive availabil-
ity of state-of-the-art models and resources for this
language (Joshi et al., 2020; Ustiin et al., 2024),
also enabling an evaluation of whether a monolin-
gual model could outperform the multilingual ap-
proach used in the Strategy 4.1. For a more aligned
comparison, a monolingual DeBERTa (He et al.,
2021a,b) model® was selected, configured similarly
to the previous strategy, also with labels presented
in a flat structure.

We evaluated two models for the translation
stage, namely the Aya Expanse 8B model (Dang
et al., 2024) and GPT-40-mini (Hurst et al., 2024),
both with recognized multilingual capabilities.
This selection aims to assess the potential impact
of translation differences throughout the process
by comparing a leading open-source, smaller-scale
model with a top-tier proprietary model. Such a
comparison enables informed implementation deci-
sions based on the available resources. Lastly, the
prompt used can be found in the Appendix A.

4.3 Hierarchical Strategy

In this strategy, we evaluate the performance of
a larger, general-purpose LLM by directly assign-
ing multilabel narrative labels. However, similar
to Strategy 4.2, we also divide the task into two
distinct stages, forming a two-level classification
hierarchy (Zangari et al., 2024). In the first stage,
we utilize an SLM — specifically, the same multi-
lingual DeBERTa model employed in Strategy 4.1
—— as the basis for a classifier responsible for deter-
mining the domain of each article. This classifier
predicts a label from the set {URW, CC, Other},
a ternary classification scheme derived through a
label engineering process applied to the training

Shttps://huggingface.co/microsoft/deberta-v3-base



dataset. Importantly, when the classifier assigns
the label “Other” to a given text, our framework
automatically designates the corresponding sub-
narrative label as “Other”.

Next, for texts classified as either URW or CC,
an LLM is employed with an appropriately de-
signed prompt, guiding the model to provide both
the narrative and the sub-narrative. In this con-
text, the selected model was the state-of-the-art
GPT-40 (Hurst et al., 2024), specifically its mini
version, to address cost-related constraints. This
prior domain classification allows for a prompt that
is not excessively long, focusing on each specific
domain and enhancing the model’s performance, as
LLMs often struggle with overly extended instruc-
tions (Levy et al., 2024). Conversely, we are aware
that a hierarchical approach that deepens the hier-
archy levels — for instance, with separate stages
for classifying the narrative and the sub-narrative
— may yield more accurate results. However, we
focus on a broader level, as specializing in each nar-
rative could result in a plethora of over-specialized
models, which, in real-world scenarios, may reduce
generalizability and require retraining with each
new label added. The algorithm in Appendix B
gives an overview of the hierarchical implementa-
tion.

The prompt used for classification with the LLM
was refined through empirical testing, incorporat-
ing two key instructions: “In the following text,
identify the core narrative that aligns with the au-
thor’s perspective” and “If multiple narratives are
equally significant, include them all.” The first in-
struction was placed at the beginning of the prompt,
as experimental results indicated that, in its ab-
sence, the model frequently assigned indirect labels
to texts, failing to distinguish between internal quo-
tations and the overarching narrative. For example,
a text might cite statements from an activist with
the intent to discredit them, in which case the ap-
propriate label would be “Ad hominem attacks on
key activists.” However, error inspections revealed
that the model occasionally misclassified such texts,
interpreting the activist’s statements as representa-
tive of the main narrative, thereby diverging from
the intended annotations. Appendix C presents an
example of the incorrect classifications observed.
Furthermore, the second directive was appended
at the end of the prompt to mitigate the overly re-
strictive effect of the first instruction. Preliminary
experiments demonstrated that relying solely on
the first instruction led the model to apply exces-
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sively narrow labels. The complete prompts for the
URW and CC domains are provided in Appendices
D and E, respectively.

5 Experimental Setup

Implementation Details The proposed solution
was developed utilizing the Hugging Face Trans-
formers (Wolf et al., 2020) and scikit-learn (Pe-
dregosa et al., 2011) libraries, using the MultiL-
abelBinarizer approach. All experiments were con-
ducted on two Nvidia RTX 4090 GPUs, each fea-
turing 24GB of VRAM.

Models Hyperparameters For the classification
with the DeBERTa models, the following hyperpa-
rameters were employed: batch size = 16, number
of epochs = 10, maximum sequence length = 512,
learning rate = 2 x 107°, and weight decay = 0.01.
Predictions were made using a threshold of 0.8
for logits, considering the number of labels and
the multi-label classification setup. For classifica-
tion with GPT40-mini, the configuration included
a temperature of 0.7, top-p = 0.95, and maximum
completion tokens = 200. Lastly, for translation,
the parameters were set as follows: max new to-
kens = 4000, do sample = True, temperature = 0.8,
and rop-p = 0.95, Lastly, all random seeds were set
to 42 wherever applicable. The training and infer-
ence parameters were selected based on a 5-fold
cross-validation performed on the training set.

Evaluation Metrics The evaluation metrics em-
ployed are based on the sample-level F1 score, with
an emphasis on Fl,,,,, which focuses on sub-
narratives, rather than Fl,,,., which targets the
narratives-level, in alignment with the official task
directives.

6 Results

This section aims to analyze the proposed strategies.
Table 2 presents, for each language, the results of
each proposed configuration on the development
set, alongside the baseline provided by the Task
organizers. Additionally, for the test set, the ta-
ble displays the results of the final submitted strat-
egy, the baseline, and the best overall performance
achieved by any team for each language. Notably,
our analysis focuses on the Flj,,,., score, as it is
the main metric adopted for the Subtask.

First, all proposed strategies outperform the base-
line. Notably, the most basic approach — the Single



Table 2: Flcoarse and Flgamples values for each language on the dev. and test sets. Best results in bold.

S Bulgarian English Hindi Portuguese Russian
trategy
F1 coarse F1 Samples F1 coarse F1 Samples F1 coarse F1 Samples F1 coarse F1 Samples F1 coarse F1 Samples
Validation
Single-model 0.206 0.183 0.284 0.266 0.124 0.075 0.275 0.168 0.279 0.146
Translation ya-sB) 0.319 0.178 0.328 0.179 0.321 0.161 0.458 0.289 0.328 0.149
Translation GPT-40-miniy  0.347 0.186 0.304 0.176 0.320 0.173 0.371 0.228 0.354 0.174
Hierarchical 0.553 0.162 0.268 0.268 0.313 0.101 0.466 0.032 0.375 0.219
Baseline 0.038 0.014 0.106 0.000 0.100 0.051 0.067 0.010 0.041 0.013
Test

Best Team 0.631 0.460 0.590 0.438 0.569 0.535 0.664 0.480 0.709 0.518
Baseline 0.056 0.022 0.030 0.013 0.081 0.000 0.037 0.014 0.065 0.008
Translation (GPr-40-miniy  0.366 0.183 0.335 0.188 0.234 0.110 0.435 0.225 0.359 0.191

Model Strategy — achieves its best results in En-
glish and Bulgarian, while ranking among the least
effective solutions for the other languages. This
pattern may indicate that the need for a single clas-
sifier to adapt simultaneously to language represen-
tation and classification itself during training may
hinder its ability to generalize performance across
languages.

On the other hand, the Translation-Based Strat-
egy yields the best results among the proposed
approaches for Portuguese (with translations gen-
erated by the Aya model), as well as Bulgarian
and Hindi (with translations generated by the GPT-
40-mini model). Additionally, the Aya-translated
approach secures second place in Hindi, while
the GPT-based variant achieves this same ranking
for Portuguese and Russian. Notably, translation-
based strategies do not exhibit abysmal perfor-
mance in any language — unlike, for example, the
Single Model Strategy in Hindi. This observation
suggests that translation-based approaches may en-
hance generalization by allowing the final classifier
to focus solely on the classification, rather than
concurrently handling multilingual representation.
Regarding the performance differences between the
Aya and GPT-40-mini translations, a more detailed
analysis of their pre-training corpora could offer
valuable insights. However, such resources are not
publicly available for the GPT model.

Despite achieving the best performance in En-
glish and Russian, the Hierarchical Strategy demon-
strated poor Portuguese results and was outper-
formed by the translation-based strategies in other
languages. An analysis of the first stage of the Hi-
erarchical Strategy on the validation set (as test la-
bels are not available) suggests that the results may
be influenced by a specific characteristic in Por-
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tuguese data. Table 3 reveals a high concentration
of documents from the Climate Change domain
in Portuguese, a pattern not shared by any other
language (Appendix F provides the corresponding
matrices for the remaining languages).

(a) Russian

True / Pred. URW CC Other
URW 16 1 11
CC 0 0 0
Other 0 0 4

(b) Portuguese

True / Pred. URW CC Other
URW 8 0 1
CC 0 25 0
Other 1 0 0

Table 3: Confusion matrices for domain classification
in Russian and Portuguese on the validation set.

The table also shows performance for Russian,
which, despite exhibiting a higher number of abso-
lute classification errors compared to Portuguese,
yielded better results in the final classification stage,
as shown in Table 2. Though seemingly counter-
intuitive, this observation indicates that the LLM-
based final classification struggled specifically with
the Climate Change domain in Portuguese. In con-
trast, Russian domain predictions related to the
Ukraine—Russia War were more frequently classi-
fied correctly in the second stage of the Hierarchi-
cal Strategy. Additionally, we attribute the poor
domain classification performance for Russian to
the extreme class imbalance in the data for that
language, as previously shown in Figure 1. This
indicates the potential of future work to examine



intra-domain classification behavior in multilingual
scenarios more closely.

Consequently, aiming to evaluate the most gener-
alizable approach, our final submission was based
on the Translation-Based Strategy utilizing the
GPT-40-mini model. In the test set, the submit-
ted approach once again outperformed the baseline
across all languages, consistently avoiding any no-
tably poor results in any of them. This further
reinforces its potential for generalization. Future
research may also consider a qualitative evaluation
of the translations, which we regard as beyond the
scope of the current work.

7 Conclusion

This work addresses SemEval-2025 Task 10 and
evaluates three distinct strategies for multilabel
classification within a two-level taxonomy of narra-
tives and sub-narratives in online news. Our results
indicate that the approach relying solely on a multi-
lingual SLM to classify texts in multiple languages
failed to generalize its strong performance in lan-
guages such as English to other linguistic contexts.
Similarly, the strategy that employed a multilin-
gual SLM as a domain filter and an LLM to assign
the final labels achieved the best result on the de-
velopment set for English but performed poorly
in languages such as Portuguese, also highlight-
ing a generalization gap. Conversely, the approach
that translated all texts into English and utilized a
monolingual SLM for classification demonstrated
more consistent and generalizable results across
languages, frequently ranking as the best or second-
best performing strategy among those we analyzed.

Future work may explore the evaluation of ad-
ditional combinations of SLMs and LLMs to iden-
tify the most effective pairings for this task. Fur-
thermore, the Translation-Based Approach, which
demonstrated robust generalization, could be ex-
tended by translating texts into target languages
other than English. This would enable a more com-
prehensive analysis of the impact of the translation
step on classification performance across diverse
linguistic contexts.

Limitations

The translations were conducted exclusively with
English as the target language. While this deci-
sion was made to ensure the feasibility of the ex-
periments, it may have hindered the evaluation of
culturally specific and critical nuances inherent to
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each language. Another notable limitation of this
study is the lack of in-depth qualitative analyses of
the predictions and translations generated by the
proposed approaches. While potentially complex
due to the large number of possible labels and the
high degree of subjectivity involved — and, in the
specific context of this work, also combined with
the time limit of the task — such analyses may be
important, as they could offer valuable insights into
narrative detection and potentially reveal manipula-
tion strategies.

Ethics Statement

Language Bias The Translation-based strategy,
while necessary for multilingual analysis, may in-
troduce biases due to potential discrepancies be-
tween translated and naturally occurring language.
Additionally, the underrepresentation of labels in
non-English languages and the inherent bias to-
wards English in terms of available models and
resources could compromise the fairness and effec-
tiveness of our methodologies.

Misclassification The politically sensitive na-
ture of the topics — climate change and the
Ukraine-Russia war — increases the risks asso-
ciated with misclassification. Misidentifying disin-
formation could inadvertently amplify its spread,
while overzealous identification could stifle legiti-
mate discourse and censor genuine activism. Ongo-
ing collaboration with linguists and social scientists
could better capture the complexities of human lan-
guage in social interaction and regular reevaluation
of the narratives and labels in the corpus could be
essential to ensure that our research remains rele-
vant and ethically sound.
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A Translation Prompt
TRANSLATE THE FOLLOWING TEXT INTO ENGLISH. BE AS

PRECISE AS POSSIBLE IN RETAINING THE INFORMATION
CONVEYED.

### TEXT
{TEXT}

B Hierarchical Strategy Algorithm

Algorithm 1 Hierarchical Classification

Require: Article text 7'
Ensure: Final label set £
: Step 1: Domain Classification with SLM
: Load pretrained SLM (Multilingual DeBERTa)
: Define label set {URW, CC, Other}
: Predict domain D < SLM(T)
if D = Other then
Assign £ + {“Other-Other”}
else
Step 2: Sub-Narrative Classification with LLM
Select LLM (GPT40-mini)
Select appropriate prompt P based on D:
if D = URW then
P + Prompt for URW sub-narr. classification
else if D = CC then
P <+ Prompt for CC sub-narr. classification
end if
Predict sub-narrative labels L5 <— LLM(P, T)
Combine domain label with sub-narrative labels:
L+ {D} U Lsub
: end if
: return £

C Ilustrative Case of Incorrect

Classification by GPT40-mini

The excerpt below is taken from one of the docu-
ments made available in the task dataset. While
the human annotators labeled it as “Criticism of
climate movement: Ad hominem attacks on key
activists”, our early experiments showed that the
language model assigned the labels “Amplifying
Climate Fears: Amplifying existing fears of global
warming” and “Criticism of climate movement:
Climate movement is alarmist”. Although these
labels are semantically plausible — particularly
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considering the quotation attributed to Greta Thun-
berg within the text — we conjecture that the lan-
guage model failed to interpret the pragmatic func-
tion of the indirect citation. Specifically, it may
not have recognized that the quote was employed
not to convey the activist’s message, but rather to
undermine her credibility, as noted by human anno-
tators. Therefore, enhancing models’ capacity for
pragmatic understanding may constitute a valuable
direction for future research on narrative classifica-
tion and persuasive discourse identification.

113

[...] ‘A top climate scientist is warning
that climate change will wipe out all of
humanity unless we stop using fossil fuels
over the next five years.’

Thunberg shared a now-deleted Grit Post
article by Scott Alden citing a prediction
from James Anderson [...]" ”

D URW Classification Prompt

IN THE FOLLOWING TEXT, IDENTIFY THE CORE NARRA-
TIVE THAT ALIGNS WITH THE AUTHOR’S PERSPECTIVE.
CLASSIFY IT BASED ON THE OPTIONS IN THE LIST BELOW.
IF THE NARRATIVE IN THE TEXT FALLS OUTSIDE THE LIST,
ANSWER "OTHER".

### OPTIONS LIST (NARRATIVES AND SUBNARRATIVES)
BLAMING THE WAR ON OTHERS

- UKRAINE IS THE AGGRESSOR

- THE WEST ARE THE AGGRESSORS

- OTHER

DISCREDITING UKRAINE

- REWRITING UKRAINE’S HISTORY

- DISCREDITING UKRAINTIAN NATION AND SOCIETY
- DISCREDITING UKRAINIAN MILITARY

- DISCREDITING UKRAINIAN GOVERNMENT AND OFFI-

CIALS AND POLICIES
- UKRAINE IS A PUPPET OF THE WEST

- UKRAINE IS A HUB FOR CRIMINAL ACTIVITIES
- UKRAINE IS ASSOCIATED WITH NAZISM

- SITUATION IN UKRAINE IS HOPELESS

- OTHER

RUSSIA IS THE VICTIM

- THE WEST IS RUSSOPHOBIC

- RUSSIA ACTIONS IN UKRAINE ARE ONLY SELF-DEFENCE
- UA 1S ANTI-RU EXTREMISTS

- OTHER

PRAISE OF RUSSIA

- PRAISE OF RUSSIAN MILITARY MIGHT

- PRAISE OF RUSSIAN PRESIDENT VLADIMIR PUTIN

- RUSSIA IS A GUARANTOR OF PEACE AND PROSPERITY

- RUSSIA HAS INTERNATIONAL SUPPORT FROM A NUMBER
OF COUNTRIES AND PEOPLE

- RUSSIAN INVASION HAS STRONG NATIONAL SUPPORT

- OTHER

OVERPRAISING THE WEST

- NATO WILL DESTROY RUSSIA

- THE WEST BELONGS IN THE RIGHT SIDE OF HISTORY

- THE WEST HAS THE STRONGEST INTERNATIONAL
SUPPORT

- OTHER

SPECULATING WAR OUTCOMES

- RUSSIAN ARMY IS COLLAPSING

- RUSSIAN ARMY WILL LOSE ALL THE OCCUPIED
TERRITORIES

- UKRAINIAN ARMY IS COLLAPSING

- OTHER

DISCREDITING THE WEST, DIPLOMACY

- THE EU IS DIVIDED

- THE WEST IS WEAK

- THE WEST IS OVERREACTING

- THE WEST DOES NOT CARE ABOUT UKRAINE, ONLY
ABOUT ITS INTERESTS

- DIPLOMACY DOES/WILL NOT WORK

- WEST IS TIRED OF UKRAINE

- OTHER

NEGATIVE CONSEQUENCES FOR THE WEST

- SANCTIONS IMPOSED BY WESTERN COUNTRIES WILL
BACKFIRE

- THE CONFLICT WILL INCREASE THE UKRAINIAN
REFUGEE FLOWS TO EUROPE

- OTHER

DISTRUST TOWARDS MEDIA

- WESTERN MEDIA IS AN INSTRUMENT OF PROPAGANDA
- UKRAINIAN MEDIA CANNOT BE TRUSTED

- OTHER

AMPLIFYING WAR-RELATED FEARS

- BY CONTINUING THE WAR WE RISK WWIII

- RUSSIA WILL ALSO ATTACK OTHER COUNTRIES

- THERE IS A REAL POSSIBILITY THAT NUCLEAR WEAPONS
WILL BE EMPLOYED

- NATO SHOULD/WILL DIRECTLY INTERVENE
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- OTHER

### TEXT
{TEXT}

PROVIDE ONLY THE **MOST** RELEVANT NARRATIVES
THAT BEST FIT THE TEXT’S INTENT.

IF MULTIPLE NARRATIVES ARE EQUALLY SIGNIFICANT,
INCLUDE THEM ALL.

ANSWER **QNLY** WITH THE CLASSIFICATIONS AND
ALWAYS INCLUDE NARRATIVES AND SUBNARRATIVES.

E Climate Change Classification Prompt

IN THE FOLLOWING TEXT, IDENTIFY THE CORE NARRA-
TIVE THAT ALIGNS WITH THE AUTHOR’S PERSPECTIVE.
CLASSIFY IT BASED ON THE OPTIONS IN THE LIST BELOW.
IF THE NARRATIVE IN THE TEXT FALLS OUTSIDE THE LIST,
ANSWER "OTHER".

### OPTIONS LIST (NARRATIVES AND SUBNARRATIVES)
CRITICISM OF CLIMATE POLICIES

- CLIMATE POLICIES ARE INEFFECTIVE

- CLIMATE POLICIES HAVE NEGATIVE IMPACT ON THE
ECONOMY

- CLIMATE POLICIES ARE ONLY FOR PROFIT

- OTHER

CRITICISM OF INSTITUTIONS AND AUTHORITIES

- CRITICISM OF THE EU

- CRITICISM OF INTERNATIONAL ENTITIES

- CRITICISM OF NATIONAL GOVERNMENTS

- CRITICISM OF POLITICAL ORGANIZATIONS AND FIGURES
- OTHER

CLIMATE CHANGE IS BENEFICIAL

- CO2 1S BENEFICIAL

- TEMPERATURE INCREASE IS BENEFICIAL
- OTHER

DOWNPLAYING CLIMATE CHANGE

- CLIMATE CYCLES ARE NATURAL

- WEATHER SUGGESTS THE TREND IS GLOBAL COOLING

- TEMPERATURE INCREASE DOES NOT HAVE SIGNIFICANT
IMPACT

- CO2 CONCENTRATIONS ARE TOO SMALL TO HAVE AN
IMPACT

- HUMAN ACTIVITIES DO NOT IMPACT CLIMATE CHANGE
- ICE 1S NOT MELTING

- SEA LEVELS ARE NOT RISING
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- HUMANS AND NATURE WILL ADAPT TO THE CHANGES
- OTHER

QUESTIONING THE MEASUREMENTS AND SCIENCE
- METHODOLOGIES/METRICS
ABLE/FAULTY

- DATA SHOWS NO TEMPERATURE INCREASE

USED ARE UNRELI-

- GREENHOUSE EFFECT/CARBON DIOXIDE DO NOT DRIVE
CLIMATE CHANGE

- SCIENTIFIC COMMUNITY IS UNRELIABLE

- OTHER

CRITICISM OF CLIMATE MOVEMENT

- CLIMATE MOVEMENT IS ALARMIST

- CLIMATE MOVEMENT IS CORRUPT

- AD HOMINEM ATTACKS ON KEY ACTIVISTS
- OTHER

CONTROVERSY ABOUT GREEN TECHNOLOGIES
- RENEWABLE ENERGY IS DANGEROUS

- RENEWABLE ENERGY IS UNRELIABLE

- RENEWABLE ENERGY IS COSTLY

- NUCLEAR ENERGY IS NOT CLIMATE FRIENDLY
- OTHER

HIDDEN PLOTS BY SECRET SCHEMES OF POWER-
FUL GROUPS

- BLAMING GLOBAL ELITES

- CLIMATE AGENDA HAS HIDDEN MOTIVES

- OTHER

AMPLIFYING CLIMATE FEARS

- EARTH WILL BE UNINHABITABLE SOON

- AMPLIFYING EXISTING FEARS OF GLOBAL WARMING
- DOOMSDAY SCENARIOS FOR HUMANS

- WHATEVER WE DO IT IS ALREADY TOO LATE

- OTHER

GREEN POLICIES ARE GEOPOLITICAL INSTRUMENTS

- CLIMATE-RELATED INTERNATIONAL RELATIONS ARE
ABUSIVE/EXPLOITATIVE

- GREEN ACTIVITIES ARE A FORM OF NEO-COLONIALISM
- OTHER

### TEXT
{TEXT}

PROVIDE ONLY THE MOST RELEVANT NARRATIVES THAT
BEST FIT THE TEXT’S INTENT.

IF MULTIPLE NARRATIVES ARE EQUALLY SIGNIFICANT,
INCLUDE THEM ALL.



ANSWER **ONLY** WITH THE CLASSIFICATIONS AND
ALWAYS INCLUDE NARRATIVES AND SUBNARRATIVES.

F Confusion matrices for domain

classification

(a) Bulgarian
True / Pred. URW CC Other

URW 15 0 1
CC 0 13 0
Other 2 4 0
(b) English

True / Pred. URW CC Other
URW 10 0 3
CC 0 14 3
Other 1 2 8

(c) Hindi

True / Pred. URW CC Other
URW 25 0 4
CC 0 4 0
Other 1 0 1

Table 4: Confusion matrices for domain classification
in Bulgarian, English, and Hindi on the validation set.
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Abstract

We report our participation in the SemEval-
2025 shared task on classification of emotions
and describe our solutions using BERT-based
models and their modifications. We participate
in tracks A and B. We apply and compare base
XLM-RoBERTa, Adversarial Domain Adapta-
tion (ADA) on the XLM-RoBERTa with the
length of the text as the adversarial feature. As
a simple baseline, we also use a Logistic Re-
gression based on tf-idf features. We show
that using ADA increases the fl1 macro score
in low-resource languages and in shorter texts.
Besides, we describe our approach to track A
where we use ADA with the text language as
the confounder. We show that for some lan-
guages it helps to improve the fl score. In
all the tracks, we work with the following lan-
guages: Russian, Amharic, Algerian Arabic,
German, English, Spanish, Hausa, Brasilian
Portuguese, Romanian, Ukrainian.

1 Introduction

Non-topical text classification includes a wide
range of tasks aimed at predicting a text property
that is not connected directly to a text topic. For ex-
ample, predicting a text style, politeness , difficulty
level, the age or the first language of its author,
etc. It is applied in many areas such as information
retrieval, language teaching, or linguistic research.

(Devlin et al., 2018) introduced BERT - (Bidi-
rectional Encoder Representations from Transform-
ers), an efficient language representation model
based on the Transformer architecture (Vaswani
et al., 2017). It achieves state-of-the-art results
for various NLP tasks, including text classifica-
tion. XLM-RoBERTa (Conneau et al., 2019) is an
improved variant of BERT. It has a similar architec-
ture but uses a bigger and more genre-diverse cor-
pus based on Common Crawl (instead of Wikipedia
for the multilingual BERT). Therefore, we choose
XLM-RoBERTa as the classifier for the experi-
ments in our research.
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One of the most significant problems in text clas-
sification is distribution shifts, such as topical shifts,
shifts in text length, or the distribution of languages.
For example, (Petrenz and Webber, 2010) shows
the effect of topical shifts for genre classification.
If a topic is more frequent in the training corpus for
a given target class, then a classifier tends to pre-
dict the target class by the keywords of the topic.
This causes numerous unreasonable mistakes in
text classification.

One of the algorithms that could be helpful to
mitigate topical shifts is Adversarial Domain Adap-
tation (ADA) (Ganin et al., 2016). It uses an ad-
versarial loss to make the classification features
less dependent on the domain of the training data.
It supposes training a feature extractor, a domain
discriminator, and a target classifier. The feature
extractor and target classifier are trained to achieve
high accuracy for the classification of the target
class and at the same time deceive the domain dis-
criminator to make it impossible to differentiate
two domains. In contrast, the domain discriminator
intends to classify the text domain correctly.

There was a lot of research on text-based emo-
tion classification in recent years. Some of them
use classical ML approaches. For example, (Liu
et al., 2023) adjust the Multi-label K-Nearest
Neighbors (MLKNN) classifier to allow iterative
corrections of the multi-label emotion classifica-
tion.

In this study, we report our participation in Se-
mEval 2025 task 11 (Muhammad et al., 2025b). We
train XLM-RoBERTa base and try to improve its
performance with addition of Adversarial Domain
Adaptation (Ganin et al., 2016).

2 Related Work

Non-topical text classification is not a new task.
For example, numerous attempts have appeared to
build a precise classifier of genres based on various
architectures from linear discrimination (Karlgren

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 49-53
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics



lang | anger disgust fear joy  sadness surprise
rus | 203 10.2 122 207 157 13.3
chn | 446 153 27 20 13.4 6.7

deu | 295 32 92 20.8 19.8 6.1

eng | 12 0 582 244 317 30.3
esp | 247 328 159 322 155 21.1
ptbr | 323 34 49 261 145 6.9

ukr | 4 35 7 16.7 135 8

Table 1: Tracks A and C. Percentage of positive exam-
ples for each emotion in the training data

and Cutting, 1994) to SVM (Sharoff et al., 2010)
and recurrent neural networks (Kunilovskaya and
Sharoff, 2019).

Most state-of-the art results in the domain of
NLP were achieved with transformer-based archi-
tectures. (Sun et al., 2019a) gives important advices
on how to apply the BERT architecture to the task
of text classification. We use the recommended
values of learning rate and the number of epochs in
our study.

The task of emotion classification is also well-
known and widely researched. For example, in (Ra-
souli and Kiani, 2023) the authors apply a BERT-
based transfer learning approach to achieve high
accuracy on the short Persian texts. However, their
study does not include usage and analysis of the
adversarial methods in contrast to ours.

(Zou et al., 2021) modify Adversarial Domain
Adaptation (ADA) and present a novel approach
for domain adaptation. The methods are applied
and compared on the tasks of sentiment analysis
and yes-no binary questino answering. Although
their results surpasses other techniques compared
in their study, the authors mostly work with much
longer texts then we do in our study. Regarding
the shortness of the texts provided in the SemEval
2025 shared task 11, it cannot be guaranteed that
the novel methods are able to significantly overpass
the simplier ones.

3 Data Analysis

Before making any experiments, we look at the
given data to mention some patterns which could
be helpful for building robust classifiers.

All the data we use in our study is provided
by the SemEval 2025 shared task 11 organizers
(Muhammad et al., 2025a). The dev and test data
contain a wide range of languages including the
rare ones. For example, it contains the Ethiopian
languages (Amharic, Oromo, Somali, and Tigrinya)
(Belay et al., 2025).
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emotion intensity
0 1 2 3

anger 742 142 8.1 1.7
disgust | 70.1 93 63 15
fear 82.8 77 60 17
joy 771 8.6 102 2.2
sadness | 77.5 109 7.2 25
surprise | 84.5 83 45 09

Table 2: Track B. Distribution of intensity for each
emotion in the training data

lang dev test
mean p=25 p=50 p=75 | mean p=25 median p=75

rus | 9.1 5 8 12 9.7 5 9 13
amh | 203 10 17 24 199 10 17 24
arq | 147 10 14 19 144 9 13 18
deu | 351 158 27 48 354 140 26 49
eng | 149 7 12 213 [ 158 8.0 13 21
esp | 104 7 9 14 8.8 5 8 12
hau | 137 8 12 16 135 8 12 16
ptbr | 18.6 8 13 22 17 8 14 26
ron | 165 9.5 14 205 |17 10 15 21
ukr | 10 6 9 13 9.9 6 8 12

Table 3: Track A. The number of words per text by
language. Mean, median (or 50-percentile), 25- and 75-
percentiles.

Table 1 represents the distribution of emotions
across the training datasets for all the languages.
It can be seen that the training dataset is sparse
as it contains less then 20% positive examples for
most pairs (language, emotion). Moreover, Table 1
shows that the languages are quite different in terms
of the emotions provided for them in the training
dataset.

Table 2 shows that the categories distribution in
the train for the track B is even more sprarse than
that for tracks A and C.

In Table 3, we compare the languages in terms
of the distribution of length. It can be seen that
the text length depends crucially on the language it
comes from. In addition, it can be concluded that
the texts in the training and test datasets are quite
short and rarely contain more than 1-3 sentences. It
causes an additional challenge to create a reliable
text-based classifier.

Table 3 shows that the length distibution for train
and test differ statistically noticeably. We perform
a t-test and get that for Spanish this difference is
statistically significant. Moreover, the languages
are different in terms of the length distribution. Is
could potentially force the classifiers to learn spuri-
ous relations between the text length and the emo-
tion label.



4 Experiments

4.1 Methodology

ADA method belongs to Unsupervised Domain
Adaptation (Ramponi and Plank, 2020). It shows
promising performance in numerous NLP tasks in
recent years (Ganin et al., 2016).

It usually consists of a shared feature extractor
[ = Gy(x), alabel predictor y = Gy(x) and a
domain discriminator d = G4(x). In addition to
the standard full supervision learning process in
the source domain, a minimax game is designed
between the feature extractor f and the domain
discriminator d. The domain discriminator d aims
to distinguish the domain label between the source
and target, while the feature extractor f is trained
to deceive the feature discriminator d. This adver-
sarial training process can be formulated as

min Ly(Xsa Y:e) - )‘Lf(st Xt)7
Gs,Gy

min Lg( X, Xy),
Gy

where L, is the cross-entropy loss for classification
of the target label (in our study, it is the gender of
the text author). L is the loss of the feature extrac-
tor. It denotes the cross-entropy of the classification
of the text source. Both L, and L are calculated
and optimised with freezing of weights of the do-
main discriminator. Lg is similar to L. However,
when it is calculated and optimised, the weights
of the feature extractor and the label predictor are
frozen.

In our study, we use simple discriminators and
feature extractors consisting of single linear layers
with an activation.

4.2 Description

We train 3 classifiers: Logistic Regression, XLM-
RoBERTa, XLM-RoBERTa with Adversarial Do-
main Adaptation (ADA). All the experiments were
carried out on Google Colab.

We use XLM-RoBERTa with base configuration
(12-layer, 768-hidden, 12-heads, 125M parameters,
xlm-roberta-base in HuggingFace) as a baseline
for all the experiments. In all our experiments, we
train the XLM-RoBERTa models for 3 epochs with
learning rate=10", since these values are proposed
in (Sun et al., 2019b).

Logistic Regression is used as a simple base-
line. We train it on the tf-idf features correspond-
ing to 1-3 gramms. We take 16000 most rel-
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lang dev test
xlm-r advlen advlang Ir xlm-r advlen advlang Ir

rus | 0.789 0.709  0.806 0.776 | 0.796 0.726  0.818 0.476
amh | 0.337 0.528 0414 0.642 | 0.367 0.518 0439 0.473
arq | 0.141 0.382  0.228 0.568 | 0.105 0.332  0.136 0.448
chn | 0.555 0448  0.536 0.461 | 0.569 0.500  0.590 0.581
deu | 0.519 0447  0.533 0.599 | 0.536 0482  0.578 0.455
eng | 0.528 0498  0.544 0.624 | 0.497 0463  0.548 0.395
esp | 0.733 0.703  0.758 0.772 | 0.717 0.683  0.746 0.440
hau | 0.198 0415  0.206 0.756 | 0.197 0.380  0.218 0.460
ptbr | 0423 0409 - 0.574 | 0437 0420 - 0.472
ukr | 0.483 0.438  0.508 0.598 | 0.479 0452  0.551 0.489

Table 4: Track A. The f1 macro score of the XLM-R,
XLM-R + ADA on the dev and test datasets

lang dev test
xlm-r Ir xlm-r Ir

rus | 0.310 0.428 | 0.485 0.287
amh | 0.430 0.360 | 0.354 0.302
arq | 0.295 0.295 | 0.239 0.262
chn | 0.517 0.287 | 0.545 0.471
deu | 0.537 0475 | 0511 0.271
eng | 0.276 0.338 | 0.311 0.207
esp | 0.312 0.354 | 0.410 0.211
hau | 0.393 0.433 | 0.466 0.222
ptbr | 0.323 0.361 | 0.542 0.347
ukr | 0.494 0.324 | 0.416 0.300

Table 5: Track B. The f1 macro score of the XLM-R on
the dev and test datasets

evant n gramms according to the chi2 statistics
(sklearn. feature_selection.Select K Best).

Since the training datasets are small for each
language, we train each model on all the languages
available in the training dataset simultaneously.

Moreover, given the sparsity of the data, we
make upsampling for every Logistic Regression
classifier we train. Upsampling is not a perfect solu-
tion. However, Logistic Regression tends to errode
to a constantly zero-predicting classifier without it.
Besides, we train a separate Logistic Regression
for each emotion.

4.3 Results

Table 4 shows the results of our experiments. We
can see that for most big languages (English, Rus-
sian, Chinese, Ukrainian, German, Spanish, Por-
tuguese), XLM-R without domain adaptation at-
tains a higher f1 macro score. However, the adver-
sarial domain adaptation technique with the length
of the text as the confounder helps to attain much
better metrics for small languages. For instance, it
can be seen for Amkharian and Hausa.
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Figure 1: Dependence of the f1 macro score of the base
XLM-RoBERTa and the XLM-RoBERTa with ADA on
the text length.

After the official deadline for the competition,
we also try to use the language as a confounder. Our
intuition is that it helps to make the training process
more language agnostic. Table 4 shows that this ap-
proach manages to beat the base XLLM-RoBERTa
on most languages for which the training data is
available. In track B Table 5, we apply a base
XLM-RoBERTa and Logistic Regression based on
tf-idf features. We show that the Logistic Regres-
sion performs better on most languages on the dev
dataset, whilst XLM-RoBERTa attains a higher f1
score for most languages on the test dataset. We
suppose it is caused by some sort of distribution
shifts between the dev and test datasets.

Besides, the adversarial approach shows Figure 1
significant increase in f1 macro score on the texts
of lower length. It shows usability of the adversar-
ial approach and its robustness in case of length
distribution shifts.

5 Conclusions and future research

‘We show that:

1. Using adversarial loss significantly improves
the f1 macro score for the low-resource lan-
guages

2. Adversarial loss helps to improve the f1 score
on the texts with lower length.

3. The metrics for logistic regression are compa-
rable to those for the XLM-RoBERTa models.

Adversarial methods are potentially helpful to
achieve higher quality in a wide range of tasks and
to combat various distribution shifts, including clas-
sification of emotions. However, in order to utilize
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the whole capacity of the adversarial methods, it
would be helpful to use models with a higher num-
ber of parameters. For example, best results in the
SemEval-2025 Task11 competition (Muhammad
et al., 2025b) were achieved using LLMs. How-
ever, due to limited computing resources, we did
not have the opportunity to fine-tune large language
models using the adversarial methods.

Therefore, there is still a room for improvement.
In the future, using ADA in conjunction with large
language models could make it possible to ob-
tain much more accurate and reliable classifiers.
In addition, it might be useful to try more mod-
ern competitive domain adaptation methods, such
as Energy-based Adversarial Domain Adaptation
(EADA).
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Abstract

This paper presents the IRNLP system for
Subtask 2 of SemEval-2025 Task 10, which
addresses multilingual narrative classification.
The approach utilizes datasets in Hindi, En-
glish, and Russian, applying transformer-based
models fine-tuned through repeated stratified
k-fold validation. The system performs joint
detection of narratives and subnarratives using
multi-label classification techniques. Exten-
sive ablation studies, in-depth error analysis,
and a detailed discussion of model architecture
and training procedures are included. The im-
plementation is publicly available ! to support
reproducibility and future research.

1 Introduction

Narratives play a pivotal role in shaping public
opinion and framing news reporting, often embed-
ding persuasive messaging or ideological intent.
Automatically detecting such narratives is a com-
plex task, particularly in multilingual settings, due
to semantic ambiguity, class imbalance, and cross-
linguistic variability. Subtask 2 of SemEval-2025
Task 10 addresses this challenge by focusing on
the classification of narratives and subnarratives in
news articles across five languages.

This paper presents the IRNLP system, devel-
oped to address this challenge using multilingual
transformer-based models. The system was trained
on Hindi, English, and Russian datasets, leveraging
repeated stratified k-fold validation to ensure robust
evaluation. Unlike standard approaches that rely on
single-split validation, the use of repeated k-fold in-
creases generalizability and minimizes overfitting.
This work also contributes insights through error
analysis and controlled ablation studies.

lhttps://github.com/ipanos7/
Semeval-Task10-English.git
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2 Background and Task Overview

SemEval-2025 Task 10 includes three subtasks;
Subtask 2, addressed in this paper, requires iden-
tifying the presence of narrative and subnarrative
categories in online news articles in five languages:
English, Hindi, Russian, Portuguese, and Bulgar-
ian. The task is structured as a multi-label classi-
fication problem. Each article may belong to mul-
tiple coarse- or fine-grained narrative categories.
Models are evaluated using both macro F1-score
and F1 samples to capture performance across both
label and instance levels.

3 Related Work

Previous work on fine-grained propaganda detec-
tion by Da San Martino et al. (2019) introduced
structured annotation strategies for identifying per-
suasive techniques. This laid the groundwork for
related tasks such as narrative extraction and clas-
sification. Multilingual transformer models like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLM-RoBERTa (Conneau et al., 2019)
have demonstrated strong performance across tasks
such as sentiment analysis, named entity recogni-
tion, and text classification. Hugging Face’s Trans-
formers library (Wolf et al., 2020) provides scalable
implementations of these models and facilitates
multilingual fine-tuning.

Few studies have focused explicitly on narrative
modeling in multilingual contexts. Work in stance
detection and argument mining has highlighted the
importance of modeling discursive structures, but
the integration of coarse and fine narrative labels
in low-resource settings remains under-explored.
The IRNLP system aims to fill this gap using re-
peated validation and tailored preprocessing for
each language.
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4 System Description

4.1 Preprocessing and Data Preparation

Each dataset underwent language-specific prepro-
cessing. Raw articles were parsed, and narrative
annotations were mapped to binary multi-label vec-
tors. Tokenization was handled using the pretrained
tokenizer of each transformer backbone. Language-
specific augmentations were applied when neces-
sary, including sentence shuffling and synonym
replacement. Heuristics were used to correct miss-
ing or uncertain labels when metadata provided
indirect signals.

4.2 Model Architecture

The IRNLP system used XLM-RoBERTa-base
and XLM-RoBERTa-large as the primary back-
bones. In language-specific experiments, Neural-
Mind BERT was used for Portuguese and Deep-
Pavlov BERT for Bulgarian. A dense output layer
with sigmoid activation computed logits for each
narrative label. Loss was calculated using binary
Cross-entropy.

4.3 Training Strategy

To increase generalization, we adopted a repeated
stratified k-fold validation strategy (5 folds, 2 rep-
etitions). This approach allowed each data sam-
ple to appear in multiple training and validation
splits. Training was conducted on NVIDIA A100
GPU with FP16 precision, using AdamW optimizer
(learning rate 5e-5, weight decay 0.01). Gradient
accumulation was used to simulate larger batch
sizes.

5 Ablation Study

The impact of major design choices was quantified
in ablation experiments. Table 1 presents compara-
tive F1 samples for English and Hindi.

Variant English (F1) Hindi (F1)
XLM-R Large (baseline) 0.287 0.515
No k-fold validation 0.238 0.472
Unbalanced batches 0.245 0.489

Table 1: Ablation results: F1 samples for key variants.

The ablation results highlight the importance of
repeated k-fold validation in preventing overfitting.
Removing this step led to a drop in F1 samples
(from 0.515 to 0.472 in Hindi). Similarly, unbal-
anced mini-batches had a negative impact, likely
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due to dominance of majority labels during opti-
mization. These findings confirm that both eval-
uation strategy and training stability significantly
influence model effectiveness in low-resource set-
tings.

6 Experiments and Results

6.1 Evaluation Metrics

The task uses two main metrics: macro F1-score
and F1 samples. While macro F1 considers label-
level performance, F1 samples captures instance-
level accuracy and is prioritized for Subtask 2.

6.2 Performance Comparison

Language F1macro MacroSD F1samples Sample SD
English 0.516 0.402 0.287 0.452
Hindi 0.375 0.467 0.515 0.500
Russian 0.537 0.351 0.116 0.252

Table 2: Performance on test sets.

6.3 Opverall Observations

The IRNLP system consistently outperformed
the baseline across all three evaluated lan-
guages—Hindi, English, and Russian—in both
macro F1 (coarse) and F1 samples metrics. The
standard deviations further revealed the variability
in performance, offering insights into the model’s
stability. The largest gains were observed in Hindi
(F1 samples: 0.515), while the Russian dataset,
despite achieving the highest macro F1 (0.537),
exhibited comparatively lower instance-level accu-
racy.

6.3.1 Hindi Test Set

* F1 macro (coarse): The system achieved a
score of 0.375, significantly higher than the
baseline’s 0.081. This indicates better gener-
alization across coarse-grained narrative cate-
gories.

F1 samples: A notable score of 0.515 was ob-
tained, whereas the baseline failed entirely
(0.000). This gap highlights the model’s
strong predictive capacity on the instance
level.

Standard Deviations: The model showed
higher variability (0.467 vs. 0.260 for macro
F1) compared to the baseline, suggesting fluc-
tuations in predictions across samples.



e Implications: These results indicate that
cross-linguistic patterns in Hindi are effec-
tively captured. However, the relatively high
standard deviation suggests that model consis-
tency could benefit from further fine-tuning or
ensembling techniques.

6.3.2 English Test Set

¢ F1 macro (coarse): The model achieved
0.516, substantially outperforming the base-
line’s 0.030.

F1 samples: A score of 0.287 was recorded,
compared to the baseline’s 0.013, reflecting
the system’s improved ability to identify sub-
narratives.

Standard Deviations: The IRNLP system
showed a higher standard deviation (0.402)
than the baseline (0.127), indicating greater
variance possibly due to the complexity of
English samples.

Implications: While performance is notably
higher than the baseline, the variability sug-
gests potential benefits from additional regu-
larization or calibration.

6.3.3 Russian Test Set

¢ F1 macro (coarse): The model achieved
0.537, a substantial increase from the base-
line’s 0.065.

F1 samples: A lower score of 0.116 was ob-
served, though still notably above the base-
line’s 0.008.

Standard Deviations: The system demon-
strated the lowest variance in macro F1 (0.351)
compared to Hindi and English, suggesting
more consistent predictions.

Implications: These results point to strong
macro-level performance in Russian. How-
ever, lower F1 samples performance indicates
that fine-grained instance classification re-
mains an area for improvement.

7 Error Analysis

The most common source of error was label imbal-
ance, which led the model to favor dominant nar-
rative types while underpredicting rare ones. This
was particularly evident in the Hindi and Russian
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datasets, where certain subnarratives appeared in-
frequently. Additionally, semantic overlap between
similar categories—such as foreign conspiracy and
global threat—confused the model, often resulting
in misclassification between conceptually adjacent
classes.

Another recurring issue stemmed from the multi-
label nature of the task. In some cases, the model
correctly identified a coarse-grained narrative but
failed to capture accompanying subnarratives, re-
ducing F1 samples scores. This was especially no-
ticeable in Russian, where instance-level prediction
was more challenging despite strong macro-level
performance.

These findings suggest that future iterations of
the system may benefit from more balanced sam-
pling strategies, label smoothing, and architectures
that better capture inter-label dependencies.

8 Conclusion

This paper presented the IRNLP system for Subtask
2 of SemEval-2025 Task 10. The system combined
transformer models with repeated k-fold valida-
tion and language-sensitive preprocessing. Results
demonstrated robust generalization in multilingual
narrative classification. Future directions include
incorporating contrastive loss, data augmentation
for low-resource languages, and exploring semi-
supervised training.

9 Limitations and Future Work

One limitation of the current system is its reliance
on supervised data, which restricts performance in
languages with fewer labeled examples. The model
also assumes static label definitions, which may not
generalize to evolving narrative framings in future
news content. Additionally, extensive ensembling
or hyperparameter search hadn’t been performed
due to time constraints.

Future work will explore semi-supervised learn-
ing techniques such as pseudo-labeling and con-
trastive learning. It is also planned to investigate
cross-lingual transfer methods to improve perfor-
mance in low-resource settings by leveraging mul-
tilingual embeddings and aligned fine-tuning. Fi-
nally, interpretability remains an open challenge in
narrative classification, and future iterations will
incorporate attention visualization to better under-
stand model behavior.
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Abstract

Narratives are a tool to propagate ideas that are
sometimes well hidden in press articles. The
SemEval-2025 Task 10 focuses on detecting
and extracting such narratives in multiple lan-
guages. In this paper, we explore the capa-
bilities of encoder-based language models to
classify texts according to the narrative they
contain. We show that multilingual encoders
outperform monolingual models on this dataset,
which is challenging due to the small number
of samples per class per language. We perform
additional experiments to measure the gener-
alization of features in multilingual models to
new languages.

1 Introduction

With the complexity of current geopolitical events,
persuasion techniques have become less explicit
in online content. Shared content often share a vi-
sion of the world used to interpret current events,
which can influence the world vision of the read-
ers. These are called narratives, and automatically
detecting them has become a topic of interest for
the machine learning community (Piskorski et al.,
2025). Narratives can also be stated explicitly, but
are more harmful when they are implicit in the text,
like persuasion techniques are.

In this paper, we propose a multilingual ap-
proach (English, European Portuguese, Hindi, Bul-
garian, and Russian) to identify whether or not a
predefined narrative is present in a text and, if that
is the case, what narrative it is. It is based on a
standard multilingual encoder with a unique classi-
fication head for all narratives of the task.

We find that multilingual models perform better
than individual monolingual models, using all of
the provided data by the task organizers. While
our proposed approach is not trying to be the best-
performing (only in the top 50% of teams for only
two languages), it relies on light language models
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that run on modest hardware and works the same
for all languages.

2 Background

We propose a system for the Subtask 2: Narrative
classification. The problem is framed as the follow-
ing: given a text, identify if the text contains one,
several, or none of the narratives defined by (Ste-
fanovitch et al., 2025). The proposed narratives
are part of a two-level taxonomy. However, we
chose to ignore the additional information from
the higher-level labels and focused directly on fine-
grained narrative classification, which is the main
focus of the task and on which the narrative used
for the leaderboard is based. The problem is multi-
class and multi-label, with 93 narratives to detect,
some of which only appearing in some languages.
The distribution of the number of occurrences for
each class is given in Figure 1.

300

250

Number of occurrences

40
Class

80

Figure 1: The number of occurrences by class, sorted in
decreasing order. The distribution is unbalanced, with a
median of only 23 occurrences per class.

The articles are the length of a regular news arti-
cle, with about 410 words on average. They cover
either news about climate change or the Ukraine-
Russia war and exceptionally contain narratives
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related to the two topics. Each article has an aver-
age of 2.3 labels and a median of 2 labels.

Given the limited number of samples per class
in the dataset, we chose to work in a multilingual
setting to maximize the number of samples seen by
class during training.

Another challenge of the task is the multi-label
constraint. Usual mono-label classification uses a
Softmax activation function, outputting probabili-
ties for each class, even when out-of-distribution.
This is not possible for multi-label classification
for which several labels can be applied to the same
text, requiring additional steps.

3 System overview

Our proposed system is based on encoder language
models trained solely on the provided data for the
task. The choice of encoder models is motivated by
their wide use in text classification tasks, especially
for misinformation detection (Pelrine et al., 2021).
The encoder produces an embedding that is then
processed by a two-layer classification head with
a sigmoid activation function and 94 output neu-
rons, one for each class plus one for the absence of
narrative.

During training, we consider that each neuron
with an activation over 50% is activated. However,
preliminary experiments showed that this setting
could not be kept for inference, with all neurons
activating at values below this threshold for almost
all test samples. To solve this problem, we propose
an adaptative threshold for multi-label classifica-
tion based on the activation of the No narrative
class neuron. If this neuron is the most activated,
it means that the absence of a narrative is more
plausible than the presence of any narrative seen
during training. Each narrative corresponding to a
neuron more activated than the No narrative neu-
ron is considered present in the text. This neuron
could be considered as the neutral or control class,
determining if one of the training classes is found
in the text. Figure 2 shows a global schema of the
system.

One point of interest for our study is the multi-
lingualism of model embeddings for narrative clas-
sification. Several types of state-of-the-art models
were used:

* Multilingual models: experiments are done
on models supporting all provided languages
using all training data. For this type of mod-
els, we chose two models, the widely used
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XLM—ROBERTa—large1 (Conneau et al., 2019)
(561M parameters, noted ROBERTa in exper-
iments) and mDeBERTa-v3-base? (He et al.,
2021) (86M parameters, noted mDeBERTa in
experiments).

Monolingual models: we chose Modern-
BERT? (Warner et al., 2024) for English, Al-
bertina PT-PT* (Rodrigues et al., 2023) for
Portuguese, MuRIL?> (Khanuja et al., 2021)
for Hindi, and for lack of strictly monolin-
gual models, SlavicBERT® (Arkhipov et al.,
2019) for Bulgarian and Russian. These mod-
els were chosen as they are the state-of-the-art
specialized monolingual models for each lan-
guage at the time of writing.

Monolingual models are trained with the corre-
sponding language data. Multilingual models were
used for two types of experiments:

* A first one with all training data, to measure
if using samples from multiple languages im-
proves performance over using only one lan-

guage.

* A second one with all training data except
one language. This will allow us to measure
how narrative embeddings transfer to new lan-
guages and if models trained with additional
data can function in new languages. The five
provided languages are a good opportunity for
this experiment, as they cover three different
alphabets (Latin, Hindi, and Cyrillic).

4 Experimental setup

The given train data is split in two with a random
80/20 split. Models are trained on the first 80%
and evaluated on the remaining 20% at the end of
each epoch. Models are trained for a maximum of
100 epochs, and an early stopping strategy with a
patience of 5 is used. If the F1 score on the fine
narratives on the 20% of data does not improve for

"https://huggingface.co/FacebookAI/x1m-rober
ta-large

2https://huggingface.co/microsoft/mdeberta—v
3-base

3https://huggingface.co/answerdotai/ModernBER
T-large

*https://huggingface.co/PORTULAN/albertina-9
Q0m-portuguese-ptpt-encoder

5https://huggingface.co/google/muril-large-c
ased

6https://huggingface.co/DeepPavlov/bert—bas
e-bg-cs-pl-ru-cased
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Figure 2: The global system architecture and label computation.

five epochs, the model is restored to its state with
the best F1 score. The dev data has been used for
evaluation, and the reported results are computed
for this split. The final models used for the test
submission are chosen per language, based on the
configuration giving the best F1 score on the fine
narratives on the dev split.

We report the F1 scores on the coarse and the
fine narratives for each experiment.

Each model is trained with a batch size of 8
and a learning rate of 10~° with an AdamW op-
timizer (Loshchilov and Hutter, 2019), which is
a common default choice for such models. Mod-
els come from HuggingFace and the transformers
library.

The model and classification head are wrapped

in a PyTorch Lightning’ LightningModule.
Because classes are unbalanced, we use a
sampler from the pytorch-multilabel-balanced-
sampler module®, and more specifically the
LeastSampledClassSampler, which returns a ran-
dom sample with a label from the least sampled
class at each moment.

5 Results

5.1 General results on the task

Firstly, we report results on the dev dataset for
model selection in Table 1. Overall, multilingual

7https://github.com/Lightning—AI/pytorch—1ig
htning

8https://github.com/issamemari/pytorch—multi
label-balanced-sampler

EN PT HI BG RU
Model . - - - -
Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine
All languages RoBERTa | 0.432 0.325 | 0.318 0.208 | 0.162 0.161 | 0.361 0.234 | 0.296 0.100
mDeBERTa | 0.362 0.309 | 0.442 0.270 | 0.238 0.168 | 0.309 0.211 | 0.276 0.148
ModernBERT | 0.268  0.268 - - - - - - - -
AIBERTina - - 0.345 0.235 - - - - - -
Language split Muril - - - - 0.176  0.148 - - - -
Slavic-bert - - - - - - 0.243 0.116 - -
Slavic-bert - - - - - - - - 0.174  0.070

Table 1: Results for several standard encoder models. Each row represents one experiment, and results are given for
all languages used during training. The best results for each language (regarding the F1 score on fine narratives) are

in bold.
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ROBERTa EN_ PT HI BG_ RU_
Coarse  Fine Coarse  Fine Coarse  Fine Coarse  Fine Coarse  Fine
All languages | 0.432 0.325 0.318 0.208 0.162 0.161 | 0.361 0.234 0.296 0.100
No EN | 0.420 0.319 0.210 0.131 0.143 0.073 | 0.291 0.213 0.238 0.1097
No PT | 0.4387 0.323 0.38317  0.2201 | 0.145 0.093 | 0.3891" 0.2741 | 0.3071 0.1197
No HI | 0.426 0.321 0.291 0.160 0.1671 0.128 | 0.3917  0.2927 | 0.238 0.096
No BG | 0.403 0.3461 | 0.259 0.139 0.121 0.069 | 0.247 0.180 0.296 0.098
NoRU | 0.347 0.289 0.289 0.151 0.116 0.077 | 0.4301 0.2571 | 0.256 0.1531

Table 2: Generalization study to new languages with XLM-RoBERTa-large. Grayed results are results obtained on
languages seen during training. The best approach has been selected based on the F1-score on the fine narratives.
Results are marked with 1 when results are better than the results when trained on all languages.

mDeBERTa EN _ PT HI BG RU_
Coarse  Fine Coarse  Fine Coarse  Fine Coarse  Fine Coarse  Fine
All languages | 0.362 0.309 | 0.442 0.270 | 0.238 0.168 | 0.309 0.211 0.276 0.148
No EN | 0.303 0.249 | 0.437 0.249 | 0.100 0.059 | 0.3261 0.2181 | 0.198 0.101
No PT | 0.302 0.239 | 0.332 0.206 | 0.160 0.128 | 0.260 0.164 0.300T 0.109
NoHI | 0.343 0.300 | 0.212 0.133 | 0.114 0.097 | 0.228 0.152 0.270 0.1517
NoBG | 0.299 0.240 | 0.349 0.187 | 0.170 0.121 [ 0.3397  0.2261 | 0.193 0.144
NoRU | 0.346 0.274 | 0.379 0.193 | 0.162 0.120 | 0.37217  0.2897 | 0.261 0.133

Table 3: Generalization study to new languages with mDeBERTa-v3-base. Grayed results are results obtained on
languages seen during training. The best approach has been selected based on the F1-score on the fine narratives.
Results are marked with 1" when results are better than the results when trained on all languages.

models perform better than monolingual models
with this little data for each class. There is no
clear winner between XLM-RoBERTa-large and
mDeBERTa-v3-base, but the latter is 6.5 times
lighter. Moreover, mDeBERTa-v3-base performs
better on average than XLM-RoBERTa-large, with
amean F1 score of 0.344 versus 0.257 on fine narra-
tives. In addition, the two models seem to perform
worse for non-West-European languages. The same
observation can be made for specialized models,
which could also be explained by data distribution
for these specific languages.

Quantitatively, when compared to other systems
on the final test submissions, simple encoder mod-
els are not the best for identifying narratives but
still beat the baseline for all languages. The offi-
cial leaderboard® allows to compare models per-
formance directly. Our model performed 13/28 in
English, 12/14 in Portuguese, 8/14 in Hindi, and
9/12 in Bulgarian, and would have performed 13/16
in Russian (results were not submitted on time).

Our models tend to make cautious predictions,
and in a little more than 40% of dev samples, no
narrative was detected when it should have been,
which leads to lower scores overall.

9https: //propaganda.math.unipd.it/semeval2025
task10/leaderboardv3.html

5.2 Generalization on new languages

After the final submission, additional experiments
were run to measure how well the tested multilin-
gual models would generalize to other languages.
To this end, we train the same models several times
with a whole language left out each time. Reported
results are computed on the dev set and given in
Table 2 and 3. Results are grayed when computed
on a language seen during training, an arrow is
displayed when the ablated model performs better
than the same model trained with all languages,
and bold results are the best obtained for a specific
language among all tested models.

In most cases, performance does not drastically
change on one language if it is removed from the
training languages (-3.475% for mDeBERTa and
+0.75% for XLLM-RoBERTa on average).

Performance increased for XLM-RoBERTa due
to strange behaviors in Portuguese and Russian.
Counterintuitively, removing these languages in-
creases performance on the dev set. In general, for
XLM-RoBERTa, removing a language improves
performance in at least one other language. This
hints that while this model can process multiple
languages, features are not shared evenly across
languages. Portuguese features rely on other lan-
guages, as performance improves with No PT.
Moreover, removing Portuguese also helps perfor-
mance in Bulgarian and Russian, showing that Por-
tuguese disturbs the features of other languages.
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Also, removing Russian improves Bulgarian (close
in vocabulary but different in grammar) perfor-
mance, showing that the model may confound the
two languages.

The same observation can be done with mDe-
BERTa. In most cases, mDeBERTa performs better
than XLM-RoBERTa, except for English. mDe-
BERTa seems more balanced between languages
and shows good transfer capabilities, with the
model performing better when trained on all data
for all languages but Slavic ones. This generaliza-
tion is possible at the cost of the performance in
English.

In conclusion, we observe that XLM-RoBERTa
generalizes better than mDeBERTa on new lan-
guages, but that if given data in multiple languages,
mDeBERTa is the model that will be the best to
leverage all the information from all languages.

5.3 Error analysis

To further understand how our models performed,
we chose to do an error analysis on the dev set
for mDeBERTa trained on all languages, our best-
performing model on average. It misses many nar-
ratives on the dev set. All articles with no narratives
were correctly labeled, but 72 were false negatives
for the absence of narratives (over the 178 articles
in the dev set). In this sense, the model is conser-
vative and when unsure, does not try to guess a
narrative. The following analysis has been done
on the part of the dev split for which the model
predicted at least one narrative.

There is no simple way of showing a confusion
matrix for multi-label problems, as the recommen-
dation would be to plot as many label-specific con-
fusion matrices as there are labels. To simplify our
analysis, we propose a "confusion-like" matrix to
check for common errors in the predictions, which
detailed computations are given in Appendix A.

To summarize computations, accurate predic-
tions are counted as usual, but the wrong predic-
tions are only partially counted, sharing a weight of
1 among wrongly predicted labels and unpredicted
gold labels. Generally, the idea of this matrix is to
perform qualitative error analysis, which is done in
this Section. The confusion-like matrix global form
is in Figure 3, and the whole matrix with labels is
in Appendix A, in Figure 4.

There is a clear split between climate change
(CC) and war-related (URW) narratives (the first
40 narratives for CC and the last 48 ones for URW).
Moreover, some rows (resp. columns) are filled
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Figure 3: Confusion-like matrix general form. It can be
used to identify clusters of wrong predictions quickly. A
more detailed confusion matrix with the labels is given
in Appendix A.

with zeros, corresponding to a lack of data in the
dev (resp. training) split.

Most CC narratives were predicted as "Criticism
of climate movement" and "Criticism of climate
policies," which are the main topics of CC nar-
ratives globally. The second main group of CC
narrative predictions is on the first narratives of the
ontology, hinting that geopolitical agendas behind
climate policies are hidden. The same observation
can be made on URW narratives, with most pre-
dictions covering the "Discrediting Ukraine" and
"Discrediting the West" narratives and the central
narratives of the URW topic. Some outliers appear
in the matrix, but they only represent one sample
each, highlighting them in the row-normalized ma-
trix.

Overall, the system is able to detect large cate-
gories of narratives, but struggles for fine narratives,
showing a bias for well-represented narratives from
the training set. More specific encoders should be
used with less fine narratives to detect to be able to
better detect these fine narratives.

6 Conclusion and Future Works

In this paper, we explored the capabilities of multi-
lingual encoder-based models for the task of narra-
tive classification. We proposed a method with an
adaptative threshold for multi-label classification
tasks and showed that it performs reasonably well,
especially for high-resource languages.
Additional experiments on language ablations
showed differences between models’ behavior,



with XLM-RoBERTa generalizing better on unseen
languages, but mDeBERTa generally performing
better when trained with all languages.

The proposed approach could be enhanced by
using data augmentation and hierarchical classifi-
cation; ideas proposed by (Singh et al., 2025; As-
sis et al., 2025; Huayang Li, 2025). For real use
cases, performance on the coarse labels may be
more important to detect the presence or absence
of narratives before using more specialized models
if needed. The main challenge for our model was
the limited number of samples by class, which the
addition of new annotated data could alleviate. In
addition to that, the proposed system only works
with a pre-defined set of initially defined narratives.
It could be possible to reuse the adaptative thresh-
old idea to detect when new narratives appear in
new articles. Moreover, other thresholding strate-
gies could be used, by instance by adding a margin
around the adaptative threshold in order to maxi-
mize either precision or recall, depending on the
use case.
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Figure 4: Confusion matrix for predictions of narratives (predictions giving no narratives are ignored).
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Algorithm 1: Confusion-like matrix computations

1 begin Compute confusion-like matrix

e % N ! s W N

—
[ —]

—
s W N

15
16
17

18
19

confusion_matrix = zeros(Ny,q:,Npqr);

for sample in dataset do

predictions < model(sample);

wrong_predictions < predictions;

not_predicted < gold_labels(sample);

for prediction in predictions do

if prediction € gold_labels(sample) then
confusion_matrix[prediction,prediction] += 1;
wrong_predictions.remove(prediction);
not_predicted.remove(prediction);

for prediction in wrong_predictions do
for label in not_predicted do
L confusion_matrix[label, prediction] += 1/ size(not_predicted);

for label in not_predicted do
for prediction in wrong_prediction do
L confusion_matrix[label, prediction] += 1 / size(wrong_prediction);

normalize_by_row(confusion_matrix);
return confusion_matrix;
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Abstract

Identification of hallucination spans in black-
box language model generated text is essential
for applications in the real world. A recent at-
tempt at this direction is SemEval-2025 Task 3,
Mu-SHROOM—a Multilingual Shared Task on
Hallucinations and Related Observable Over-
generation Errors. In this work, we present
our solution to this problem, which capitalizes
on the variability of stochastically-sampled re-
sponses in order to identify hallucinated spans.
Our hypothesis is that if a language model is
certain of a fact, its sampled responses will
be uniform, while hallucinated facts will yield
different and conflicting results. We measure
this divergence through entropy-based analysis,
allowing for accurate identification of hallu-
cinated segments. Our method is not depen-
dent on additional training and hence is cost-
effective and adaptable. In addition, we con-
duct extensive hyperparameter tuning and per-
form error analysis, giving us crucial insights
into model behavior.'

1 Introduction

Hallucination is a situation where Large Language
Models (LL.Ms) produce outputs that are inconsis-
tent with real-world facts or unverifiable, posing
challenges to the trustworthiness of Al systems
(Huang et al., 2025). Hallucination Detection is the
process of identifying such sections of text where a
model generates content that is untrue, misleading,
or unverifiable by any source. As LL.Ms are used
to generate massive texts in all applications, it is es-
sential to make sure their output is accurate (Bom-
masani et al., 2022). Undetected hallucinations can
propagate misinformation, lower confidence in Al
systems, and have severe implications in applica-
tions such as healthcare and law. Identification of
particular spans of hallucinated text, as opposed to

'"The code is available at https://github.com/
SakethReddyVemula/semeval-2025_Mu-SHROOM
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Figure 1: Architecture Diagram describing proposed
method for detecting hallucination spans.(Manakul
et al., 2023)

merely marking whole outputs, is critical for real-
world application, as it enables accurate corrections
and improved comprehension of where and why a
model hallucinate.

In this paper, we describe an LLM-uncertainty
based method for Hallucination span detection.
Our hypothesis builds upon Manakul et al. (2023)
that if an LLM is certain of a given concept,
stochastically-sampled responses are likely to be
similar and contain consistent facts. However, for
hallucinated facts, these sampled responses are
likely to diverge and contradict one another. We
utilize entropy information to identify the precise
spans of hallucinated text using sampled responses
(Xiao and Wang, 2021), allowing us to effectively
identify inconsistencies that signal hallucination.

Our approach works well in zero-resource and
black-box environments without any extra train-
ing. In addition, since our approach is language-
independent, it works equally well in a variety
of languages. Our model ranks 18th on average
among over 40 submissions, achieving its best rank

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 67-72
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of 10th in Chinese (Mandarin).>

2 Related Work

The problem of hallucination detection in Large
Language Models (LLMs) has been a focus of
much attention recently. Hallucinations are de-
fined as cases when LLMs produce outputs that
sound plausible but are factually false or unsup-
ported, compromising their validity for real-world
usage. Farquhar et al. (2024) proposed a technique
employing semantic entropy to identify such con-
fabulations through uncertainty estimation in the
semantic space of model outputs. This method cal-
culates uncertainty at the meaning level as opposed
to actual word sequences and allows for recogniz-
ing arbitrary and poor-quality generations for dif-
ferent datasets and tasks without explicit domain
knowledge.

Following this, Kossen et al. (2024) introduced
Semantic Entropy Probes (SEPs), which estimate
semantic entropy directly from one generation’s
hidden states. SEPs are efficient in computation,
avoiding repeated model samplings at inference
time. Their experiments showed that SEPs have
high performance in hallucination detection and
generalize well to out-of-distribution test sets, in-
dicating that model hidden states contain semantic
uncertainty relevant to hallucinations.

In parallel, Manakul et al. (2023) introduced
SelfCheckGPT, a zero-resource black-box method
for fact-checking LLLM responses independent of
external databases. The technique exploits the con-
sistency of stochastically generated responses by
assuming that when an LLM has knowledge about
a concept, its sampled responses will be consistent
and similar in content while hallucinated facts re-
sult in diverse and contradictory responses. Their
results show that SelfCheckGPT efficiently identi-
fies non-factual sentences and evaluates the factual-
ity of passages, providing an efficient solution for
situations where model internals are not available.

These studies together highlight the need to cre-
ate effective and efficient techniques for halluci-
nation detection in LLMs. Methods based on se-
mantic entropy, model hidden states, and response
consistency provide promising directions for im-
proving the reliability of LLM outputs in different
applications.

2https://mushroomeval.pythonanywhere.com/
submission/
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3 Task Description

Mu-SHROOM ? (Multilingual Shared-task on Hal-
lucinations and Related Observable Overgenera-
tion Mistakes) focuses on detecting hallucinated
spans in text output from instruction-tuned LLMs.
The task includes 14 languages: Arabic (Modern
standard), Basque, Catalan, Chinese (Mandarin),
Czech, English, Farsi, Finnish, French, German,
Hindi, Italian, Spanish, and Swedish. (Vazquez
et al., 2025)

Evaluation is conducted separately for each lan-
guage and is based on the following two character-
level metrics:

e Intersection-over-Union (IoU): Measures
the overlap between predicted and reference
hallucination spans.

IPNG

ToU = -~
“T1PUCq

where P is the set of predicted hallucination
characters and G is the set of gold reference
hallucination characters.

Probability Correlation (Cor): Evaluates
how well the predicted hallucination probabil-
ities match empirical annotator probabilities.

p = corr(p, p)

where p are the predicted probabilities and p
are the human-annotated probabilities.

Data format is described in Table 1. The
hard_labels are used for intersection-over-union
accuracy, while the soft_labels are used for cor-
relation evaluation. Table 5 shows the number of
samples in the task dataset.

4 Methodology

In this section we describe our methodology for
detecting hallucination spans. Given generated
text G and stochastically-sampled responses S =
s1, 8h, ..., s}, from models, our method predicts hal-
licination spans as follows:

Given a generated text G, we segment it into
overlapping spans using a sliding window approach.
Each span s; is extracted using a window size w
and stride ¢ such that:

si=G[(i—1)t: (1 — 1)t + w

Shttps://helsinki-nlp.github.io/shroom/
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Field
lang
model_input

Description

Language of the text.
Input query provided to
the LLM.

Generated text from the
LLM.

List of pairs (s, e;) rep-
resenting hallucination
spans (start-inclusive,
end-exclusive).

List of dictionaries,
each containing:

model_output_text

hard_labels

soft_labels

e start: Start in-
dex of hallucina-
tion span.

e end: End index
of hallucination
span.

¢ prob: Probability
of the span being
a hallucination.

Table 1: Data fields used from Mu-SHROOM Dataset.

for all valid indices ¢ with step size ¢. This ensures
each part of the text is analyzed with sufficient
context.

For each span s;, we retrieve the most simi-
lar spans from a set of sampled responses S =
1,85, ..., s, using a lexical matching function
based on sequence similarity. The matching spans
M, are defined as:

M; = s; € S| Similarity(s;, s7) > 7 (2)

where 7 is a threshold for similarity.

We compute the hallucination score for each
span s; using a combination of semantic entropy,
lexical entropy, and frequency-based scoring.

Semantic Entropy To measure semantic incon-
sistency, we compute cosine similarity between the
span s; and each matched span s;, using a pre-
trained sentence embedding model:

)= BB

sim(s;, s 3)
where FE(s) denotes the embedding representation
of span s. The probability distribution over similar-
ities is given by:

6sim(si,39)

Zk esim(si,sk)
The semantic entropy is then computed as:

Hy(si)=— > P(s}|s)log P(s] | s;) (5)
S;E./\/L;

P(sj|si) = 4)
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Higher entropy values indicate greater semantic
inconsistency.

Lexical Entropy To measure lexical variability,
we compute the Shannon entropy over the fre-
quency distribution of matched spans:

= > p(s))logp(s))

S}EMZ'

Hi(s;) = (6)

where p(s}) is the probability of span s;. appearing
in the matched set M.

Frequency Score The frequency-based confi-
dence score is computed as:

|M;]
|S]|

F(s;))=1- @)
where a lower | M| suggests fewer matches and a
higher likelihood of hallucination.

The final hallucination score for each span s; is
computed as a weighted sum:

Sh(si) = aHg(s;) + BH(si) +vF(s;)) (8)

where «, 3, are hyperparameters controlling
the contribution of each component. For our sub-
mission, we heuristically choose o = 0.4, 5 =0.4
and v = 0.2. We plan to tune these parameters in
our future work.

To ensure hallucination spans align with mean-
ingful text units, we refine span boundaries using:

* Token boundaries: Adjusting span edges to
align with word boundaries.

* Phrase boundaries: Ensuring spans do not
split meaningful phrases.

* Named entity boundaries: Avoiding incor-
rect segmentation of entity names.

The refined spans are selected by maximizing the
entropy gradient at span boundaries.

Detected hallucination spans that overlap sig-
nificantly are merged into a single span with an
updated score:

2ico Sn(si) - |sil
>ico |sil
where O is the set of overlapping spans.

The final output is a set of hallucination spans

H:

Sp(s) = ©)

H = (i, Sn(si)) | Sn(si) > A (10)

where ) is a threshold for hallucination detection.



5 Experiments

5.1 Models

Our experiments utilize Llama-3.2-3B-Instruct
model (Dubey et al., 2024), a 3 billion parame-
ter instruction-tuned language model. We generate
responses using a temperature of 0.1 to maintain
relatively deterministic outputs while allowing for
some diversity, along with top-p sampling (nucleus
sampling) set to 0.9 and top-k sampling with k=50.
To avoid repetitive patterns of text, we use a 3-
gram repetition penalty. We produce 20 candidate
responses with a maximum of 64 tokens per input
query. The model is executed in mixed-precision
using FP16 to save memory, with memory con-
sumption limited to 6GB GPU memory and 8GB
CPU memory via gradient offloading.

5.2 Hyperparameter Tuning

Considering the presence of various hyperparam-
eters in our methodology, we perform extensive
hyperparameter tuning on validation split for each
language. We observe that, while many languages
have same set of hyperparameters performing the
best on evaluation, there exist few languages where
notable differences exist. We summarize our hyper-
parameters choice in Table 2

Language w ¢t A MSL BT
arabic 4 2 06 3 0.3
german 4 2 06 3 0.3
english 5 3 05 3 0.3
spanish 4 2 06 3 0.3
finnish 4 3 06 3 0.3
french 4 2 06 3 0.3
hindi 5 2 06 3 0.3
italian 4 2 07 3 0.3
sweden 4 2 05 3 0.3
chinese 7 3 0.6 3 0.3

Table 2: Hyperparameters choosen for different lan-
guages. Notations include w: Window Size, ¢: Stride,
A: Entropy Threshold, MSL: Minimum Span Length,
BT: Boundary Threshold

6 Results and Analysis

Our submission demonstrated consistent perfor-
mance across multiple languages as shown in Ta-
ble 3, achieving similar Intersection over Union
(IoU) and Correlation (Cor) scores across various
languages. The system performed particularly well
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in Basque (IoU: 0.4193, Cor: 0.3525), Finnish
(IoU: 0.4554, Cor: 0.3323), Italian (IoU: 0.4009,
Cor: 0.386) and Hindi (IoU: 0.3598, Cor: 0.3508),
indicating its effectiveness in identifying and han-
dling hallucinated text. Similarly, for languages
such as English (IoU: 0.3466, Cor: 0.2104), Ger-
man (IoU: 0.3651, Cor: 0.2199), and Chinese (IoU:
0.4703, Cor: 0.1601), the system maintained con-
sistent performance, demonstrating its adaptability
to different linguistic structures.

The findings reveal that our model is aptly suit-
able for detecting hallucinations for a wide variety
of languages that possess intricate morphological
and syntactic features. The high correlation scores
across numerous languages confirm that our sys-
tem makes good predictions which correlate well
with ground truth annotation. Further, the high
IoU values verify its capacity for good localiza-
tion of hallucinated text, which enables it to be a
trustworthy model in addressing the problems of
hallucinations in multilingual environments.

6.1 Error Analysis

Table 4 reports a sample data point from test split,
where our model’s prediction successfully detects
the hallucination span. But, it also labels other
spans as hallucinated due to noise in generated
responses. This behavior of false positives poses
significant challenge and it must be handled. We
plan to pinpoint why this happens and potentially
fix this in our future work.

7 Conclusion

In this paper, we utilized an LLM-uncertainty-
based method for hallucination span detection
which works equally well in multiple languages.
By using entropy-based uncertainty measures from
sample responses, our approach accurately detects
hallucinated spans without the need for further
training. Our model performed competitively in
various languages, ranking highly in Basque, Ital-
ian, and Hindi. The experiments emphasize the
strength of our method, as they show its effective-
ness in coping with varied linguistic forms and in
yielding precise hallucination span detection. Our
error analysis also informs on typical failure in-
stances, presenting potential for additional refine-
ments.

Although our approach is strong, it has limita-
tions, specifically in exploiting supervised learning
to achieve better span prediction. Our future re-



Language Arabic Catalan Czech German English
System IoU Cor IoU Cor IoU Cor IoU Cor IoU Cor
Baseline (neural) 0.0418 0.119 0.0524 0.0645 0.0957 0.0533 0.0318 0.1073 0.031 0.119
Baseline (mark none) 0.0467 0.0067 0.08 0.06 0.13 0.1 0.0267 0.0133 0.0325 0
Baseline (mark all)  0.3614 0.0067 0.2423 0.06 0.2632 0.1 0.3451 0.0133 0.3489 0
Our Submission 0.3631 0.2499 0.3161 0.3377 0.2895 0.2423 0.3651 0.2199 0.366 0.2104
Language Spanish Basque Farsi Finnish French
System IoU Cor IoU Cor TIoU Cor IoU Cor IoU Cor
Baseline (neural) 0.0724 0.0359 0.0208 0.1004 0.0001 0.1078 0.0042 0.0924 0.0022 0.0208
Baseline (mark none) 0.0855 0.0132 0.0101 0 0 0.01 0 0 0 0
Baseline (mark all) ~ 0.1853 0.0132 0.3671 0 02028 001 04857 0 04543 0
Our Submission 0.2131 0.2335 0.4193 0.3525 0.3132 0.357 0.4554 0.3323 0.4651 0.2756

Language Hindi Italian Swedish Chinese

System IoU Cor IoU Cor IoU Cor IoU Cor

Baseline (neural) 0.0029 0.1429 0.0104 0.08 0.0308 0.0968 0.0236 0.0884

Baseline (mark none) 0 0 0 0 0.0204 0.0136 0.02 0

Baseline (mark all)  0.2711 0 02826 0 05373 0.0136 04772 0

Our Submission 0.3598 0.3508 0.4009 0.386 0.3967 0.217 0.4703 0.1601

Table 3: Performance comparison across different languages. IoU (f}) : Intersection over Union. Cor () :
Correlation. Baseline (neural) represents the baseline provided in participant kit, while Baseline (mark none)
and Baseline (mark all) represents no characters labelled hallucinated and all characters labelled as hallucinated
respecitively. 1 denotes higher is better.

Language  Input Text Ground Truth Predicted

Italian Chi ha doppiato in italiano  L’attrice Catherine McCormack ¢ stata doppiata in italiano da  L’attrice Catherine McCormack ¢ stata doppiata in italiano da
I"attrice Catherine McCormack  Elisa Di Stefano nel film "Il sarto di Panama" Elisa Di Stefano nel film "l sarto di Panama"
nel film Il sarto di Panama?

English When did Cape Verde first  Cape Verde participated in its first Summer Olympic games in ~ Cape Verde participated in its first Summer Olympic games in
participate in the Summer 2000 in Sydney, Australia. 2000 in Sydney, Australia.
Olympics?

Swedish Vad heter slottsruinen i Pen- Den kallades vid tiden for sitt storsta riktigt, Castle of the Den kallades vid tiden for sitt storsta riktigt, Castle of the

nard?

Dromon. Det dr en liten ruin pa ett berg nira

Dromon. Det ir en liten ruin pa ett berg nira stranden av

stranden av St Brides Bay.

St Brides Bay.

Table 4: Hallucinated spans highlighted in red for a sample datapoints in some langauges. Predicted refer to the

predicted hallucinated spans by our system.

search might consider fine-tuning over accessible
training data in order to make performance even
better while keeping our zero-resource model flexi-
ble. More context and fact-based verification meth-
ods can be incorporated to improve hallucination
detection even further. With LLMs still evolving,
creating scalable and accurate methods of halluci-
nation detection remains a critical step to maintain
the integrity of Al-produced text across real-world
use cases.

Limitations

Our method does not employ supervised learning
for predicting the exact spans. Under-utilization of
training splits of the task is a major drawback of
our system. Utilizing the training split for any kind
of supervised learning could potentially improve
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the performance. Moreover, failing to incorporate
contextual and factual verification techniques poses
a major challenge to our approach.
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data in Mu-SHROOM. For Hyperparameter Tuning, we
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idation data points. For others, we heuristically approxi-
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Abstract

This paper describes the system submitted by
Team A to SemEval 2025 Task 11, “Bridg-
ing the Gap in Text-Based Emotion Detection.”
The task involved identifying the perceived
emotion of a speaker from text snippets, with
each instance annotated with one of six emo-
tions: joy, sadness, fear, anger, surprise, or
disgust. A dataset provided by the task or-
ganizers served as the foundation for training
and evaluating our models. Among the vari-
ous approaches explored, the best performance
was achieved using multilingual embeddings
combined with a fully connected layer. No-
tably, our system achieved its highest macro
F1 scores on Hindi (0.8901), Russian (0.8831),
and Marathi (0.8657), underscoring the effec-
tiveness of our cross-lingual strategy. This pa-
per details the system architecture, discusses
experimental results, and highlights the ad-
vantages of leveraging multilingual representa-
tions for robust emotion detection in text.

1 Introduction

Human emotions are intricate and multidimen-
sional, resisting simplistic classification due to
their fluid, overlapping nature. As Eugenides
(2003) noted, affective states rarely occur in isola-
tion; they coalesce and evolve dynamically, chal-
lenging reductionist labelling approaches. This
complexity underpins multi-label emotion detec-
tion, where texts or behaviours often encode lay-
ered sentiments (Fu et al.,, 2022). The benefits
of accurately deciphering these nuances span do-
mains from early mental health screening and
tailored interventions (Alhuzali and Ananiadou,
2019; Arago6n et al., 2019) to enhanced consumer
sentiment analysis in Al systems (Chen et al.,
2018; Alaluf and Illouz, 2019). Yet, current recog-
nition systems often treat emotions as mutually
exclusive, contrary to psychological frameworks;
works by Ekman (1992) and Plutchik (1980) view
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emotions as interconnected constructs with grada-
tional intensities, a perspective supported by Fu
et al. (2022), who shows that joy and love corre-
late more strongly than, say, anger and sadness.

Another gap is the treatment of emotional in-
tensity, which ranges from subtle to profound ex-
pressions (Frijda, 1988). Most systems neglect
these gradations by focusing on binary classifi-
cations, limiting real-world applicability in clini-
cal or market settings. Moreover, linguistic and
cultural disparities evident in divergent emotion
lexicons and display rules (Ekman, 1992) render
monolingual models inadequate, with culture spe-
cific metaphors or untranslatable terms risking
misclassification. Thus, frameworks that jointly
model multi-label emotions, intensity spectra, and
cross-cultural variations are essential for advanc-
ing emotion-aware technologies.

As part of SemEval-2025 Task 11: Bridging the
Gap in Text-Based Emotion Detection (Muham-
mad et al., 2025b), we propose a multilingual
framework integrating multilingual embeddings
to capture shared semantic and affective features
alongside intensity-sensitive architectures for de-
tecting gradational nuances. The remainder of the
paper is organized as follows: Section 2 reviews
existing methods in multi-label emotion detection
and their limitations; Section 3 introduces the mul-
tilingual dataset; Section 4 details our model’s
approach to disentangling overlapping emotions;
Section 5 compares our method with state-of-the-
art baselines; and Section 6 presents experimen-
tal outcomes and performance analysis. Finally,
Section 7 discusses implications for affective com-
puting and future directions, including multimodal
data integration and low-resource language adapta-
tion.

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 73-82
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2 Related Work

The evolution of multilingual emotion detection
systems has been shaped by three interconnected
pillars: (1) the creation of high-quality datasets,
(2) innovations in cross-lingual transfer method-
ologies, and (3) architectural advancements in
multilingual models. This progression reflects
a paradigm shift from monolingual benchmarks
to language-agnostic scalable frameworks capable
of capturing emotional nuance across linguistic
boundaries.

Early research established rigorous baselines
through carefully curated monolingual datasets.
The GoEmotions corpus (Demszky et al., 2020), a
seminal resource comprising 58,000 English Red-
dit comments annotated with 27 emotion cate-
gories, underscored the importance of multi-rater
consensus and quality control in emotion labelling,
achieving an Fl-score of 0.46 through BERT-
based fine-tuning combined with Principal Pre-
served Component Analysis (PPCA). Although
this work laid the groundwork for data-driven ap-
proaches, it also exposed a key limitation: the
lack of multilingual comparability inherent to
single-language corpora. To overcome this, subse-
quent studies focused on knowledge transfer from
high-resource to low-resource languages. Wang
et al. (2024b) pioneered a knowledge distillation
framework that aligns multilingual representations
(e.g., XLM-RoBERTa) with English-centric mod-
els (e.g., RoBERTa) using translation-weighted
data, reducing the performance gap between mono-
lingual and multilingual systems by 23%. Com-
plementary work by Hassan et al. (2022) com-
pared cross-lingual strategies—including multilin-
gual embeddings (mBERT), translated corpora,
and parallel text alignment for Arabic and Span-
ish emotion detection, finding that target-language
fine-tuning outperforms direct transfer by 14% F1-
score while affirming the indispensability of cross-
lingual methods for under-resourced languages.

Parallel efforts have optimized model archi-
tectures for improved multilingual generalization.
Bianchi et al. (2022) developed XLM-EMO, a so-
cial media-oriented model trained on 19 languages
using XLM-RoBERTa, which achieved state-of-
the-art zero-shot performance in low-resource
settings and demonstrated that unified architec-
tures can capture shared affective features with-
out language-specific tuning. Meanwhile, Gupta
(2021) improved robustness via Virtual Adversar-
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ial Training (VAT), enforced consistency between
original and perturbed inputs to boost cross-lingual
F1-scores by 8% in Arabic and Spanish. Further
breakthroughs leverage the semantic richness of
large language models: Cheng et al. (2024) intro-
duced the TEII framework, which iteratively re-
fines predictions by combining GPT-3.5 and GPT-
4 and employs explanation-driven fine-tuning on
translated emotion lexicons to reduce cross-lingual
prediction variance by 37%. This approach aligns
with findings from Navas Alejo et al. (2020), who
demonstrated that unsupervised machine transla-
tion better preserves emotional intensity gradients,
especially for morphologically rich languages like
Catalan.

Despite these advances, critical gaps remain
in reconciling performance disparities across lan-
guages. As noted in Conneau et al. (2020), even
state-of-the-art multilingual models exhibit ‘lin-
guistic bias’, with performance degrading for lan-
guages typologically distant from English. More-
over, the common practice of treating emotion in-
tensity as static rather than contextual oversim-
plifies the complex nature of affect, as argued
by psycholinguistic evidence (Frijda, 1988). Our
work addresses these limitations by focusing on (1)
culture-aware multilingual representation learning
and (2) dynamic intensity modelling, thereby ad-
vancing beyond the current paradigm of static
cross-lingual transfer.

3 Dataset

In our study, we leverage the BRIGHTER dataset
(Muhammad et al., 2025a) to explore cross-lingual
emotion recognition. BRIGHTER is a large-scale,
manually curated resource designed to bridge the
gap in emotion recognition for low-resource lan-
guages. It comprises nearly 100,000 text instances
gathered from diverse sources, including social
media posts, personal narratives, speeches, liter-
ary texts, and news articles across 28 languages
from various language families. Each text instance
is annotated by native speakers with one or more
emotion labels (anger, sadness, fear, disgust, joy,
surprise, and a neutral category) along with cor-
responding intensity ratings on a four-point scale
(0 indicating no emotion up to 3 indicating high
intensity). The dataset’s annotation process in-
volves rigorous preprocessing steps such as dedu-
plication and noise removal, followed by quality
control measures like the Split-Half Class Match



Percentage (SHCMP) to ensure high reliability in
labelling. This comprehensive dataset not only en-
riches the training resources available for multilin-
gual emotion recognition models but also serves as
a valuable benchmark for evaluating performance
across both high and low-resource languages.

Furthermore, we complement our approach for
languages with particularly scarce resources, such
as Amharic and Afan Oromo by incorporating data
from the EthioEmo dataset Belay et al. (2025).
EthioEmo is specifically tailored for Ethiopian lan-
guages and provides robust multi-label emotion
annotations derived from sources like news head-
lines, Twitter posts, YouTube comments, and Face-
book data. By integrating these datasets, our work
benefits from enhanced linguistic diversity and im-
proved reliability in emotion classification, espe-
cially for under-represented languages.

The dataset splits are as follows: the Hindi
corpus comprises a total of 3,666 instances, with
2,556 instances allocated for training (approx-
imately 70%), 100 instances for development
(around 2.7%), and 1,010 instances for testing
(roughly 27.5%). Similarly, the English corpus
consists of 5,651 instances, with 2,768 instances
used for training (approximately 49%), 116 in-
stances for development (about 2%), and 2,767 in-
stances for testing (roughly 49%).

4 Methodology

Our methodology integrates multilingual rep-

resentation learning with multi-label clas-
sification to address cross-lingual emotion
detection. We refer to our proposed model as

TransferModel _FC_EmbeddingE5  throughout
this paper. Central to this approach is the multilin-
gual ES text embedding framework (Wang et al.,
2024a), which undergoes a two-stage training
process to align semantic representations across
languages. First, weakly supervised contrastive
pre-training on ~1 billion multilingual text pairs
(sourced from Wikipedia, mC4, NLLB, and
others) optimizes cross-lingual alignment using
InfoNCE loss with large batch sizes (32k) to max-
imize negative sample diversity. This is followed
by supervised fine-tuning on high-quality labeled
datasets (MS MARCO, NQ, TriviaQA), aug-
mented with mined hard negatives and knowledge
distillation from a cross-encoder teacher. We em-
ploy the instruction-tuned mE5-large-instruct
variant, pre-trained on 500k GPT-3.5/4-generated
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synthetic instructions across 93 languages, to
enhance task-specific adaptability.

Building upon this foundation, our emotion
detection architecture processes input text through
the multilingual ES5 tokenizer, standardizing
sequences to 150 tokens to balance computa-
tional efficiency and semantic retention. The
model generates contextualized embeddings via
multilingual-e5-large-instruct, with the
[CLS] token serving as a sequence-level semantic
summary (Devlin et al., 2019). A dropout layer
(rate=0.3) regularizes the 1024-dimensional [CLS]
embedding before projection into the emotion
space through a fully connected layer. Sigmoid
activations independently estimate probabilities
for 5-6 emotion labels (dataset-dependent), ex-
plicitly modelling label co-occurrence inherent to
multi-label scenarios.

To optimize performance, we train the sys-
tem using Binary Cross Entropy (BCE) with la-
bel smoothing (« 0.1), mitigating overcon-
fidence in sparse annotations. The AdamW op-
timizer (Loshchilov and Hutter, 2019) (learning
rate=1e-5, (1 0.9, B2 0.999) processes
mini-batches of 16 samples, with gradient clipping
(max norm=1.0) stabilizing updates. Early stop-
ping monitors the development set macro F1 score
(patience=4 epochs), preserving generalizability
by halting training during performance plateaus.

During inference, emotion probabilities are
thresholded at 0.5 (adjustable per application
needs) to yield binary predictions. Evaluation
prioritizes macro-averaged F1, which aggregates
per-class true/false positives and negatives across
all batches to penalize bias toward frequent la-
bels a critical safeguard for imbalanced multi-label
datasets. Results are averaged over five random
seeds to account for initialization variance, ensur-
ing reproducibility. By unifying multilingual se-
mantic alignment with modular classification com-
ponents, TransferModel_FC_EmbeddingE5 ad-
dresses the dual challenges of cross-lingual emo-
tion detection, preserving affective nuance across
languages while disentangling overlapping emo-
tional states.

5 Experiments

To complement our transformer-based system de-
scribed in Section 4, we implemented a baseline
multi-label emotion classification pipeline that in-
tegrates classical machine learning classifiers with



Table 1: Evaluation Scores (F1) for Track A Languages

Emotion-level F1 Scores

Overall F1 Scores

Language

Anger Disgust  Fear Joy Sadness Surprise Micro  Macro
Ambharic (amh)  0.6693 0.7476  0.5192 0.7708  0.7270 0.6740  0.7133  0.6847
Arabic (ary) 0.5699 0.4746 0.5000 0.6897  0.6848 0.4110  0.5847  0.5550
Chinese (chn) 0.8342  0.4357 0.4496 0.8748  0.6016 0.4756  0.7295 0.6119
English (eng) 0.6483 - 0.8235 0.7325  0.7473 0.7182  0.7603  0.7340
German (deu) 0.8256  0.7286 0.5486 0.7605  0.6845 0.4428  0.7248  0.6651
Hausa (hau) 0.6078  0.7726  0.7478 0.6733  0.7317 0.5288  0.6845  0.6770
Hindi (hin) 0.8665 0.8718 0.9072 0.8992  0.8815 0.9147 0.8903  0.8901
Marathi (mar) 0.8317 0.8984 0.8993 0.8293  0.8429 0.8923  0.8599  0.8657
Oromo (orm) 0.5104 0.5798 0.2921 0.8007  0.4622 0.7317  0.6425  0.5628
Romanian (ron) 0.6012 0.7370 0.8649 0.9618  0.7683 0.5086  0.7583  0.7403
Russian (rus) 0.8741 0.8631  0.9524 0.9191  0.8550 0.8347  0.8833  0.8831
Spanish (esp) 0.7263 0.7984 0.8313 0.8768  0.8316 0.7677  0.8059  0.8054
Ukrainian (ukr)  0.3885 0.5605 0.7692 0.7021  0.7178 0.4691  0.6581  0.6012

pre-trained sentence embeddings. In our experi-
ments, we compare two variants that differ solely
in the choice of embedding model.

Our setup uses two CSV files containing text
samples and six emotion labels (anger, disgust,
fear, joy, sadness, and surprise) for both train-
ing and testing. Texts are converted into nor-
malized embeddings using a helper function that
leverages SentenceTransformer models with the
normalize_embeddings=True parameter to pro-
duce unit-length vectors. Since raw embed-
dings from our language models exhibit variabil-
ity across dimensions and may not be centered
around zero—factors that can obscure underlying
semantic information we apply a two-step normal-
ization process. First, we perform L2 normaliza-
tion to ensure each embedding vector has a unit
norm, emphasizing the semantic direction rather
than its magnitude. In our implementation, one
branch uses the LaBSE model (Feng et al., 2022)
while the other employs the multilingual ES Large
model (Wang et al., 2024a). Second, we apply Z-
score normalization (standard scaling) using scikit-
learn’s StandardScaler (Pedregosa et al., 2011) to
adjust features to a mean of zero and a standard
deviation of one, thereby mitigating scale differ-
ences.

After normalization, we extract the six emotion
labels to facilitate multi-label classification. Four
classifiers are then trained: Support Vector Ma-
chine (with an RBF kernel and probability esti-
mates), Gaussian Naive Bayes, Logistic Regres-
sion (with increased iterations), and Random For-
est (regularized by limiting tree depth and control-
ling split criteria). These classifiers are wrapped
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using scikit-learn’s MultiOutputClassifier, en-
suring that the multi-label nature of the task is prop-
erly addressed. Evaluation is performed on both
the training and testing set using detailed classifi-
cation reports and macro F1 scores to gauge per-
formance across all emotion classes.

For real-time prediction, a dedicated function
processes new text inputs by generating embed-
dings, applying the same scaling procedures, and
predicting emotion labels. The output is returned
as a dictionary mapping each emotion to a binary
prediction. Finally, our experimental design fa-
cilitates a direct comparison between the two em-
bedding models: LaBSE, which provides robust,
language-agnostic sentence representations (Feng
et al., 2022), and Multilingual E5 Large, which
may offer richer semantic embeddings (Wang
et al., 2024a). This unified approach enables a sys-
tematic analysis of the impact of embedding choice
on multi-label emotion detection performance, re-
inforcing the potential of multilingual representa-
tions for robust cross-lingual emotion analysis.

6 Results

In this section, we report the evaluation results
of our approach to the multi-label emotion detec-
tion task (Track A) across 13 languages. Our
model, TransferModel_FC_EmbeddingE5, built
upon multilingual ES embeddings and a fully con-
nected output layer, was evaluated on its ability to
predict six emotion categories (anger, disgust, fear,
joy, sadness, and surprise) using both micro and
macro F1 scores as evaluation metrics.
Per-Language Performance. Table 1 shows
the detailed F1 scores for each emotion along



with the overall micro and macro F1 scores
per language. TransferModel_FC_EmbeddingE5
achieved a range of macro F1 scores from 0.5550
(Arabic) to 0.8901 (Hindi). Notably, the model
performed particularly well on languages such as
Hindi (macro F1 = 0.8901), Russian (macro F1
= 0.8831), and Spanish (macro F1 = 0.8054), in-
dicating that the multilingual embeddings effec-
tively capture emotion-related nuances in these lan-
guages. On the other hand, lower scores in lan-
guages like Arabic, Ukrainian, and Oromo suggest
that further adaptations may be necessary to handle
linguistic variations or data sparsity in these set-
tings.

Comparison with Top Systems. In comparison
with the top two performing teams for each lan-
guage, our approach did not secure the top spot but
remained competitive across most languages. For
example:

* In Hindi, our macro F1 of 0.8901 is close to
the top scores of 0.9257 and 0.9197.

* In Russian, our score of 0.8831 approaches
the best scores of 0.9087 and 0.9008.

* In Spanish, we achieved a macro F1 of
0.8054, which is only slightly lower than the
leading scores of 0.8488 and 0.8454.

Our system achieved its strongest results in Rus-
sian (0.8831), closely trailing the 2nd-ranked team
(0.9008), demonstrating competitive performance.
In Hindi (0.8901) and Marathi (0.8657), Team
A secured scores within 3-4% of the lst-place
teams, highlighting robustness in these languages.
While not topping the leaderboard, these narrow
gaps reflect effective alignment with top-tier ap-
proaches. Notably, languages like Arabic and Chi-
nese showed larger performance drops, emphasiz-
ing the need for targeted improvements.

Analysis of Emotion-specific Performance. A
closer look at the emotion level F1 scores re-
veals interesting trends. In several languages,
TransferModel_FC_EmbeddingE5 excels at de-
tecting emotions such as joy and anger while strug-
gling with fear and disgust. For instance, in Chi-
nese, while the joy score is high (0.8748), the dis-
gust score remains lower (0.4357). Such dispar-
ities indicate that certain emotions may be more
challenging to detect due to their subtle linguis-
tic expressions or class imbalances in the training
data.
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7 Conclusion

In this paper, we proposed
TransferModel _FC_EmbeddingE>5, a novel
approach to multilingual emotion detection that
integrates multilingual E5 embeddings with a fully
connected classification layer. Our experiments
on the BRIGHTER dataset show strong macro
F1 scores for languages like Hindi, Russian, and
Spanish, while also highlighting challenges in
Arabic, Chinese, and Oromo due to linguistic and
cultural diversity.

Our model effectively captures emotional nu-
ances, accounting for variations in expression and
intensity across languages. This work advances
affective computing by demonstrating that multi-
lingual embeddings within a structured classifica-
tion framework enhance cross-lingual emotion de-
tection. It also lays a foundation for future research
on breaking language barriers in sentiment analy-
sis.
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A Appendix

Table 2: Sample examples from Hindi and English datasets with emotion labels. This table displays representative
examples from the training datasets for Hindi and English. These examples illustrate how each text instance is
annotated with multiple emotion labels—namely, anger, sadness, fear, disgust, joy, and surprise—thereby empha-
sizing the multi-label nature of our emotion detection task.

Language Train Data Anger Disgust Fear Joy Sadness Surprise
. 3R ATg! AT at WY A& 7 37U HAR Y Bl Tg... 0 0 0 1 0 1
= IE U Il o A1 T A TS ot 0 0 0 0 0
R Ed # @RUAIR g &1 M SR g, 3R... 0 0 0 0 0
< Colorado, middle of nowhere. 0 - 1 0 0 1
E‘) It was one of my most shameful experiences. 0 - 1 0 1
= After all, I had vegetables coming out my ears... 0 - 0 0 0

Table 3: Table 3 summarizes the competitive landscape in Track A. It lists the top two performing teams along with
their respective Macro F1 scores for each evaluated language and also includes the scores achieved by our system
(Team A).

Language 1st Rank Team 2nd Rank Team Team A Score (OURS)
Team Name Score  Team Name Score
amh Chinchunmei 0.7731  NustTitans 0.7137 0.6847
ary PAI 0.6292  PA-oneteam-1  0.6210 0.5550
chn PAI 0.7094 PA-oneteam-1 0.6877 0.6119
deu PAI 0.7399 PA-oneteam-1 0.7355 0.6651
eng PAI 0.8230 NYCU-NLP 0.8225 0.7340
esp PAI 0.8488  PA-oneteam-1  0.8454 0.8054
hau PAI 0.7507 PA-oneteam-1 0.7463 0.6770
hin JNLP 0.9257 PAI 0.9197 0.8901
mar PA-oneteam-1  0.9058 PAI 0.8843 0.8657
orm Tewodros 0.6164 PA-oneteam-1 0.6108 0.5628
ron PAI 0.7943 PA-oneteam-1 0.7794 0.7403
rus PA-oneteam-1  0.9087 Heimerdinger  0.9008 0.8831
ukr PAI 0.7256  PA-oneteam-1 0.7199 0.6012
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Main Process Flow

Multiingual Text Input

Preprocessing & Tokenization

Multiingual ES Embeddings

E5 Embedding Training

Contrastive Pre-training (1B
multiingual pairs)

Extract [CLS] Token (1024-d)

Supervised Fine-tuning
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I

Dropout Layer (rate=0.3)

Fully Connected Layer (1024
motions)

Classification Training

BCE Loss w/ Label Smoothing
(a=0.1

AdamW Optimizer (LR=1e-5, ( >
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patience=4)

I

Probability = 057
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Results Analysis

Language Performance.

High: Hindi (F10.8901),
Russian (F10.8831), Marathi
(F10.8657)

Romanian

Low: Arabic (F10.5550),
Oromo (F10.5628)

K

Figure 1: Flowchart of System Architecture. This illustrates the overall system architecture of our proposed model,
TransferModel_FC_EmbeddingE5. The flowchart depicts the end-to-end pipeline starting from the input text,
which is first processed using the multilingual ES tokenizer. The resulting embeddings are passed through a dropout
layer and then into a fully connected layer with sigmoid activations to perform multi-label emotion classification.
This modular setup allows efficient handling of semantic nuances across languages and emotion co-occurrence
patterns in the dataset.
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Table 4: This Table presents a comparative analysis of macro F1 scores across 13 languages using two different
multilingual embedding models LaBSE and Multilingual E5 paired with four classical classifiers: SVM, Naive
Bayes, Logistic Regression, and Random Forest. The results demonstrate that the Multilingual ES embeddings
generally outperform LaBSE in most classifier setups, particularly in Logistic Regression and SVM configurations.
The table highlights that embedding choice significantly influences classification performance, with E5 consistently
providing stronger results across diverse languages, reinforcing its suitability for cross-lingual emotion detection
tasks.

Language Model LABSE Train F1 LABSE Dev F1 ES Train F1 ES Dev F1
SVM 0.9395 0.7188 0.9647 0.7713
Hindi Naive Bayes 0.6759 0.6624 0.7046 0.6633
Logistic Regression 0.9966 0.6690 1.0000 0.7884
Random Forest 0.9052 0.2197 0.9621 0.3795
SVM 0.7306 0.4087 0.7917 0.4027
Amharic  Naive Bayes 0.5597 0.5255 0.5729 0.5318
Logistic Regression 0.8263 0.4671 0.9358 0.5496
Random Forest 0.6651 0.2541 0.6670 0.2018
SVM 0.6315 0.2575 0.8092 0.2485
Arabic Naive Bayes 0.4794 0.4603 0.5549 0.4474
Logistic Regression 0.8693 0.4178 1.0000 0.4223
Random Forest 0.7028 0.0669 0.7034 0.0396
SVM 0.6311 0.3251 0.7021 0.3438
Chinese Naive Bayes 0.5403 0.5258 0.5300 0.5153
Logistic Regression 0.8663 0.4281 0.9965 0.5720
Random Forest 0.6360 0.2571 0.5410 0.2487
SVM 0.7022 0.3807 0.8177 0.4068
German Naive Bayes 0.5547 0.5379 0.6237 0.5037
Logistic Regression 0.8863 0.4926 0.9986 0.5013
Random Forest 0.6748 0.2154 0.6412 0.1983
SVM 0.8239 0.5592 0.8805 0.5614
Hausa Naive Bayes 0.5719 0.5428 0.5860 0.5535
Logistic Regression 0.8886 0.5599 0.9981 0.5417
Random Forest 0.8717 0.3171 0.8616 0.2547
SVM 0.9452 0.8601 0.9393 0.8729
Marathi Naive Bayes 0.6803 0.6942 0.6596 0.6878
Logistic Regression 0.9994 0.8485 1.0000 0.8493
Random Forest 0.9452 0.4161 0.9578 0.5154
SVM 0.3222 0.1724 0.6589 0.2753
Oromo Naive Bayes 0.3311 0.3200 0.4373 0.4008
Logistic Regression 0.5785 0.2544 0.9623 0.4358
Random Forest 0.4325 0.1062 0.5014 0.0921
SVM 0.9360 0.5648 0.9737 0.6244
Romanian 1Naive Bayes 0.6942 0.6483 0.7042 0.6629
Logistic Regression 0.9840 0.6061 1.0000 0.6969
Random Forest 0.9927 0.4151 0.9966 0.3897
SVM 0.9210 0.7184 0.9597 0.7655
Russian Naive Bayes 0.6896 0.6546 0.7485 0.7335
Logistic Regression 0.9760 0.6602 1.0000 0.7394
Random Forest 0.9760 0.6602 0.9368 0.2680
SVM 0.9278 0.6848 0.9541 0.7360
Spanish Naive Bayes 0.7389 0.6579 0.8000 0.7459
Logistic Regression 0.9655 0.6581 1.0000 0.7383
Random Forest 0.9662 0.4178 0.9702 0.3875
SVM 0.5839 0.2653 0.7378 0.3391
Ukrainian Naive Bayes 0.5091 0.4414 0.5889 0.4681
Logistic Regression 0.9804 0.3636 1.0000 0.4420
Random Forest 0.5672 0.0457 0.5208 0.0152
SVM 0.9278 0.6848 0.9541 0.7360
English Naive Bayes 0.7389 0.6579 0.8000 0.7459
Logistic Regression 0.9655 0.6581 1.0000 0.7383
Random Forest 0.9662 0.4178 0.9702 0.3875
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Abstract

This paper describes the participation of the
YNU-HPCC team in subtask A of task 11,
Bridging the Gap in Text-Based Emotion at
SemEval-2025. Our best-performing system
employs the RoBERTa (Robustly Optimized
BERT Approach) model, an improved version
of BERT that utilizes the Transformer encoder
architecture. We enhanced the output head to
allow the model to process one emotion si-
multaneously. We obtained the official rank-
ing score (0.44), including results from all lan-
guages. The entire dataset was translated into
English using Google Translate to facilitate
subsequent processing. Through probabilis-
tic and attention analyses, we found that (I)
a single prediction head performs better than
six heads predicting six emotions simultane-
ously, and (II) training on a uniformly trans-
lated English dataset yields better results than
using the original dataset. The code is available
at:  https://github.com/BGWH123/Semeval-
2025-taskl11.

1 Introduction

Multilingual sentiment classification is crucial in
Natural Language Processing (NLP), aiming to an-
alyze emotional expressions across languages. This
task is key for applications such as opinion min-
ing, customer feedback analysis, and cross-cultural
sentiment studies. It involves handling linguistic
variations and challenges posed by low-resource
languages, making it an important area of research.

Recent research has focused on multilingual sen-
timent classification, especially with large-scale
multilingual datasets and benchmarks (Augusty-
niak et al., 2024). Approaches such as translat-
ing text into English and leveraging English em-
beddings have improved performance across lan-
guages (Singhal and Bhattacharyya, 2016). New
annotation methods have been introduced at vari-
ous levels (word, sentence, document) (Banea et al.,
2011). For low-resource languages, methods that

&3

work with unlabeled parallel corpora have also
been proposed (Fei and Li, 2020).

In this study, we examine several Transformer-
based models (BERT, RoBERTa, ALBERT, Distil-
BERT, ELECTRA, DeBERTa, and mBERT) and
their language support. As shown in Table 1, most
models, including BERT-based ones, support only
English. While mBERT supports over 100 lan-
guages, including Arabic, it performs poorly on
dialects such as Algerian Arabic and Moroccan
Arabic. This limitation, along with challenges in
languages like Nigerian Pidgin, led us to explore
alternative methods. We opted to use Google Trans-
late to preprocess data instead of training a multi-
lingual model, which would be less effective due
to parameter constraints.

Based on the experimental results, we chose
RoBERTza as our base model and fine-tuned it for
six emotions: anger, disgust, fear, joy, sadness,
and surprise. We incorporated R-Drop and Focal
Loss techniques to improve training, which led to
the final results.

2 Related Work

Sentiment analysis using Recurrent Neural Net-
works (RNNs) and machine translation has been
explored in (Mahajan and Chaudhary, 2018). This
study investigates the feasibility and effective-
ness of performing multilingual sentiment analy-
sis through machine translation, particularly with
the use of Google Translate. It reveals that the
performance of machine translation in sentiment
analysis diverges from that of human expert trans-
lations, especially regarding the accuracy of emo-
tional expression and semantic similarity (Balahur
and Turchi, 2012). This paper further explores the
variations in sentiment analysis during the transla-
tion process, such as differences in emotional ex-
pression across languages and the impact of trans-
lation on sentiment polarity (Mohammad et al.,
2016). By analyzing users’ emotions in real time,
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Model

Number of Supported Languages

BERT (Koroteev, 2021)
RoBERTa (Liu et al., 2019)
ALBERT (Lan et al., 2019)
DistilBERT (Sanh et al., 2019)
ELECTRA (Clark et al., 2020)
DeBERTa (He et al., 2021)
mBERT (Devlin et al., 2019)

1 (English, or language-specific variants)

1 (English)

1 (English)

1 (English)

1 (English)

1 (English)
100+ (Multilingual)

Table 1: Number of languages supported by different Transformer-based models.

the dialogue system can adjust its strategy to better
guide the conversation (Luo et al., 2024; Zheng
et al., 2024).

In a related vein, (Assiri et al., 2024) introduces
a sentiment analysis model based on DeBERTa,
which enhances classification performance by in-
tegrating a Gated Recurrent Unit (GRU). Further-
more, a hybrid model called Instruct-DeBERTa
is proposed, combining InstructABSA for aspect
extraction with DeBERTa-V3-base for sentiment
classification, thereby improving the accuracy
and reliability of fine-grained sentiment analysis
(ABSA) (Jayakody et al., 2024). The study also ap-
plies the DeBERTa model to gender bias detection
tasks using a transfer learning approach, demon-
strating its potential in cross-lingual sentiment anal-
ysis and bias detection (Ta et al., 2022).

3 Methodology

Given the limitations of directly training a multi-
lingual model, translating target language text into
English and utilizing English sentiment analysis
tools has proven effective for cross-lingual senti-
ment analysis. Experimental results show that the
ELSA model significantly improved performance
across multiple tasks (Chen et al., 2019). Addi-
tionally, cross-lingual models have shown strong
performance in sentiment detection, notably when
leveraging translated English data and fine-tuned
contextual embeddings (Hassan et al., 2022).

After translation, we used the DeBERTa model
for emotion classification. DeBERTa, an advanced
Transformer-based model, improves upon BERT
and RoBERTa with disentangled attention and abso-
lute position embeddings, which enhance its ability
to capture complex linguistic and contextual infor-
mation. Please refer to Figure 1 for details on the
method.
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Translation Engine | Language Support
Google Translate 100+ languages
DeepL Translator 29 languages

Microsoft Translator
Amazon Translate
Baidu Translate

70+ languages
55+ languages
28 languages

Table 2: Comparison of translation engines

3.1 Task Overview

The monolingual track of Subtask A (Muhammad
et al., 2025): Multi-label Emotion Detection fo-
cuses on identifying the perceived emotions in a
given text snippet. Specifically, the task requires de-
termining whether each of the following emotions
is present: anger, disgust, fear, joy, sadness, and
surprise. Each emotion is treated as an indepen-
dent label, meaning the text can be associated with
multiple emotions simultaneously. The dataset in-
cludes annotated training data with gold emotion
labels. Notably, the inclusion of the disgust cate-
gory varies depending on the language.

The evaluation metric for Subtask A is the Fj-
score, calculated based on the predicted and gold
labels.

3.2 Method

We employed DeBERTa as our base model. First,
we modified the output head to predict multiple
emotions. Given an input sentence z, it is pro-
cessed through the DeBERTa model, which pro-
duces an output vector ¢. For each prediction, the
model outputs a vector

Y = [Y0, Y1, Y2, Y3, Y4, Y5)

corresponding to the predicted probabilities for
each emotion label. These predictions are then
compared with the true labels, and the loss is com-
puted based on this comparison.
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Figure 1: The sentiment analysis process using a transformer-based architecture with DeBERTa pretrained weights.
It processes text through multiple transformer layers to predict emotion categories such as anger, disgust, and

surprise.
The loss function is calculated as follows:

5
L==> yilog(y) )
=0

where y; is the true label and ¢; is the predicted
probability for each of the five emotions. This
loss is used to fine-tune the model, optimizing the
parameters through backpropagation.

Due to the presence of data instances that contain
all zeros (i.e., sequences like “no any emotion”)
and the imbalance of various sentiment distribu-
tions, we modified the output head of the model.
Instead of predicting all emotions simultaneously,
we restructured the output to predict each emotion
independently. Thus, the model predicts one emo-
tion at a time for each input sentence.

Given an input sentence zx, it is processed
through the DeBERTa model to obtain a hidden
representation. The model then predicts the senti-
ment for one specific emotion from the set

Y = Y0, Y1, Y2, Y3, Y4, Y5]

where each y; corresponds to a predicted proba-
bility for one of the six emotions (anger, disgust,
fear, joy, sadness, and surprise). The predictions
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Table 3: Each Emotion Frequency Count

Emotion | Frequency
Anger 11459
Disgust 10789
Fear 6761
Joy 13182
Sadness 12311
Surprise 7635

are then compared with the true label ytyye, and
the loss is computed.

The loss function used for training each indepen-
dent model is calculated as follows:

L; = —y;log(y;) — (1 —y;) log(1 —3;) (2)

where g; is the predicted probability for the ¢-th
emotion, and y; is the true binary label (1 for the
presence of the emotion, and O for the absence).
This loss is computed for each of the six models,
where each model is independently fine-tuned to
predict one specific emotion.

The final model is trained by aggregating the
losses of all six emotion-specific models, optimiz-
ing the parameters for each model using backprop-
agation.



Table 4: Comparative Performance of Multi-Emotion Classification Models (Swapped Variants)

Emotion Variant One Prediction Completed Modified Prediction Headers
Acc F1 Recall Precision | Acc F1 Recall Precision
+Focal Loss+R-Drop | 0.527 0.325 0.297 0.512 | 0.847 0.701 0.679 0.741
Anger +Focal Loss 0.615 0.426 0.421 0.529 |0.823 0.453 0.501 0.661
Base 0.517 0.395 0.424 0.510 | 0.617 0.529 0.568 0.564
+Focal Loss+R-Drop | 0.615 0.361 0.389 0.531 | 0.828 0.473 0.501 0.630
Disgust  +Focal Loss 0.623 0.342 0.367 0.453 | 0.829 0.453 0.500 0.415
Base 0.502 0.380 0.409 0.512 | 0.622 0.517 0.556 0.547
+Focal Loss+R-Drop | 0.643 0.395 0.365 0.462 0.905 0.778 0.746 0.828
Fear +Focal Loss 0.587 0.362 0.354 0.476 | 0.877 0.585 0.543 0.810
Base 0.511 0.308 0.305 0.409 |0.795 0.616 0.635 0.606
+Focal Loss+R-Drop | 0.738 0.563 0.521 0.625 | 0.859 0.768 0.753 0.789
Joy +Focal Loss 0.690 0.512 0.497 0.541 | 0.825 0.647 0.622 0.770
Base 0.654 0.437 0.420 0.561 | 0.786 0.534 0.543 0.639
+Focal Loss+R-Drop | 0.616 0.338 0.312 0.414 | 0.843 0.475 0.508 0.775
Sadness  +Focal Loss 0.655 0.441 0.425 0.467 0.845 0.461 0.502 0.923
Base 0.589 0.360 0.377 0.430 | 0.592 0.500 0.555 0.531
+Focal Loss+R-Drop | 0.628 0.422 0.389 0.477 0.917 0.689 0.645 0.803
Surprise  +Focal Loss 0.602 0.389 0.362 0.453 | 0.899 0.476 0.501 0.617
Base 0.561 0.390 0.360 0.467 | 0.883 0.593 0.578 0.644

Bold values indicate the highest performance in each metric column. Variant labels Base and +Focal Loss+R-Drop have been
swapped compared to the original data.

3.3 Data Imbalance

The label distribution in our training dataset (Ta-
ble 3), consisting of 60,000 (Belay et al., 2025)
instances, reveals significant class imbalances. Of
these, 15,481 instances are labeled as all-zero (neu-
tral or irrelevant), and 10,165 are labeled as joy,
the most dominant emotion. Sadness follows with
7,305 instances.

This imbalance, combined with overlapping
emotions (e.g., anger and fear), leads to a model
bias towards more frequent emotions, particularly
Jjoy and sadness, while underperforming rare emo-
tions like surprise and disgust.

3.4 Improvement Strategies

Focal Loss. During our experiments, we identi-
fied a significant class imbalance in our dataset,
with emotions like joy and sadness being overrep-
resented, while surprise and disgust were underrep-
resented. This imbalance caused the model to be
biased toward the dominant classes, impacting its
ability to detect less frequent emotions. To address
this, we incorporated Focal Loss to re-balance the
loss function, focusing more on harder-to-classify,
underrepresented emotions.

Focal Loss down-weights the loss for well-
classified examples and increases the focus on
harder ones, ensuring that the model learns effec-
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tively across all emotion categories. The function
is defined as:

3)

where «; is a weighting factor to balance class
imbalances, p; is the predicted probability for the
true class, and + is the focusing parameter that
controls the attention on hard-to-classify examples

(typically v > 0).

Lfocal = _at(l - pt)7 log(pt)

R-Drop. In addition to class imbalance, we ob-
served instability in the loss function during train-
ing, leading to suboptimal generalization. To
address this, we applied R-Drop (Regularized
Dropout), a regularization technique that stabilizes
the loss function by encouraging consistency across
multiple forward passes of the same input. This
improves the model’s generalization capability.
The total loss function with R-Drop is a combi-
nation of cross-entropy loss and consistency loss:

)

By minimizing this combined loss, R-Drop helps
reduce variance in training and improves model
stability.

Ltotal = LCE + )\Lcon

4 Experimentation

To evaluate the effectiveness of our approach, we
conducted a series of experiments. These experi-



Table 5: Emotion Classification Scores for Different Languages

Language Macro 1 Micro Fi  Anger Disgust Fear Joy Sadness Surprise
Afrikaans 0.4353 0.4406 0.5658 0.4356 0.2933 0.4521  0.4298 Nan
Ambharic 0.4758 0.5674 0.6030 0.6225 0.2727 0.5553  0.5687 0.2326
German 0.6030 0.7054 0.8253 0.7650 0.4096 0.7016  0.6738 0.2427
Spanish 0.7314 0.7340 0.7435 0.7359 0.8139 0.7729  0.7866 0.5355
Hindi 0.8221 0.8226 0.8319 0.7710 0.8993 0.8375 0.8173 0.7756
Marathi 0.8199 0.8186 0.8231 0.7251 0.9017 0.7787 0.8143 0.8765
Oromo 0.4013 0.4390 0.4325 0.3432 0.2317 0.6176  0.3742 0.4085
Portuguese (Brazil) 0.5321 0.6261 0.7266  0.2260 0.4977 0.7113 0.7101 0.3209
Russian 0.7990 0.8021 0.8577 0.7541 0.9401 0.8862  0.6961 0.6595
Somali 0.3825 0.4433 0.3832 0.0662 0.4306 0.5997 0.5754 0.2400
Sundanese 0.4898 0.6178 0.4348 0.4444 0.2093 0.7489  0.7529 0.3482
Tatar 0.7050 0.7388 0.6826  0.6952 0.8062 0.8773  0.7865 0.3822
Tigrinya 0.2822 0.3552 0.2689 0.5311 0.1416 0.3504  0.3593 0.0417
Arabic (Algerian) 0.4437 0.4660 0.5160 0.3826 0.5376 0.4891  0.5854 0.1515
Arabic (Moroccan) 0.4838 0.5415 0.5849 0.3281 0.4655 0.6966  0.6715 0.1558
Chinese (Mandarin) 0.5582 0.6776 0.8370 0.4837 0.4071 0.8498  0.6069 0.1647
Hausa 0.4998 0.5357 0.5742 0.4898 0.4101 0.5587  0.6840 0.2823
Kinyarwanda 0.4432 0.5040 0.5149 0.3053 0.3564 0.6195 0.5861 0.2766
Nigerian Pidgin 0.4455 0.4556 0.3574 0.3915 0.4000 0.7399 0.6127 0.1713
Portuguese (Mozambique)  0.3857 0.4593 0.2925 0.0816 0.5283 0.4902  0.6282 0.2933
Swahili 0.3130 0.3355 0.4019 0.2996 0.2105 0.4558  0.4193 0.0906
Swedish 0.5219 0.7215 0.7474 0.7021 0.2188 0.8855  0.5199 0.058
Ukrainian 0.5693 0.6019 0.5103 0.4082 0.7035 0.7093 0.6389 0.4456
Emakhuwa 0.0457 0.0538 0.0857 0.0000 0.1127 0.0000 0.0759 0.0000
Yoruba 0.2606 0.3599 0.2090 0.1829 0.1905 0.2745  0.6092 0.0976
Igbo 0.3658 0.4160 0.4461 0.4526 0.2514 0.4823  0.3575 0.2047
Romanian 0.6018 0.6453 0.628 0.4733 0.7717 0.9371  0.6346 0.1663

ments focused on comparing the tasks of predicting
a single emotion and predicting two emotions si-
multaneously while also investigating the impact
of Focal Loss and R-Drop regularization through
ablation studies. All experiments were performed
under identical experimental conditions to ensure
consistency and comparability of results.

In our setup, we modified the prediction head
of the DeBERTa model, enabling it to predict one
emotion at a time and two emotions at once. The
model was fine-tuned for emotion classification,
predicting six distinct emotions: anger, disgust,
fear, joy, sadness, and surprise.

4.1 Modify Prediction Heads

Table 4 shows significant improvements in emotion
classification when combining Focal Loss and R-
Drop with the base DeBERTa model. For most
emotions, the base model using the Focal Loss and
R-Drop configuration yielded the highest accuracy,
F1-score, recall, and precision.

These results demonstrate that Focal Loss and
R-Drop stabilize the loss function and improve per-
formance on underrepresented emotions, making
the base model using the Focal Loss and R-Drop
configuration the most effective for emotion classi-
fication in this study.
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4.2 One Prediction Completed

Table 4 also indicates that the Focal Loss and R-
Drop base model provides the most robust perfor-
mance across all emotion categories, effectively
addressing both class imbalance and generaliza-
tion challenges. Therefore, this configuration is
deemed optimal for multi-emotion classification
tasks. However, compared to the previous approach
of Modify Prediction Heads, this configuration
yields better performance in terms of accuracy and
precision, proving to be a more practical solution
for tackling the challenges in emotion classifica-
tion.

5 Conclusions

This study presents the YNU-HPCC team and the
participation in SemEval-2025 Subtask A of Task
11. We made predictions for 29 languages and
used DeBERTa as the baseline model. We modi-
fied the prediction head to allow for independent
predictions in each instance. Our proposed model
demonstrated its effectiveness in addressing this
task. Among the various results we submitted, the
combination of Focal Loss, R-Drop, and DeBERTa
achieved the highest score of 0.44 in Table 5. Fu-
ture research will focus on enhancing accuracy in



multilingual sentiment analysis.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (NSFC) under Grant
Nos. 61966038 and 62266051. We would like to
thank the anonymous reviewers for their construc-
tive comments.

References

Adel Assiri, Abdu Gumaei, Faisal Mehmood, Tougeer
Abbas, and Sami Ullah. 2024. Deberta-gru: Senti-
ment analysis for large language model. Computers,
Materials & Continua, 79(3).

Lukasz Augustyniak, Szymon WoZniak, Marcin Gruza,
Piotr Gramacki, Krzysztof Rajda, Mikotaj Morzy,
and Tomasz Kajdanowicz. 2024. Massively multilin-
gual corpus of sentiment datasets and multi-faceted
sentiment classification benchmark. Advances in
Neural Information Processing Systems, 36.

Alexandra Balahur and Marco Turchi. 2012. Multilin-
gual sentiment analysis using machine translation?
In Proceedings of the 3rd workshop in computational

approaches to subjectivity and sentiment analysis,
pages 52-60.

Carmen Banea, Rada Mihalcea, and Janyce Wiebe.
2011. Multilingual sentiment and subjectivity analy-
sis. Multilingual natural language processing, 6:1—
19.

Tadesse Destaw Belay, Isracl Abebe Azime, Abinew Ali
Ayele, Grigori Sidorov, Dietrich Klakow, Philip
Slusallek, Olga Kolesnikova, and Seid Muhie Yimam.
2025. Evaluating the capabilities of large language
models for multi-label emotion understanding. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 3523-3540, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Zhenpeng Chen, Sheng Shen, Ziniu Hu, Xuan Lu,
Qiaozhu Mei, and Xuanzhe Liu. 2019. Emoji-
powered representation learning for cross-lingual sen-
timent classification. In The world wide web confer-
ence, pages 251-262.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Hongliang Fei and Ping Li. 2020. Cross-lingual un-
supervised sentiment classification with multi-view

88

transfer learning. In Proceedings of the 58th annual
meeting of the association for computational linguis-
tics, pages 5759-5771.

Sabit Hassan, Shaden Shaar, and Kareem Darwish. 2022.
Cross-lingual emotion detection.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Dineth Jayakody, AVA Malkith, Koshila Isuranda,
Vishal Thenuwara, Nisansa de Silva, Sachintha Ra-
jith Ponnamperuma, GGN Sandamali, and KLK Sud-
heera. 2024. Instruct-deberta: A hybrid approach for
aspect-based sentiment analysis on textual reviews.
arXiv preprint arXiv:2408.13202.

Pavel Koroteev. 2021. Bert: A review of applications
in natural language processing and understanding.
arXiv preprint arXiv:2103.14204.

Zhenzhong Lan, Ming Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xiang Luo, Zhiwen Tang, Jin Wang, and Xuejie Zhang.
2024. Zero-shot cross-domain dialogue state track-
ing via dual low-rank adaptation. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL 2024), pages 5746—
5765.

Dipti Mahajan and Dev Kumar Chaudhary. 2018. Sen-
timent analysis using rnn and google translator. In
2018 8th international conference on cloud comput-

ing, data science & engineering (Confluence), pages
798-802. IEEE.

Saif M Mohammad, Mohammad Salameh, and Svetlana
Kiritchenko. 2016. How translation alters sentiment.
Journal of Artificial Intelligence Research, 55:95—
130.

Shamsuddeen Hassan Muhammad, Nedjma Ousidhoum,
Idris Abdulmumin, Seid Muhie Yimam, Jan Philip
Wahle, Terry Ruas, Meriem Beloucif, Christine
De Kock, Tadesse Destaw Belay, Ibrahim Said Ah-
mad, Nirmal Surange, Daniela Teodorescu, David Ife-
oluwa Adelani, Alham Fikri Aji, Felermino Ali,
Vladimir Araujo, Abinew Ali Ayele, Oana Ignat,
Alexander Panchenko, Yi Zhou, and Saif M. Mo-
hammad. 2025. SemEval task 11: Bridging the gap
in text-based emotion detection. In Proceedings of
the 19th International Workshop on Semantic Evalu-
ation (SemEval-2025), Vienna, Austria. Association
for Computational Linguistics.


https://aclanthology.org/2025.coling-main.237/
https://aclanthology.org/2025.coling-main.237/
http://arxiv.org/abs/2106.06017

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Prerana Singhal and Pushpak Bhattacharyya. 2016. Bor-
row a little from your rich cousin: Using embeddings
and polarities of english words for multilingual senti-
ment classification. In Proceedings of COLING 2016,
the 26th international conference on computational
linguistics: Technical papers, pages 3053-3062.

Hoang Thang Ta, Abu Bakar Siddiqur Rahman, Lotfol-
lah Najjar, and Alexander F Gelbukh. 2022. Transfer
learning from multilingual deberta for sexism identi-
fication. In IberLEF @ SEPLN.

Guangmin Zheng, Jin Wang, Liang-Chih Yu, and Xuejie
Zhang. 2024. Instruction tuning with retrieval-based
examples ranking for aspect-based sentiment analy-
sis. In Findings of the Association for Computational
Linguistics ACL 2024, pages 4777-4788.

89



I2R-NLP at SemEval-2025 Task 8: Question Answering on Tabular Data

Yuze Gao, Bin Chen, Jian Su
A*STAR
{gaoy1,bchen,sujian}@i2r.a-star.edu.sg

Abstract

We present a Large Language Model (LLM)
based system for question answering (QA) over
tabular data that leverages multi-turn prompt-
ing to automatically generate executable Pan-
das functions. Our framework decomposes
the problem into three key steps: (1)Answer
Type Identification, where the system identi-
fies the expected format of the response (e.g.,
boolean, number, category); (2) Pandas Func-
tion Generation, which generates a correspond-
ing Pandas function using table metadata and
in-context examples, and (3) Error Correc-
tion and Regeneration, where iteratively re-
fining the function based on error feedback
from executions. Evaluations on the SemEval-
2025 Task 8 Tabular QA benchmark (Grijalba
et al., 2024) demonstrate that our multi-turn
approach significantly outperforms single-turn
prompting models in exact match accuracy
by 7.3%. The proposed system not only im-
proves code generation robustness but also
paves the way for enhanced and adaptability in
table-QA reasoning tasks. Our implementation
is available at https://github.com/Gyyz/
Question_Answering-over-Tabular-Data.

1 Introduction

Answering natural language queries over tabular
data requires a deep understanding of both linguis-
tic nuances and structured data semantics. Tra-
ditional systems rely on rule-based approaches
or parsing pipelines to translate questions into
database queries (e.g., SQL). While effective in
constrained domains, these approaches often de-
mand significant manual engineering and domain
expertise (Zelle and Mooney, 1996; Woods, 1977).
These approaches can struggle with the complexi-
ties and ambiguities inherent in natural language.
In contrast, recent advances in large language mod-
els (LLMs) have enabled prompt-based code gener-
ation, offering a promising alternative for complex
reasoning tasks (Brown et al., 2020; Chen et al.,
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2021). LLMs have shown impressive capabilities
in generating code from natural language descrip-
tions, including for the task of Text-to-SQL (Yu
et al., 2018; Sun et al., 2023), which focuses on
translating natural language questions into SQL
queries. However, single-turn prompts can fail to
capture all necessary subtleties, leading to gener-
ated code that is either syntactically or semantically
incorrect. This limitation highlights the need for
more sophisticated prompting strategies.

Our work addresses these challenges by introduc-
ing a multi-turn prompting framework that engages
the LLM in several refinement iterations. Unlike
single-turn generation, our approach mirrors the
iterative debugging process of human developers
by correcting early mistakes and reinforcing the un-
derstanding of ambiguous queries. This stepwise
process enables the system to produce executable
Pandas functions that precisely match the intended
output. This iterative refinement approach builds
upon the concept of interactive code generation
and human-in-the-loop Al for code, where human
feedback and interaction are used to improve the
quality and correctness of generated code. While
interactive code generation has been explored, our
specific application to generating Pandas functions
for tabular data queries with multi-turn LLM in-
teraction offers a novel contribution. The use of
Pandas, a crucial library for data manipulation in
Python, further motivates this work, as it enables
the seamless integration of generated code into data
science workflows.

2 Background

Over the past two years, the field of natural lan-
guage processing (NLP) has undergone rapid evo-
lution, largely driven by advances in large language
models (LLMs). Early approaches were predomi-
nantly task-specific, demonstrating robust language
understanding but frequently encountering limita-
tions with respect to domain-specific tasks or com-
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plex, multi-step processes. The introduction of
transformer-based architectures significantly im-
proved scalability and generalization, paving the
way for more sophisticated LLMs.

Recent innovations—exemplified by GPT-based
models and open-source foundation models such as
Llama (Touvron et al., 2023)—have further broad-
ened the scope of potential applications by enhanc-
ing both data efficiency and the capacity to gen-
erate accurate, contextually appropriate responses
to complex problems. However, it is important to
note that our approach leverages human-prompted
multi-step workflows rather than relying on purely
model-driven multi-step reasoning. By incorporat-
ing iterative user input and guidance, we effectively
harness the strong language comprehension of mod-
ern LLMs while maintaining precise oversight of
the reasoning process.

(Brown et al., 2020) demonstrated the remark-
able few-shot learning abilities of large models,
revealing their potential to adapt to new tasks with
minimal examples. In parallel, (Wei et al., 2022) in-
troduced chain-of-thought prompting, a technique
that decomposes complex reasoning tasks into in-
termediate steps, thereby improving the clarity and
effectiveness of generated responses. Additionally,
models such as (Zettlemoyer and Collins, 2005)
and TAPAS(Herzig and Berant, 2020) have fo-
cused on bridging the gap between natural language
queries and structured query languages, especially
for tabular data.

Moreover, recent advances in Large Language
Models (LLMs) such as Llama 3.3 (Al@Meta,
2024) to handle more complex and specialized
tasks. Our approach builds upon these foundations
by integrating an iterative error correction mecha-
nism into the generation process, thereby ensuring
that the output is both syntactically correct and
semantically aligned with the intended query.

3 System Overview

Figure 1 provides an overview of our multi-turn
prompting system in an end-to-end method (ques-
tion to answer). The process begins with a user
query and table metadata, and proceeds through
three main stages, as described below.

3.1 Step 1: Answer Type Identification

The first step determines the expected answer
type for the question. Since our dataset supports
five distinct answer types (boolean, category,

91

list[category], list[number], and number),
this information is critical for generating a function
that produces output in the correct format.

To achieve this, we craft a prompt with in-
context examples that demonstrate the mapping
from natural language queries to their answer
types. For example, given a question like "Which
company has the highest revenue?”, the ex-
pected answer type is category. Code Block 2.1
in Appendix Section shows a snippet of the prompt
template used in this stage.

The LLM outputs the answer type appended with
a special delimiter (e.g., a sequence of # charac-
ters), which is subsequently extracted using simple
string operations. This preprocessing step is essen-
tial, as it ensures that the generated Pandas code
adheres to the required output format. In our exper-
iments on the development set and prompt template
environments, omitting the answer type guidance
resulted in a decrease in accuracy from 87% to
approximately 82%.

3.2 Step 2: Pandas Function Generation

In the second step, the system generates an initial
Pandas function that can answer the query. The
prompt for this step is carefully constructed to in-
clude:

1). The User Question.

2). The predicted Answer Type from Step 1.

3). Table Metadata such as column names, col-
umn types, and sample rows from the correspond-
ing database.

4). A set of Example Shots demonstrating
similar question-to-function mappings.

The process can be divided into two sub-steps:

(I) Retrieving Similar Shots: To improve the ac-
curacy of our generated code, we curated a dataset
consisting of pairs of User Questions and their
corresponding gold-standard Pandas Functions,
which produce correct outputs upon execution. For
each new User Question, we first retrieve a subset
of training examples that share the same answer
type. From this subset, we select k samples with
semantically similar meanings. These examples
are then incorporated into the prompt, providing
the model with additional context to generate an
appropriate Pandas function for a similar question.
The aggregation process for these examples is il-
lustrated in Code Snippet 2.2.1 in the Appendix.

(II) Composing the Prompt: With the simi-
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Figure 1: Overview of the multi-turn prompting system for tabular question answering. The figure illustrates the
step-by-step process from initial query analysis to final answer extraction, highlighting the iterative error correction

loop.

lar shots integrated, we construct a comprehen-
sive prompt that incorporates additional context.
Specifically, the prompt includes (1) general shot
examples, (2) the user question, (3) column names
and types, and (4) row samples from the relevant
database. Code Snippet 2.2.2 in the Appendix pro-
vides an excerpt of the prompt composition.

Once the LLM generates the function (again end-
ing with a special delimiter), we extract and execute
the code. If the generated code produces the cor-
rect output, it is returned as the answer. This stage
emphasizes the importance of precise prompt en-
gineering in eliciting correct and executable code
from the LLM.

3.3 Step 3: Error Correction and
Regeneration

In real-world scenarios, generated code may occa-
sionally fail during execution. Our system includes
an error-handling loop that:

* Captures the Error Message from the failed
execution.

* Combines this message with the original
query, table metadata, and a concise descrip-
tion of the intended functionality.

* Retrieves additional example shots that illus-
trate proper error correction.
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The error-correction prompt is designed to guide
the LLM in revising the faulty function, below is
an example.

Category | Content

Pandas Fn. | df[’Item’].dt.date.
nunique()

Error Msg. | Can only use .dt accessor
with datetimelike values

Correction | df[’date_time’].dt.date.
nunique()

An example template is also shown in Code Snip-
pet for Step 3, where all the placeholder fields are
formatted with the information from Step 2 and the
relevant Metadata.

This iterative error correction mechanism not
only enhances overall accuracy but also improves
the system’s resilience to minor syntactic and log-
ical errors. The process emulates a human devel-
oper’s workflow: debugging, refining, and retesting
until a robust solution is achieved. In this study, we
set the loop depth to 3, and the experimental results
demonstrate a reduction in the execution error rate
from 12% to approximately 3%.


df['Item'].dt.date.nunique()
df['Item'].dt.date.nunique()
df['date_time'].dt.date.nunique()
df['date_time'].dt.date.nunique()

4 Experimental Setup

4.1 Dataset and Evaluation Metrics

We evaluate our system on SemEval 2025 Task 8
Benchmark on a tabular QA. The dataset comprises
tables from various domains along with correspond-
ing natural language questions. We adhere to the
official data splits and measure performance using:
Exact Match Accuracy: The percentage of
system-generated outputs that exactly match the
gold-standard answers. Additionally, we report ex-
ecution success rates to account for cases where
minor formatting issues might otherwise obscure
correct reasoning.

4.2 Implementation Details

Our experiments are conducted using the Llama
3.3 70B Instruct model, accessed via the
transformers Python package. The model is de-
ployed on a GPU server equipped with 6 NVIDIA
A6000 GPUs. 4 of the GPUs are employed for the
inferring process. To optimize for speed and mem-
ory efficiency, we load the Llama 70B model using
quantization methods during the referring process.
This quantization significantly reduces computa-
tional overhead while preserving the model’s per-
formance for generating and refining Pandas func-
tions.

4.3 Baselines and Models

Baseline:

Single-Turn Prompting The LLM (quantized
70B) is prompted once to generate a Pandas func-
tion without subsequent error correction. Addi-
tionally, the Golden Answer Type information is
provided instead of relying on the prediction from
(Step 1), emphasizing the advantages of our multi-
turn approach.

5 Results

Table 1 summarizes the performance of our multi-
turn prompting system in comparison to the base-
line on both Development and Testing Sets.

The multi-turn prompting framework exhibits
a marked improvement over single-turn prompt-
ing, achieving higher accuracy and more robust
handling of execution errors.

5.1 Discussion

The experimental results confirm that our multi-
turn approach substantially improves the accuracy
and reliability of automatically generated Pandas
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functions for tabular QA. Although the iterative
refinement process introduces additional computa-
tional overhead, the increased robustness and error-
correction capability justify the trade-off. Several
key observations emerge from our study:

Error Sensitivity: Our approach incorporates
an error-correction loop that leverages targeted
feedback to systematically address both syntactic
and semantic errors. This mechanism is highly
effective, as demonstrated by a reduction in the
execution error rate from 12% to approximately
3% . Such a significant improvement underscores
the robustness of our method in refining the outputs
generated by the language model.

In-Context Learning: By integrating similar
examples directly into the input, we enhance the
large language model’s ability to generalize across
a wide range of table schemas and query patterns.
This in-context learning strategy contributes to a
performance improvement of around 2% in our
experimental evaluations. The results indicate that
providing contextual examples not only aids in
comprehension but also improves the overall re-
liability of the model’s predictions. We provide a
table in the appendix for the detailed information.

Scalability: Although our current experiments
have focused on relatively small tables, we recog-
nize the importance of validating our approach on
larger, real-world datasets. Future work will be
directed towards extending the system’s scalability
while ensuring that its accuracy and efficiency are
maintained in more complex environments. This
exploration will be critical for adapting the sys-
tem to practical applications where data size and
variability are significantly higher.

Information Utilization: Our model architec-
ture strategically leverages various types of infor-
mation across different processing stages, with
each element playing a distinct role in enhanc-
ing performance. For instance, the inclusion of
‘Column_Types¢ does not adversely affect perfor-
mance during the initial processing stage (Step
1); however, it significantly contributes to perfor-
mance in the later stage (Step 3). Moreover, the
‘Answer_Type‘ is particularly valuable in guiding
the language model to generate the correct function
corresponding to the user’s query.

5.2 Performance Gap on Dev and Test Sets

Our system achieves an approximate exact match
accuracy of 85% on the development set but only



Model

Databench (Acc. %)

Databench(lite) (Acc. %)

Baseline (on Dev) 69.25
Steps (Ours) on Dev 87.19
Steps (Ours) on Test 80.65

67.38
83.44
77.25

Table 1: Performance comparison on the tabular QA task. The multi-turn framework achieves notable gains on both
the development and test sets, demonstrating the effectiveness of iterative refinement.

around 77 % on the test set. Since our approach
leverages a pre-trained LLM and does not involve
traditional fine-tuning, overfitting is unlikely to be
the primary cause of this discrepancy. A prelimi-
nary analysis suggests that the test set includes a
higher frequency of queries requiring ‘List® type
answers, which may expose limitations in our cur-
rent postprocessing strategy. The potential issues
include:

Format Sensitivity: The exact match metric de-
pends on strict string-level comparisons. Even if
the LLM generates semantically correct answers,
slight variations in formatting such as whitespace,
punctuation, or line breaks can lead to mismatches.
Our postprocessing pipeline has not fully normal-
ized these variations, causing correct answers to be
marked as incorrect.

Output Format Mismatch: In some cases, the
generated Pandas function is executable and re-
turns the correct data, but the output format does
not align with the expected answer format. For ex-
ample, the correct answer might be returned within
a list or nested structure, whereas our evaluation
expects a simple scalar or a specific string repre-
sentation. Such discrepancies directly impact the
exact match accuracy.

Imprecision in Postprocessing: The current
postprocessing procedures are not fully robust
against the variability of LLM outputs. Minor in-
consistencies in parsing or converting the returned
output can lead to errors. This imprecision means
that even correct executions may not be reflected
accurately in the final evaluation metric.

5.3 Limitations

One limitation of our model is its reliance on rudi-
mentary, unoptimized postprocessing. Like the
baseline, it converts execution output into a string
without advanced techniques. The Appendix pro-
vides details (see Code Snippet). Future work will
enhance normalization and adopt flexible matching
to better capture correct answers despite format
variations. Additionally, using a general LLM may
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limit task-specific performance; replacing it with
fine-tuned LLMs at different stages could yield
better results.

6 Conclusion

We have presented a multi-turn prompting frame-
work for the automated generation of Pandas func-
tions in tabular question answering. By decompos-
ing the problem into answer type extraction, initial
function generation, and error-driven refinement,
our system achieves substantial improvements over
single-turn prompting and fine-tuned models. Our
experiments demonstrate that multi-turn prompting
enhances both accuracy and robustness, offering
a promising direction for future research in table
reasoning and prompt-based code generation.

7 Future Work

Looking ahead, we plan to explore several avenues
for further improvement. In particular, we intend
to:

1). Develop more sophisticated postprocessing
techniques to handle format variations and improve
exact match accuracy.

2). Extend our approach to support larger and
more complex tables and domain-specific datasets.

3). Investigate the integration of additional feed-
back loops that can adaptively adjust prompt param-
eters based on real-time execution performance.

These directions aim to enhance both the scala-
bility and the reliability of our system in real-world
applications.
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A Appendix
Code Snippet for Step 1

# Instruction: You are proficient in database and can easily tell the type of the
s retrieving answer for the question. Please complete the following function in
— one line. End your answer with ##HE####HH
answer_types = ['boolean', 'category', 'list[category]', 'list[number]', 'number']
# TODO: complete the following function in one line. It should give the answer
« type for: List the 3 patents (by ID) with the most number of claims.
def get_answer_type() -> str:
answer_types = ['boolean', 'category', 'list[categoryl]', 'list[number]',
< 'number']
question = "List the 3 patents (by ID) with the most number of claims.”
return 'list[number]' #HHHHHHHHHHH

# TODO: complete the following function in one line. It should give the answer
— type for: Which graphext cluster is the most common among the patents?
def get_answer_type() -> str:

answer_types = ['boolean', 'category', 'list[categoryl]', 'list[number]',
< 'number']
question = "Which graphext cluster is the most common among the patents?”

return 'category' #HH#HHHEHE

# TODO: complete the following function in one line. It should give the answer
— type for: List the 2 most common types of patents in the dataset.
def get_answer_type() -> str:

answer_types = ['boolean', 'category', 'list[category]', 'list[number]',
< 'number']
guestion = "List the 2 most common types of patents in the dataset.”

return 'list[category]' #i##HHHHHHH

# TODO: complete the following function in one line. It should give the answer
« type for: Is the most favorited author mainly communicating in Spanish?.
def get_answer_type() -> str:

answer_types = ['boolean', 'category', 'list[category]l', 'list[number]',
< '"number']
question = "Is the most favorited author mainly communicating in Spanish?”

return 'list[category]' #it##HHHHHHHE

# TODO: complete the following function in one line. It should give the answer
« type for: {question (placeholder)}
def answer() -> str:
answer_types = ['boolean', 'category', 'list[categoryl]', 'list[number]',
< 'number']
question = {question (placeholder)}
return

Code Snippet for Step 2.2.1

nn

similar_shot_content =
for sid, shot in enumerate(shots):
similar_shot_content += """
# example {5+sid}, similar case
# TODO: complete the following function in one line. The response type is one of

96




# ['boolean', 'category', 'list[category]', 'list[number]', 'number'].
def answer(df: pd.DataFrame) -> category:

df.columns = {shot['columns']}

df.column_types = {str(shot['column_types'])}

return {shot['df_func'1} #it#HHH#H#HAH

nnn

Code Snippet for Step 2.2.2

nnn

prompt =
# Instruction: You are proficient in pandas and its functions to retrieve data

— from a dataframe. Please complete the following function in one line. Be

— careful with the case, whitespaces and special characters in the column name.
— End your answer with ######H###HH##

# example 1
# TODO: complete the following function in one line, response type in ['boolean',
— 'category', 'list[categoryl', 'list[number]', 'number']. It should give the
<« answer to: How many rows are there in this dataframe?
def answer(df: pd.DataFrame) -> number:

df.columns=["A"]

return df.shapel Q] #HHHHHH#HHHHH
# example 2
# TODO: complete the following function in one line, response type in ['boolean',
— 'category', 'list[categoryl', 'list[number]', 'number']. It should give the
— answer to: What are the column names of this dataframe?
def answer(df: pd.DataFrame) -> list[category]:

return df.columns.tolist() #####H#HHH#H#H

# example 3, complex level
# TODO: complete the following function in one line, response type in ['boolean',
— ‘'category', 'list[category]', 'list[number]', 'number']. It should give the
< answer to: List the top 5 ranks of billionaires who are not self-made.
def answer(df: pd.DataFrame) -> list[number]:
df.columns = 'rank', 'personName', 'age', 'finalWorth', 'category', 'source',
— 'country', 'state', 'city', 'organization', 'selfMade', 'gender',
< 'birthDate', 'title', 'philanthropyScore', 'bio', 'about']
return df.loc[df['selfMade'] == False].head(5)['rank'].tolist() ##i#HHH#HIHHH

# example 4, complex level
# TODO: complete the following function in one line, response type in ['boolean',
— 'category', 'list[categoryl', 'list[number]', 'number']. It should give the
— answer to: Which category does the richest billionaire belong to?
def answer(df: pd.DataFrame) -> category:
df.columns = ['rank', 'personName', 'age', 'finalWorth', 'category', 'source',
« 'country', 'state', 'city', 'organization', 'selfMade', 'gender',
— 'birthDate', 'title', 'philanthropyScore', 'bio', 'about']
return df.loc[df['finalWorth'].idxmax()1['category'] #i####H####H
if ('similiar_shots' in global_config.features):
prompt += similiar_shot_content

prompt += fl! nn
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# TODO: complete the following function in one line, response type in ['boolean',
— ‘'category', 'list[category]', 'list[number]', 'number']. It should give the
< answer to: {question}
def answer(df: pd.DataFrame) -> {row["type"]1}:

df.columns = {list(df.columns)} # column names
if 'col_types' in global_config.features:

prompt += f"""

df.column_types = {str([itm.name for itm in df.dtypes])} # column types

nnn

if 'row_samples' in global_config.features:
prompt +: _Fll nn
first{global_config.database_sample_number}_row_samples =
— {df.head(global_config.database_sample_number).to_dict(orient="'records')}

nnn

nnn

prompt +=
return

nnn

nnn

Code Snippet for Step 3

#Instruction: You are proficient in pandas and its functions to retrieve data from
< a dataframe. Please complete the following function in one line. End your

— answer with ####HHHHHHH

# example 1

# Todo: Rewrite the pandas function based on the columns, the old function and the
— error message. It should give the right pandas function to: What is the

< average unit price?

def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

question = "What is the average unit price?”

columns = ['InvoiceNo', 'Country', 'StockCode', 'Description', 'Quantity',
« 'CustomerID', 'UnitPrice']

error_function = df[' UnitPrice'].mean()

error_message = ' UnitPrice' # unexpected whitespace

return df['UnitPrice'].mean() #iHHHH#HHAE

# example 2
# Todo: Rewrite the pandas function based on the columns, the old function and the
— error message. It should give the right pandas function to: What is the most
< commonly achieved educational level among the respondents?
def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

question = " What is the most commonly achieved educational level among the

< respondents?”
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columns = ['Are you registered to vote?', 'Which of the following best

— describes your ethnic heritage?', 'Who are you most likely to vote for on
election day?', 'Division', 'Did you vote in the 2016 Presidential
election? (Four years ago)', 'Weight', 'How likely are you to vote in the
forthcoming US Presidential election? Early Voting Open', 'State', 'County
FIPS', 'Who did you vote for in the 2016 Presidential election? (Four
years ago)', 'What is the highest degree or level of school you have
*completed* ?', 'NCHS Urban/rural', 'likelihood', 'Which of these best

s describes the kind of work you do?', 'How old are you?']

error_function = df['What is the highest degree or level of school you have
— *completed*?'].value_counts().idxmax()

error_message = "What is the highest degree or level of school you have

— *completed*?" # missed a whitespace

return df['What is the highest degree or level of school you have *completed*
— ?'J.value_counts().idxmax () #HH##H#HHHHHHH

L A A

# example 3

# Todo: Rewrite the pandas function based on the columns, the old function and the
<« error message. It should give the right pandas function to: Who are the top 2
— authors of the tweets with the most retweets?

def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

question = "Who are the top 2 authors of the tweets with the most retweets?”

columns = ['id<gx:category>', 'author_id<gx:category>',

— ‘'author_name<gx:category>', 'author_handler<gx:category>',
"author_avatar<gx:url>', 'user_created_at<gx:date>',
'user_description<gx:text>', 'user_favourites_count<gx:number>",
"user_followers_count<gx:number>', 'user_following_count<gx:number>",
'user_listed_count<gx:number>', 'user_tweets_count<gx:number>",
'user_verified<gx:boolean>', 'user_location<gx:text>',
'lang<gx:category>', 'type<gx:category>', 'text<gx:text>',
'date<gx:date>', 'mention_ids<gx:list[categoryl>',
'mention_names<gx:list[category]>', 'retweets<gx:number>',
'favorites<gx:number>', 'replies<gx:number>', 'quotes<gx:number>",
'links<gx:list[url]>"', 'links_first<gx:url>', 'image_links<gx:list[url]>",
"image_links_first<gx:url>', 'rp_user_id<gx:category>',
"rp_user_name<gx:category>', 'location<gx:text>', 'tweet_link<gx:url>',

— 'source<gx:text>', 'search<gx:category>']

error_function =

— df.nlargest(2, 'retweets')['author_name<gx:category>'].tolist()
error_message = 'retweets’

return df.nlargest(2,

< 'retweets<gx:number>')['author_name<gx:category>'].tolist() #H#HHHHHHH

A

# example 4
# Todo: Rewrite the pandas function based on the columns, the old function and the
— error message. It should give the right pandas function to: Is there a patent
— abstract that mentions 'software'?
def check_and_fix_function(question: str, columns: List[str], error_function: str,
< error_message: str) -> str:

guestion = "Is there a patent abstract that mentions 'software'?”
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columns = ['kind', 'num_claims', 'title', 'date', 'lang', 'id', 'abstract',

- 'type', 'target', 'graphext_cluster', 'organization']
error_function = ('software' in df['abstract'].values).any()
error_message = "'bool' object has no attribute 'any'"

return ('software' in df['abstract'].values) ##i#HHHH#H#HHA

# Todo: Rewrite the pandas function based on the columns, the old function and the
« error message. It should give the right pandas function to:
- {question(placeholder)}
def check_and_fix_function(question: str, columns: List[str], error_function: str,
— error_message: str) -> str:

question = {question(placeholder)}

column_names =  {column_names(placeholder)}
columns_types = {column_types(placeholder)?}
error_function = {error_function(placeholder)}
error_message = {error_message(placeholder)}
return

Code Snippet for Post-Processing

def post_process_ans_return(response):
Post-process the model's answer into a string representation.
Handles lists, scalars, pandas Series/DataFrame, and categorical data.

- Lists are converted to their string representation.
- Scalars are converted to strings.
- Pandas Series and DataFrames are converted by turning their elements into
— strings
and then using “.to_string() "~ to produce a readable result.
- Categorical data is handled by converting each element to a string.

nnn

# If response is None or already a string/scalar (int, float, bool, etc.),

— Jjust return str

if response is None or isinstance(response, (int, float, bool, str)):
return str(response)

# If response is a list, convert it to string
if isinstance(response, list):
return str(response)
# If it's a Pandas Series
if isinstance(response, pd.Series):
# Convert categorical or object dtype elements to string individually
# response = response.
response = response.to_list()
return str(response)
# If it's a Pandas DataFrame
if isinstance(response, pd.DataFrame):
# Convert all elements to string before using to_string
df_str = response.values.ravel().tolist()
return str(df_str)
# If it's some other type (e.g., numpy array or other objects), fallback to str
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return str(response)
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Abstract

This paper presents the approach we employed
in SemEval-2025 Task 11: “Bridging the Gap
in Text-Based Emotion Detection.” The core
objective of this shared task is emotion percep-
tion, focusing on determining the emotion the
speaker is likely expressing when uttering a sen-
tence or short text fragment, as perceived by the
majority. In this task, we applied a prompt opti-
mization strategy based on in-context learning,
combined with data augmentation and ensem-
ble voting techniques, to significantly enhance
the model’s performance. Through these opti-
mizations, the model demonstrated improved
accuracy and stability in emotion detection. Ul-
timately, in both Track A (Multi-label Emotion
Detection) and Track B (Emotion Intensity Pre-
diction), our approach achieved top-3 rankings
across multiple languages, showcasing the ef-
fectiveness and cross-lingual adaptability of our
method.

1 Introduction

Emotion recognition is one of the core tasks in the
field of Natural Language Processing (NLP), aim-
ing to identify and understand human emotional
states from texts, dialogues, and other forms of
data. With the rapid growth of data sources such
as social media, online reviews, and customer feed-
back, sentiment analysis has become an indispens-
able tool across various industries, particularly in
fields such as marketing, brand monitoring, public
opinion analysis, and mental health(Saffar et al.,
2023; Mohammad et al., 2018). Despite significant
progress in sentiment classification and prediction
tasks(Dadebayev et al., 2022; Zhang et al., 2024;
Liu et al., 2024), the subjective and complex na-
ture of emotions makes emotional expression more
challenging due to factors such as individual dif-
ferences, cultural background, and context. For

*Corresponding authors.

instance, people may have vastly different emo-
tional reactions to the same event, necessitating that
sentiment recognition systems possess enhanced
adaptability and flexibility to handle the complex
and varied expressions of emotions across diverse
contexts.

To address these challenges and bridge existing
gaps, SemEval-2025 Task 11: Bridging the Gap in
Text-Based Emotion Detection introduces a large-
scale emotion recognition dataset covering mul-
tiple languages(Muhammad et al., 2025a; Belay
et al., 2025), aimed at advancing emotion detection
technologies. This task consists of three sub-tasks:
Track A, Multi-label Emotion Detection; Track
B, Emotion Intensity; and Track C, Cross-lingual
Emotion Detection(Muhammad et al., 2025b). It
presents new challenges and opportunities for re-
searchers in the field of emotion recognition, par-
ticularly in handling cross-lingual and multi-label
sentiment tasks.

In this paper, we employed a prompt optimiza-
tion strategy based on in-context learning, com-
bined with data augmentation and ensemble voting
techniques, to significantly enhance the model’s
performance. Specifically, we dynamically ad-
justed the prompt designs to help the model better
understand and capture the subtle nuances of emo-
tional expressions. The data augmentation tech-
niques expanded the training set by generating syn-
thetic data, particularly for categories with fewer
emotion intensity samples, effectively addressing
the data imbalance issue. Furthermore, the ensem-
ble voting strategy, which combining predictions
from multiple models, further improved the accu-
racy and stability of emotion detection.

During the testing phase, we selected the opti-
mal model combination based on the results from
the validation set for submission. Our approach
achieved second place for Chinese in Track A, sec-
ond place for Chinese, and third place for English
in Track B.
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2 Relate Work

2.1 In-context Learning

In-context Learning (ICL) is an emerging machine
learning paradigm that enables models to learn and
infer without explicit training, by leveraging con-
textual information(Rubin et al., 2022; Dong et al.,
2022). The core of ICL lies in the model’s ability to
dynamically adapt to the given context, analyzing
examples or instructions within it to generate ap-
propriate outputs(Giray, 2023; Marvin et al., 2023).
This learning approach has shown great potential in
the field of Natural Language Processing (NLP), es-
pecially in few-shot learning scenarios, where mod-
els can understand task patterns through a small
number of examples(Li et al., 2024). The work-
ing principle of ICL can be broken down into two
parts: the learning algorithm computes a task vec-
tor from the context, and then the task vector is
used to modulate the model to generate outputs.

2.2 Prompt Engineering

Prompt Engineering refers to the process of design-
ing and optimizing text prompts that are fed into
large language models (LLMs)(Sahoo et al., 2024;
Wang et al., 2024; He et al., 2024). By carefully
crafting prompts with clear instructions, relevant
context, specific examples, and accurate inputs,
it guides LLMs to generate high-quality outputs
that meet expectations. Prompt Engineering has
a wide range of applications in text generation,
data augmentation, and question-answering sys-
tems, significantly enhancing the performance and
practicality of models across diverse application
scenarios(Chen et al., 2024; Shao and Li, 2025).

2.3 Data Augmentation

Data Augmentation is the process of generating
new training data to expand the dataset, thereby im-
proving the generalization performance of models.
In the field of natural language processing, tradi-
tional data augmentation methods often rely on
techniques such as synonym substitution, sentence
reconstruction, and context insertion(Hedderich
et al., 2021; Feng et al., 2021; Liu et al., 2023).
However, these methods are limited by the un-
derstanding of language, leading to lower-quality
synthetic data. With the widespread use of large
language models (LLMs), data augmentation tech-
niques have undergone significant advancements.
Leveraging the few-shot learning capabilities of
LLMs, large amounts of synthetic data can be gen-

erated for low-resource tasks(Chintagunta et al.,
2021; Mgller et al.; Li, 2022), and utilizing the
language understanding abilities of LLMs, vast
amounts of unlabeled data can be annotated for
cross-lingual tasks(Zhang et al., 2023; Meoni et al.,
2023).

2.4 Supervised Fine-tuning

Supervised Fine-Tuning (SFT)(Wei et al.) is the
process of further training a pre-trained model us-
ing a labeled dataset for a specific task. By guid-
ing the model to make predictions and inferences
based on labeled data, the model’s weights are ad-
justed to match the data distribution of the spe-
cific task(Honovich et al., 2023). SFT can signif-
icantly improve the model’s performance on par-
ticular tasks but requires high-quality labeled data
and sufficient computational resources(Liu et al.,
2022).

3 Methods

- Profile: You are an expert in sentiment analysis with extensive
experience in identifying and categorizing emotions embedded in text.
- Goals: To accurately identify and classify emotions contained in the
text. The candidate list of emotions is [anger, fear, joy, sadness,
surprise].
- Workflow:

1. Read and comprehend the given text.

2. Detect the emotions present in the text; if no specified emotion is
detected, output "no emotions".

3. Return the prediction in the format provided in the examples.
- Examples:

- Example 1: Input: "But not very happy." Output: joy,sadness

- Example 2: Input: "Still had sex with her, though." Output:joy

- Example 3: Input: "I still cannot explain this." Output: fear,surprise
- Input:

[input_text]
- Output:

Figure 1: Prompt example for multi-label emotion de-
tection

3.1 Track A: Multi-label Emotion Detection

In the multi-label emotion detection task, we pro-
pose a method that combines prompt design, data
augmentation, and model fine-tuning with ensem-
ble voting to enhance model performance.
Prompt Design: As shown in Figure 1, to guide
the model in understanding the task and improving
sentiment detection accuracy, we design diversified
prompts and, based on In-context learning, provide
rich example data within the prompts to help the
model capture more contextual information. Dur-
ing the optimization process, we employ a dynamic
prompt optimization procedure. Specifically, we
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test various prompt designs, including variations in
prompt construction, changes in the examples, and
emphasis on specific emotions. These prompts are
iteratively adjusted based on the model’s feedback.
For instance, if the model encounters difficulty in
detecting subtle emotional nuances, we optimize
the prompts by incorporating stronger emotional
cues or context that helps clarify the sentiment. In
selecting examples, we also compare the impact
of different example selection methods on the final
results. Through this iterative process, we ensure
that the model receives the most effective prompts,
thereby enhancing sentiment detection accuracy.

Data Augmentation: We first leveraged a large
language model (LLM) to create synthetic data
that aligns with the emotional characteristics of
the original training set. The objective was to en-
hance data diversity while maintaining label consis-
tency, ensuring no biased samples were introduced.
Subsequently, we initialized a pre-trained model
using the original training set and filtered the syn-
thetic data based on the model’s predictions. Only
samples with labels matching the original dataset
were retained, ensuring that the augmented data
preserved accurate emotion classifications without
introducing noise.

Model Fine-Tuning and Ensemble Voting:
During the model fine-tuning phase, we further
fine-tune the model using both the augmented data
and the original training set. Finally, we employ
an ensemble voting strategy to combine the predic-
tions of multiple models, thereby achieving more
stable and accurate sentiment classification results.

3.2 Track B: Emotion Intensity

In the emotion intensity task, we focus on a multi-
class classification approach for each emotion. Our
method involves predicting the intensity of a single
emotion at a time, avoiding the interference of mul-
tiple emotions, and improving accuracy. We em-
ploy a carefully designed prompt system to guide
the model’s understanding and classification of
emotion intensity, supplemented by data augmen-
tation techniques to balance underrepresented cat-
egories. Finally, we employ the same ensemble
voting strategy as in Track A to combine predic-
tions from multiple models, further improving the
stability and accuracy of the emotion intensity clas-
sification.

Prompt Design: To enhance the model’s un-
derstanding of the task and improve the accuracy
of sentiment intensity detection, we designed di-

- Profile: You are an expert in emotion intensity analysis with extensive
experience in evaluating the strength of emotions in text.
- Goals: Your task is to predict the intensity level of a specific perceived
emotion within the given text.
- Intensity levels are classified as follows:
- 0: No emotion
- 1: Low degree of emotion
- 2: Moderate degree of emotion
- 3: High degree of emotion
- Workflow:
1. Carefully read the input text to understand its content and context.
2. Focus on the specified perceived emotion from the input.
3. Determine the intensity level of the emotion based on the text.
4. If the emotion is absent, assign an intensity level of 0.
5. Return the prediction in the specified format.
- Examples:
- Example 1:
Input: Text: Colorado, middle of nowhere. | Perceived Emotion: anger
Output: anger:0
- Example 2:
Input: Text: You know what happens when I get one of these stupid ideas
in my head. | Perceived Emotion: anger
Output: anger: 1
- Example 3:

Input: Text: And then we have the ultimately retarded ** Spanish Lesson "
( which I kind of like because it's so entertainingly bad ) and ** Incredible, "
which just flat-out gets on my nerves. | Perceived Emotion: anger
Output: anger:2
- Example 4:
Input: Text: I got lie after lie. | Perceived Emotion: anger
Output: anger:3
- Input:
Text: [input text] | Perceived Emotion: anger
- Output:

Figure 2: Prompt example for emotion intensity

verse prompts based on contextual learning. As
shown in Figure 2, each prompt is designed to
predict the intensity level of a specific perceived
emotion in a given text. The intensity levels are
categorized as follows: 0 (No emotion), 1 (Low
intensity), 2 (Moderate intensity), and 3 (High in-
tensity). The prompts were carefully structured
to guide the model in identifying the intensity of
a given emotion by considering both the content
and context of the text. The model is instructed to
first read and comprehend the input text, then focus
on the specified emotion, and finally determine its
intensity level.

We also ensure the diversity of examples in-
cluded in the prompts by incorporating various
sentence structures, vocabulary choices, and emo-
tional expressions to represent different intensity
levels of emotions. This provides the model with
a diverse set of examples, enabling it to adapt to
different emotional expressions and contexts. For
instance, when the perceived emotion is anger, the
examples range from mild irritation (level 1) to
intense rage (level 3). Through this approach, the
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model learns the subtle distinctions between emo-
tional intensities and becomes more proficient in
predicting them accurately.

Task Formulation: We innovatively reformu-
lated the task as a multi-class classification prob-
lem, where the model predicts the intensity level
of a single emotion at a time. This approach en-
sures that the model focuses on one emotional in-
tensity per prediction, minimizing potential inter-
ference from simultaneously processing multiple
emotions. By simplifying the task in this manner,
the model can concentrate on a single emotion and
make more precise intensity assessments. For each
input, the model determines the intensity of the
specified emotion, categorizing it into one of four
predefined intensity levels.

Data Augmentation: To address the challenge
of data imbalance, particularly in cases where cer-
tain emotion intensity categories have fewer sam-
ples, we employed data augmentation techniques.
Although we initially explored the use of a large
language model (LLM) to generate synthetic data
to expand the training set, the performance of the
LLM-generated data on this task was relatively sub-
optimal. As a result, we adopted a more effective
over-sampling strategy to supplement the under-
represented categories. This approach allowed the
model to be exposed to a greater number of ex-
amples from the less-represented emotion inten-
sity categories during training, thus improving the
model’s generalization ability and the accuracy of
emotion intensity classification for these categories.
By appropriately resampling the samples, we not
only increased the number of instances in the un-
derrepresented categories but also ensured the di-
versity and balance of the training set across dif-
ferent emotion intensity levels. This enhanced the
model’s robustness and accuracy in predicting emo-
tion intensity, ensuring more reliable and stable
performance across all intensity categories.

4 Experiment

In our experiments, we selected Qwen2.5-72B-
Instruct(Yang et al., 2024) as the base model and
fine-tuned it using LoRA methodology. The batch
size was set to 32, the learning rate was set to 1.0e-
4, and the model was trained for a total of 5 epochs.

4.1 Track A: Multi-label Emotion Detection

The experimental results on the Track A develop-
ment set are shown in Table 1. The term “+Fine-

Method English Chinese
Base Model 0.6090  0.4826
+ Finetuning 0.8120  0.6892
+ Data Augmentation 0.8164  0.6958
+ Voted 0.8473  0.7412

Table 1: Our dev set results on the track a.(Only use
Chinese and English data for solution exploration.)

tuning” refers to the fine-tuning of the base model
using In-context Learning strategy, “+Data Aug-
mentatio” indicates the incorporation of LLM-
generated synthetic data during training to enhance
data diversity, and “+Vote” denotes the use of an en-
semble voting strategy during inference to combine
predictions from multiple models. The experimen-
tal results demonstrate that the base model achieved
a score of 0.6090 for English and 0.4826 for Chi-
nese. After applying fine-tuning , the model’s
performance improved significantly, with scores
of 0.8120 for English and 0.6892 for Chinese.
Further, by introducing data augmentation , the
scores for English and Chinese increased to 0.8164
and 0.6958, respectively, showing that the syn-
thetic data generated by LLLM notably enhanced
the model’s generalization ability. Finally, employ-
ing the ensemble voting strategy further improved
the model’s performance in both languages, with
final scores of 0.8473 for English and 0.7412 for
Chinese. We observed that fine-tuning and the en-
semble voting strategy significantly improved the
model’s performance on the validation set. Addi-
tionally, we noticed that the performance across
different emotion categories varied substantially
across different step models, which could be at-
tributed to the influence of the data quantity and
label distribution in the validation set.

Code Language Score Rank
chn Chinese  0.6817 2
eng English  0.8064 4

Table 2: Our test set results on the track a. (Only the top
5 results are displayed.)

The experimental results on the Track A test set
are shown in Table 2. Testing on both the Chinese
and English datasets, our model demonstrated a
certain level of performance in emotion detection.
Specifically, the model achieved a score of 0.6817
on the Chinese dataset, ranking 2rd, indicating the
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model’s effectiveness in handling emotion detec-
tion for Chinese. For the English dataset, the score
was 0.8064, ranking 4th. Although it did not place
in the top three, the model still exhibited strong
emotion detection capabilities.

4.2 Track B: Emotion Intensity

Method English Chinese
Base Model 0.6493  0.5290
+ Finetuning 0.8384  0.7668
+ Data Augmentation 0.8466  0.7704
+ Voted 0.8593  0.7833

Table 3: Our dev set results on the track b. (Only use
Chinese and English data for solution exploration.)

The experimental results on the Track B devel-
opment set are shown in Table 3. Compared to the
results in Table 1, the “+Data Augmentation” here
refers to the use of oversampling for data augmenta-
tion. The experimental results indicate that the base
model achieved scores of 0.6493 for English and
0.5290 for Chinese. After fine-tuning the model
with a carefully designed prompt and contextual
learning strategy, the scores improved to 0.8384
for English and 0.7668 for Chinese. By applying
the oversampling strategy to augment the training
data, the scores increased to 0.8466 for English and
0.7704 for Chinese. Finally, using the ensemble
voting strategy, the scores reached 0.8593 for En-
glish and 0.7833 for Chinese, achieving relative
improvements of 32.34% and 48.07%, respectively,
compared to the base model.

Code Language Score Rank
chn Chinese 0.7077 2
eng English 0.8321 3
deu German 0.7425 2
esp Spanish  0.7861 4
ptbr  Portuguese 0.6896 2
ron Romanian  0.7044 4
rus Russian 0.9185 2

Table 4: Our test set results on the track b. (Only the
top 5 results are displayed.)

At the final submission stage, we used the model
that performed best on the validation set for pre-
diction and ensemble voting. The experimental
results are shown in Table 4. The model achieved
a score of 0.7707 for the Chinese dataset, ranking

2nd, and a score of 0.8321 for the English dataset,
ranking 3th. Due to time and resource constraints,
for other languages, we only fine-tuned the model
using carefully designed prompts, without applying
data augmentation or ensemble voting strategies.
Nevertheless, we still achieved top 5 rankings in
five additional languages, further validating the ef-
fectiveness and generalizability of our approach.
This demonstrates that, through carefully designed
prompts and fine-tuning strategies, our method not
only performs well in English and Chinese, but also
adapts to other languages, showcasing strong cross-
lingual generalization ability. In the future, with
further investment in resources and optimization of
strategies, the model’s performance is expected to
improve even further across more languages.

5 Conclusion

In this study, we have proposed an effective ap-
proach for emotion intensity prediction and multi-
label emotion detection. By leveraging techniques
such as carefully designed prompts, data augmen-
tation through LLLM-generated synthetic data, and
dynamic optimization, we significantly improved
model performance. The introduction of ensemble
voting further stabilized and enhanced the model’s
classification accuracy. The experimental results
on both Track A and Track B validate the effec-
tiveness of our method, demonstrating its strong
performance in both English and Chinese, and its
generalizability to other languages. Future work
could focus on extending the application to more
languages, refining the model’s ability to handle
nuanced emotional expressions, and improving the
scalability of the data augmentation strategies.

Limitations

While our approach achieved strong performance
in English and Chinese, its effectiveness in other
languages was limited due to time and resource con-
straints. These languages only underwent prompt
fine-tuning without data augmentation or ensemble
voting, leading to suboptimal results and highlight-
ing the need for further optimization. Additionally,
although LLLM-generated synthetic data improved
performance, its varying quality may have affected
generalization. Future work should focus on refin-
ing data quality control and developing more ro-
bust language-specific strategies to enhance cross-
lingual adaptability.
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Abstract

This paper presents the OZemi team’s submis-
sion to SemEval-2025 Task 11: Multilingual
Emotion Detection and Intensity. Our approach
prioritized computational efficiency, leveraging
lightweight models that achieved competitive
results even for low-resource languages. We
addressed data imbalance through data augmen-
tation techniques such as back-translation and
class balancing. Our system utilized multilin-
gual BERT and machine translation to enhance
performance across 35 languages. Despite rank-
ing mid-tier overall, our results demonstrate
that relatively simple models can yield ade-
quate performance across diverse linguistic set-
tings. We provide an error analysis of emotion
classification challenges, particularly for nu-
anced expressions such as sarcasm and irony,
and discuss the impact of emoji representation
on model predictions. Finally, we outline fu-
ture directions, including improvements in sen-
timent intensity modeling and the integration of
semantic prosody to refine emotion detection.

1 Introduction

This paper explores SemEval 2025 task 11
(Muhammad et al., 2025b), which focuses on
multi-label emotion detection and emotion inten-
sity across various languages based on the datasets
provided by the task organizers (Muhammad et al.,
2025a; Belay et al., 2025). The task is divided
into three tracks. Track A involves predicting the
presence of emotion(s) such as joy, sadness, anger,
surprise, and disgust in text snippets. Each emo-
tion is labeled in a binary format: (1) if it is present,
and (0) if absent. Task B focuses on predicting the
intensity of a perceived emotion on a scale of 0
(no emotion) to 3 (high intensity of emotion). Fi-
nally, Track C is about using a trained dataset in
one language to predict emotion labels in a dif-
ferent language. The datasets cover 35 languages
in total, with genres ranging from social media to
conversational text.

Emotions are at the core of human interactions
but are notoriously difficult to detect in text (Oh-
man, 2021a). Any technical and theoretical ad-
vancements have the potential to aid in customer
service automation, online content moderation, and
many other tasks — both academic and commercial.
The focus on cross-lingual emotion detection as-
sists the recognition of emotions on a global scale,
increasing its relevance among different cultural
contexts.

Our team ranked around the middle for all tasks
and languages. Our approach is not the most tech-
nically advanced, but because of this it is also not
computationally very intensive. We managed to
show that it is possible to achieve adequate results
even for low-resource languages with very little
computational resources. Our code is available on
GitHub'.

2 Background and Previous Work

The input for this task is text snippets in mul-
tiple languages ranging from commonly spoken
languages such as English, German, and Span-
ish, to less commonly spoken languages such as
Emakhuwa. The output differs across various
tracks. The objectives of each Track are demon-
strated using the sentence “I just won the lottery!”
as an example.

Track A (Multi-label Emotion Detection): The
output consists of binary labels for each perceived
emotion, where (1) indicates its presence and (0)
an absence. The output would look something like:
Joy: 1, Sadness: 0, Fear: 0, Surprise: 1, Disgust: 0,
Anger: 0 For some languages (such as English), the
set of perceived emotions does not include Disgust.

Track B (Emotion Intensity): The output con-
sists of an intensity prediction for each perceived
emotion. The output would look something like:
Joy: 3, Sadness: 0, Fear: 0, Surprise: 2, Disgust:

"https://github.com/esohman/SemEval2025/
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0 The degrees of intensity range from O to 3, with
0 indicating no emotion, and 3 indicating a high
intensity of emotion. The above output example
for the sample sentence indicates a high intensity
of Joy and moderate intensity for Surprise.

Track C(Cross-lingual Emotion Detection): In-
volves predicting emotion labels for a language
using a labeled training set in a different language.

Track B also has additional challenges, not only
does the emotion need to be accurately categorized,
but labeled with intensity as well. As Kiritchenko
and Mohammad (2017) state, rating scales used
as annotations for sentiment analysis suffer from
various flaws. They can be inconsistent, with gaps
in value between annotators despite agreement on
general sentiment, biased towards certain parts of
the scale, or suffer from either too little or too
much granularity. Additionally, further difficulty
can emerge from methods of data pre-processing or
lemmatization that may make data easier to catego-
rize when using traditional methods. Exclamation
marks, capitalization and more lend context to emo-
tion intensity but may cause difficulty in processing.
In addition, sarcasm and irony, prevalent in many
common sources of data such as Twitter and other
social media can also increase the difficulty of cat-
egorization and intensity mapping. However, emo-
tion intensity is an important measure that has been
shown to correspond well with human interpreta-
tions of a text’s overall emotional content (Ohman,
2021b).

3 System Overview and Experimental
Setup

In the research on the English model for Track A,
we handled emojis by using the demojize function
of the emoji Python library to convert emojis into
descriptive textual labels (Kim and Wurster, 2025).

Track A and C use the f-score, and tack B Pear-
son correlation for evaluating the models.

For both Track A and Track B, the training data
was split into two groups: training and testing
sets. The preparation of the dataset involved data
cleaning process to ensure the text inputs were uni-
form and to avoid unnecessary characters. This
included replacing or removing special characters
and standardizing representations for symbols such
as quotes.

3.1 Data Imbalance

One of the significant challenges encountered
during the experiment was the imbalance in the
dataset’s label distribution as shown in Table 1.

Emotion Count

Anger 497
Fear 2,573
Joy 963
Sadness 1,376
Surprise 1,126

Table 1: Label distribution in the dataset.

The imbalance was most pronounced in the
“Anger” class, which had substantially fewer sam-
ples than other categories. This posed a risk of bias
during model training, as the model might under-
perform in recognizing emotions associated with
underrepresented classes.

To address this issue, three strategies were em-
ployed:

1. Data Duplication

Instances from the minority class (“Anger”)
were duplicated to match the sample size of
the majority classes. This ensured that all
emotion classes had equal representation in
the dataset, reducing the risk of model bias.

2. Synthetic Oversampling

For the Russian dataset, we explored more
advanced sampling methods. Specifically,
SMOTE (Synthetic Minority Oversampling
Technique) was applied in combination with
TF-IDF (Term Frequency-Inverse Document
Frequency) to balance the class distribution.
First, we transformed the text data into numer-
ical form using TF-IDF vectorization. Using
the numerical form, synthetic data can be cre-
ated using SMOTE by interpolating between
minority class data and their nearest neigh-
bors. After applying SMOTE, the resampled
data is in numerical form as well. To main-
tain consistency with the rest of the data, the
TF-IDF features are transformed back to text
for use. As we recognize that data duplication
might lead to overfitting, where the model
learns to recognize repeated patterns rather
than generalizing well, SMOTE was used as
an alternative approach.
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3. Back Translation

Back translation was applied as secondary
approach. This technique involved translat-
ing the minority class samples into German
or other languages and then translating them
back into English using translation models
such as DeepL and Google Translate. This
method created syntactically diverse exam-
ples while preserving the semantic meaning
of the original text, effectively augmenting the
dataset with quality synthetic data.

These methods were implemented, and their ef-
fectiveness in balancing the dataset was evaluated
during model training and testing.

3.2 Application and Model Enhancement

The following methodologies were applied in order
to handle various languages and to enhance our
fine-tuned model.

1. External Data

External data®? were used to examine whether
or not they could have positive influences
on results resolving the data imbalance dis-
cussed before. Judging from the texts, much
of the data seems to have originated from so-
cial network platforms. The additional data
were concatenated with the original dataset
to balance the number of sentences between
emotional/non-emotional for each of the emo-
tions. By leveraging the balanced data, the
BERT model was trained again in English and
tested on the development dataset. The addi-
tion of the external datasets caused the results
to drop from 66% to 55%. This indicates that
the official data might be of higher quality
annotation-wise or have some unique features
compared to the external data.

2. Hyperparameter Tuning

Hyperparameter tuning was implemented as
our approach to enhance our model perfor-
mance. The learning rate was adjusted from
three values (2e-5, 3e-5, 5e-5), and the num-
ber of epochs was adjusted from 2, 3, and 4.
We then chose the best performing parameter

2https://www.kaggle.com/datasets/parulpandey/
emotion-dataset/data

3https://www.kaggle.com/datasets/
nelgiriyewithana/emotions
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sets for each of the emotions based on devel-
opment data and saved the weights trained
with them.

. Machine Translation

Machine translation techniques were applied
to implement our baseline in English and Ger-
man for Track A and Track C. Google Trans-
late was used as an example of our approach,
leveraging its free availability in a multitude
of languages. This technique was applied
to all the task languages that Google Trans-
late supports, which was 26 out of 28 and 30
out of 32 languages for Track A and Track
C, respectively, at the time of writing. The
languages not covered by Google Translate
was Nigerian-Pidgin (PCM) and Emakhuwa
(VMW), for which multilingual BERT was
used to complement the limitation. This
methodology was applied to leverage our Ger-
man baseline for "disgust”, and English base-
line for the other emotions, since "disgust"
is not included in the English dataset. This
approach enables us to utilize our fairly strong
baseline into various languages, additionally
to analyze its impact on resource-wise both
major and minor languages. Prior testing had
also shown that language-specific models par-
ticularly for low-resource languages did not
generally outperform multilingual ones (Taka-
hashi et al., 2024) and thus the choice to stick
to multilingual BERT for most languages was
made.

. Language-Specific Models

However, besides the use of the machine trans-
lation technique discussed above, language-
specific models were used for three non-
English languages for better performances.
We focused on Russian, German, and Chi-
nese in this approach, leveraging the sim-
ple availability and proven robustness of
language-specific BERT models. The mod-
els were fine-tuned by official training data
and implemented into our system separately
from the one that uses machine translation.
This approach yielded mid-performing results
in macro-F1 score in the official validation
phase; 53 % for German and 54 % for Chi-
nese. Comparing these results with those in
other non-English languages, including 55 %
of Afrikaans in the same phase, it can be said


https://www.kaggle.com/datasets/parulpandey/emotion-dataset/data
https://www.kaggle.com/datasets/parulpandey/emotion-dataset/data
https://www.kaggle.com/datasets/nelgiriyewithana/emotions
https://www.kaggle.com/datasets/nelgiriyewithana/emotions

NRC Lexicon | Twitter Roberta Base
Anger 0.295 0.406
Fear 0.433 0.688
Joy 0.406 0.646
Sadness 0.457 0.612
Surprise 0.186 0.344

Table 2: Table with benchmark model F1 scores

that our trial to combine the fine-tuned model
with machine translation has established a
fairly good system for emotion detection over
various languages, taking into account its sim-
plicity and ease of deployment.

4 Results

We benchmarked our results against more simple
models not fine-tuned on the specific instructions
for this task. These benchmark models serve to
provide points of reference to evaluate our more
complex system. Our system proves its effective-
ness and added value by achieving higher scores
for this specific task.

One benchmark model uses the NRC Lexicon
(Mohammad and Turney, 2013) as a simple rule-
based approach that relies on a predefined set of
words labeled with Plutchik’s 8 core emotions
(Plutchik, 1980), matching words to emotions with-
out context or taking negations and valence-shifters
into account. As this approach is the simplest, we
expect our model that takes context into account to
outperform it.

The other benchmark model was the CardiffNLP
RoBERTa Base Sentiment multi-label model fine-
tuned for SemEval 2018 task 1 (Camacho-Collados
et al., 2022). This model is pre-trained on a large
corpus of tweets and captures contextual word rep-
resentations. However, it has not been fine-tuned
for this specific task in this evaluation. Its perfor-
mance already shows a significant improvement
over the NRC Lexicon due to its ability to under-
stand the semantics of language at a deeper level,
showing us that our system can benefit from under-
standing the nuances specific to this task.

5 Limitations

One limitation we identified is the inaccuracies
in the training data tags provided. For example,
although the sentence "But not very happy" does
not have the sentiment of joy, the training data had
it labeled as as "joy =1." By fine-tuning a model

to produce high accuracy scores with respect to an
inaccurately tagged dataset, this model, or models
produced for this task, may only be accurate for
this task, but not when solving other real-world
problems.

Additionally, the provided English dataset for
Track A does not contain any emojis, which lim-
ited the opportunity to directly study the impact
of emojis on emotion detection within the English
language dataset.

Our simplistic approach to implement Google
Translate as a machine translation technique might
have had a slight influence on our inference. As
stated by Takahashi et al. (2024), the original
sentence and the sentence translated by Google
Translate may differ in terms of semantic relations.
Therefore, it is likely that some input sentences
were semantically changed when its translation,
and hence had a negative influence on the perfor-
mance. Alternative ways including use of better-
performing machine translation models were con-
sidered, but we chose the model on the basis of
costs, assuming that the possible influence dis-
cussed above would not be significant compared to
other factors.

6 Future Work

While brainstorming, we explored the application
of semantic prosody (Sinclair, 1996) to the task.
While not included in the final model, interesting
trends were found that can be included in the refin-
ing of future models. Introduced by Sinclair (1996),
a word’s semantic prosody refers to its tendency to
co-occur with specific sentiments or emotions. For
example, the words "bring about" and "cause" have
similar semantics, in terms of how they both speak
about the reason behind an occurrence. Yet, "bring
about" is more likely to co-occur with positive oc-
currences, while "cause" is more likely to co-occur
with negative occurrences (McGee 2012; see Fig-
ures 1 and 2 for collocates of "bring about" and
"cause" respectively, analyzed using AntConc (An-
thony, 2024)). Therefore, "bring about"’s semantic
prosody can be viewed as positive, and "cause"’s
negative.

In line with this concept, we hypothesized that
certain n-grams may occur more frequently with
certain emotion tags than others. Hence, we ran an
analysis for the most frequent 1-gram and 2-grams

*Corpus referenced is an American English corpus com-

piled by Potts and Baker (2012), with more than 1 million
tokens.
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for each emotion tag, stratified by each parts-of-
speech tag. We found that there were unique n-
grams for each emotion tag, occurring at a fre-
quency of more than 1. It might thus be valuable to
run this analysis with larger corpora, to find unique
n-grams that co-occur with an emotion at a statisti-
cally significant frequency. These n-grams could
then be used to further refine sentiment analysis
models, especially multi-label ones that have rela-
tively lower accuracy scores.

6.1 Emoji Analysis

To study the impact of emojis on emotion detec-
tion, we performed an emoji presence check on all
language datasets in Track A. As shown in Table 3,
German is the third most emoji-rich language in
the dataset, with 255 occurrences. The first and
second most emoji-rich languages are Somali and
Sudanese, but compared to German, they lack suf-
ficient BERT pre-trained models and other similar
resources. Therefore, we chose German for our
extension study. This additional study addresses
a gap left by the English dataset, which does not
contain any emojis.

We divided the German dataset into two groups:
one containing emojis and the other with all emojis
removed. For the emoji group, we used the demo-
jize function to convert emojis into German text.
We aimed to evaluate the impact of emojis by cal-
culating the F-score for each model in these two
groups.

As shown in Table 4, the F1 scores for the emoji

Language Emoji Count
Somali (som) 373
Sundanese (sun) 363
German (deu) 255
Ambharic (amh) 188
Tigrinya (tir) 33

Table 3: Top 5 Language in Track A by Emoji Count

Emoji F1 Score | Non-Emoji F1 Score
Anger 0.952 0.955
Disgust 0.907 0.884
Fear 0.988 0.996
Joy 0.955 0.973
Sadness 0.966 0.977
Surprise 0.998 0.990

Table 4: F1 Scores for German Emoji and Non-Emoji
Groups

and non-emoji groups are generally similar, with
slight variations across different emotion labels.
Apart from a slight improvement in the Disgust
label with the inclusion of emojis, other labels,
such as Fear, Joy, and Sadness, showed decreased
performance when emojis were present. After con-
ducting an error analysis on the emoji group, we
found that the percentage of error texts with emo-
jis was 15.79%, while that of error texts without
emojis reached 84.21%.

Therefore, we conclude that although emojis can
be beneficial for certain cases, such as improving
the recognition of the disgust label, their overall
impact on this German sentiment analysis model
is limited and can sometimes negatively affect per-
formance. However, it is also vital to note that
analyzing the sentiment role of emojis is challeng-
ing due to reliance on context, cultural nuances,
platform-specific features, and other related rea-
sons (Hakami et al., 2022). Expanding this analysis
to other languages could offer deeper insights into
emojis’ impact on sentiment and emotion detec-
tion.

7 Conclusions

Throughout prior discussions in this paper, it can
be suggested that our straightforward approach un-
der limited compute resources performs well even
for low-resource languages. We have succeeded to
maximize the benefits of lightweight models with
experiments such as the use of back translation
and hyperparameter tuning. Additionally, we have
combined that with machine translation techniques
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and also leveraged both multi-lingual and language-
specific models over some non-English languages
as well. In those ways, we firstly established our ba-
sis on emotion detection in English sentences, and
then, applied the methodology to various languages.
Although we had limited compute resources, this
straightforward approach was shown to work well
and be relatively competitive as well. Hence, our
future work could also include some improvements
in the same perspective, opening the door for its
wider application to emotion detection in various
languages.
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A Appendix

Performances in the test dataset are shown on Table
5. Four languages that are dealt with in Track C are
not supported in Track A, to which the "*"s on the
table correspond. The score for English on Track B
is 0.6123, computed by the organizers’ automatic
calculation system just as in the other tracks.

language code | Track A | Track C
afr 0.4686 | 0.4708
amh 0.3701 | 0.3695
arq 0.4797 | 0.4793
ary 0.3395 | 0.3387
chn 0.4987 | 0.4987
deu 0.5082 | 0.5082
eng 0.6385 | 0.6385
esp 0.5251 | 0.5266
hau 0.3764 | 0.3778
hin 0.4686 | 0.4671
ibo 0.2850 | 0.2764
ind * 0.4880
jav * 0.4126
kin 0.2993 | 0.2989
mar 0.4979 | 0.4974
orm 0.3115 | 0.3118
pcm 0.4642 | 0.4642
ptbr 0.3456 | 0.3451
ptmz 0.2416 | 0.2442
ron 0.6422 | 0.6449
rus 0.7056 | 0.4398
som 0.3087 | 0.3098
sun 0.3994 | 0.4081
swa 0.2337 | 0.2320
swe 0.3829 | 0.3883
tat 0.4055 | 0.4037
tir 0.3306 | 0.3313
ukr 0.2791 | 0.2809
vmw 0.1931 | 0.1931
xho * 0.3149
yor 0.2114 | 0.2109
zul * 0.2121

Table 5: Official Performances on Test Dataset
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Abstract

In this work, we tackle the challenge of multi-
label emotion classification, where a sentence
can simultaneously express multiple emotions.
This task is particularly difficult due to the
overlapping nature of emotions and the lim-
ited context available in short texts. To ad-
dress these challenges, we propose an ensem-
ble approach that integrates Pre-trained Lan-
guage Models (BERT-based models) and Large
Language Models, each capturing distinct emo-
tional cues within the text. The predictions
from these models are aggregated through a
voting mechanism, enhancing classification ac-
curacy. Additionally, we incorporate threshold
optimization and class weighting techniques to
mitigate class imbalance. Our method demon-
strates substantial improvements over baseline
models. Our approach ranked 3rd out of 90 on
the English leaderboard and exhibited strong
performance in English in SemEval-2025 Task
11 Track A.

1 Introduction

Emotion classification is crucial in various natural
language processing (NLP) applications, including
customer feedback analysis, mental health monitor-
ing, and social media sentiment tracking. Unlike
traditional sentiment analysis, which categorizes
text into positive, negative, or neutral sentiments,
multi-label emotion classification is more complex,
as a single sentence can express multiple emotions,
such as joy, anger, and sadness (Strapparava and
Mihalcea, 2008), as shown in Figure 1.This com-
plexity arises from the subjective nature of emo-
tions, their overlapping characteristics, and the am-
biguity in short texts.

Although transformer-based models, particularly
BERT and its variants, have shown promising re-
sults in capturing semantic features and contex-
tual dependencies (Vaswani, 2017), challenges per-

*Corresponding Author

sist, including class imbalance, difficulties in dis-
tinguishing subtle emotional expressions, and the
need for better generalization across languages
(Conneau, 2019).

Input Sentence:
"It was one of my most shameful experiences"

Figure 1: Example of the Multi-Label Emotion Classifi-
cation task

In this study, we focus on multi-label emotion
classification as defined in SemEval-2025 Task 11
Track A (Muhammad et al., 2025a), which aims to
evaluate NLP systems’ ability to identify multiple
emotions in a given text. We propose an ensemble
approach, integrating multiple BERT-based pre-
trained language models (PLMs) (such as BERT,
RoBERTa (Liu et al., 2019), and other variants)
along with large language models (LLMs) to cap-
ture diverse emotional cues (Brown et al., 2020).
The predictions from these models are aggregated
using a voting mechanism, which enhances robust-
ness and accuracy. By leveraging both pretrained
transformers and LLMs, our approach effectively
captures the complex and overlapping nature of
emotions, improving the generalization across var-
ied emotional expressions.

In addition to the ensemble strategy, we incor-
porate threshold optimization and class weighting
to address class imbalance and improve decision
boundaries. These techniques ensure that under-
represented emotions are adequately considered,
leading to significant performance improvements
over baseline models and enhancing our system’s
effectiveness in multi-label emotion classification.
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2 Related Work

The fundamental challenge in multi-label emo-
tion classification lies in detecting non-exclusive
emotional states within textual expressions. Early
methodologies predominantly employed lexicon-
based systems combined with statistical classifiers
like SVMs (Mohammad and Turney, 2013), utiliz-
ing hand-engineered features such as emotion-word
counts and syntactic patterns. While effective for
coarse-grained analysis, these approaches exhib-
ited limitations in handling three critical aspects:
(1) contextual polysemy in emotional lexicons (e.g.,
"cold" indicating either temperature or emotional
detachment), (2) compositional semantics in multi-
emotion expressions, and (3) cross-lingual general-
izability.

Currently, pre-trained language models, espe-
cially BERT and its variants, have performed well
in sentiment multi-label classification tasks. These
models effectively capture contextual information
through a bidirectional Transformer architecture,
improving classification accuracy. Studies have
shown that PLMs generally outperform traditional
methods and early deep learning models. In multi-
label prediction, the binary cross entropy loss func-
tion is widely used to deal with the independence of
each label (Zhang and Wallace, 2015). At the same
time, a weighted loss function is used to adjust
the label weights to address the label imbalance
problem. In addition, some studies have further
improved the classification effect by modeling the
dependencies between labels through graph neu-
ral networks (GNNSs) or conditional random fields
(CRFs) (Tenenboim et al., 2009). In general, PLMs
perform significantly better than traditional meth-
ods in this task and have achieved good results on
multiple standard datasets.

In the task of sentiment multi-label classification,
large language models have performed well, espe-
cially in capturing the complex sentiment in text
and the relationship between labels. LLMs usu-
ally perform label prediction through generative
or sequence-to-sequence (Seq2Seq) methods, and
mine the pre-trained knowledge of the model by
designing appropriate prompts. In addition, similar
to PLMs, LLMs also use weighted loss functions
to solve the label imbalance problem and combine
multi-task learning to further improve the classifi-
cation effect (Raffel et al., 2020). Although LLMs
have achieved excellent results in sentiment multi-
label classification, their huge computational re-

quirements remain a challenge.

3 System Overview

As shown in Figure 2, our proposed system is com-
posed of two main stages. In the first stage, we
train and fine-tune three transformer-based mod-
els, BERT, RoBERTa, and DeBERTa (He et al.,
2020), employing strategies such as automatic
threshold search, class weight allocation, and data
augmentation to address challenges like data im-
balance and overfitting. Additionally, we explore
advanced large models, including Qwen2.5 (Yang
et al., 2024) and Llama3.1, to further enhance
performance. In the second stage, we improve
model robustness and accuracy by integrating pre-
dictions from multiple models (RoBERTa, De-
BERTa, Qwen2.5 and Llama3.1), using a hard vot-
ing strategy and cross-validation, ensuring better
generalization and complementary feature learn-
ing.

3.1 Model Architecture

Pre-trained language models (PLMs): Two
Transformer-based models have been fine-tuned
as sequence classifiers: RoOBERTa and DeBERTa.
RoBERTa is a pretrained language model based on
the Transformer architecture, introduced by Meta
Al. As an enhanced version of BERT, RoBERTa
significantly improves performance through strate-
gies such as improved training methods, expanded
data, and increased computational resources. De-
BERTa, developed by Microsoft Research , intro-
duces two key innovations on top of BERT: the dis-
entangled attention mechanism and the enhanced
mask decoder. These improvements make De-
BERTa particularly suitable for tasks requiring a
precise understanding of contextual relationships,
such as sentiment analysis and multi-hop reading
comprehension.

Large language models (LLMs): In recent
years, large language models have demonstrated
impressive capabilities in tackling various NLP
tasks. Motivated by these advances, we adopted
two state-of-the-art LLMs, Qwen2.5 and Llama3.1,
to construct our sequence classifier. We begin by
pre-processing our data set using the tokenizers
designed for each model. Next, we fine-tune both
Qwen2.5 and Llama3.1 on the training subset of
our data to adapt them for the specific classification
task. Once fine-tuned, the models are applied to the
test data to generate predictions. Finally, we evalu-
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Input: “It was one of my most shameful
experiences.”
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Figure 2: Overview of our system.

ate the performance of these models by comparing
the predictions with the true labels.

For PLMs, we use it as an encoder and connect
it to a classification layer to get the output, while
for LLMs, we directly get the classification results
of text sentiment in a generative way.

3.2 Automatic Threshold Search

In multi-label classification tasks, the model usu-
ally outputs a probability value for each class (for
example, a value between 0 and 1 generated after
Sigmoid activation (Kingma and Ba, 2014)). Tradi-
tional methods usually use a fixed threshold (such
as 0.5) to binarize these probabilities into 0/1 labels,
but this approach often does not work well when
dealing with imbalanced class distribution or differ-
ences in confidence distribution (Zhang and Zhou,
2013). In order to solve the imbalanced distribution
of class labels mentioned in Section 3.1, we intro-
duced a strategy of setting independent thresholds
for each class to improve the credibility of model
predictions. Specifically, we traverse a series of
candidate thresholds for each class and indepen-
dently search for the optimal threshold based on
its performance on the validation set (Fan and Lin,
2007). This method not only maintains overall pre-
diction accuracy but also significantly improves the
model’s ability to capture low-frequency classes
and complex label relationships, enhancing its ro-
bustness and effectiveness in practical applications.

3.3 Class Weight Allocation

To address overfitting in high-frequency classes
and the probability shift in low-frequency classes
caused by sample imbalance, we not only apply
a separate threshold method but also assign class-
specific weights in the loss function to ensure the
model pays equal attention to all classes during
training. After applying class weight allocation,
threshold search is no longer used and the thresh-
old defaults to 0.5.Taking the cross entropy loss
function as an example, the loss function after in-
troducing weights can be expressed as:

1 N C
L==52 we Yic logpic) (1)
i=1c=1

Among them, w, is the weight of class c, y; . is
the true label, and p; . is the predicted label. The
calculation method of each class weight w, is as

follow:
_ N total

Ne

Niota 1S the total number of samples, IV, is the
number of samples of class ¢

We

2

3.4 Data Augmentation

Table 1 shows the distribution of 0 and 1 labels for
each class in the training set. From the figure, we
can clearly see that there is a significant difference
in the distribution of 0 and 1 labels in some senti-
ment classes, which makes the model prone to over-
focus on classes with higher sample sizes when pre-
dicting, and insufficient attention to low-frequency
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Sentiment Negative Positive
Anger 2435 333
Fear 1611 1157
Joy 2094 674
Sadness 1890 878
Surprise 1929 839

Table 1: Label distribution of different emotions in the
training set.

classes. To address this problem, we tried to per-
form data enhancement on low-frequency classes.
Taking "Anger" as an example, we extracted all
"Anger"-labeled texts from the training set and ap-
plied simple data augmentation methods, such as
synonym replacement, back-translation, and recon-
struction using a large language model based on
the original text and labels. It is noteworthy that we
applied data augmentation strategies to each model.

3.5 Ensemble Learning

In multi-label classification tasks, a single model
may not be able to fully capture complex label re-
lationships and semantic features for the following
reasons:

* Model bias: Different model architectures
(such as BERT and RoBERTa) have differ-
ent sensitivities when processing text features.
For example, BERT is good at capturing bidi-
rectional context, while DeBERTa performs
better in decoupling attention mechanisms. A
single model may not be sufficient to fully
model certain classes (such as low-frequency
labels "Anger") or certain specific language
expressions (such as irony, metaphor).

* Variance and risk of overfitting: When the
amount of training data is limited or there
is a lot of noise, a single model is prone to
overfitting the distribution of the training set,
resulting in decreased generalization ability.

* Feature complementarity: Different models
can extract complementary features (for ex-
ample, word-level features and syntactic struc-
ture features). Therefore, by integrating the
results of multiple models, multi-dimensional
information can be integrated to improve the
robustness of the model.

Therefore, we integrate the results of different
models through a hard voting strategy (i.e., directly

Hyperparameters PLMs LLMs
Epochs 10 10
Dropout 0.1 0.05
Optimizer AdamW  AdamW
Weight Decay 0.001 0.001
Train Batch Size 16 4
Max Input Length 512 512
Learning Rate 2x107°% 1x107*
Max Output Length 128 128

Table 2: Hyperparameter settings for PLMs and LLMs
training.

counting the predicted labels of multiple models
and selecting the label with the most votes). When
the model’s output is uncertain (e.g., two votes
in favor and two against), the corresponding data
is flagged. These ambiguous cases are then re-
evaluated by the models. If uncertainty persists
after re-inference, a label of O or 1 is assigned to
the emotion at random with a probability of 50%.
Based on previous research, we selected ROBERTa,
DeBERTa, Qwen2.5 and Llama3.1 as base models
for integration. At the voting stage, we only use
the thresholds that were trained for each individual
model and do not perform any additional threshold
search.

4 Experimental Setup and Results

4.1 Dataset

We used the BRIGHTER dataset (Muhammad
et al., 2025b) provided by the organizer, which
contains 28 different languages, and a text segment
in the data may be labeled with multiple emotions
(anger, sadness, fear, disgust, happiness, surprise)
instead of a single emotion class. We participated
in this subtask on the English dataset.

4.2 Hyperparameters

Detailed information on the hyperparameter set-
tings of the experiment is shown in Table 2.

4.3 Maetrics

The organizer of this evaluation uses the macro F1
score as the main indicator to evaluate the perfor-
mance of the model. In multi-label classification
problems, the macro F1 score is obtained by calcu-
lating the F1 score of each class and averaging the
F1 scores of all classes. The characteristic of the
macro F1 score is that it ignores the difference in
the number of samples in each class and gives each
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Settings Macro F1 Anger Fear Joy Sadness Surprise
RoBERTa 0.750 0.743 0.818 0.667 0.753 0.769
+ threshold search 0.784 0.788 0.800 0.706  0.833 0.794
+ class weight 0.783 0.774 0.790 0.772  0.758 0.820
+ data augmentation 0.770 0.774 0.841 0.724  0.727 0.781
+ ensemble learning 0.795 0.800 0.774 0.787 0.794 0.818
Table 4: Ablation experiment based on RoOBERTa.
class the same weight. First, the recall and pre- macro F1 indicator.
cision of each class are calculated separately and
then the F1 score of each class is obtained based Rank Team Macro F1
on the harmonic mean of the precision and recall. 1 PAI 0.823
Finally, the F1 scores of all classes are averaged to 2 NYCU-NLP 0.822
obtain the macro F1 score. 3 DUT IR 0.812
4 TeleAl 0.806
5 Results 5 Pateam 0.805

Table 3 shows the performance of the different base
models in this task. Table 4 shows the experimen-
tal results based on the ROBERTa model and the
improvement methods mentioned in Section 3. It
can be clearly seen from the table that the auto-
matic threshold search and class weight allocation
strategy significantly enhance the model’s atten-
tion to low-frequency classes, thereby effectively
improving the overall performance. However, the
data enhancement method failed to achieve the ex-
pected effect and its improvement was limited to
a slight improvement. Based on the above experi-
ments, we further integrated the RoBERTa model
with the experimental results of adding three im-
provement methods separately. The experiment
shows that this integration strategy significantly
improves prediction accuracy, likely because a sin-
gle model struggles to fully capture complex label
relationships and semantic features in text.

Models Macro F1 Micro F1
BERT 0.724 0.733
RoBERTa 0.750 0.768
DeBERTa 0.739 0.751
Qwen2.5 0.779 0.788
Llama3.1 0.782 0.787

Table 3: Performance of different models on this task.

Finally, we adopted the full model integration
(covering language models and large language mod-
els) as the ultimate solution of the system, and sub-
mitted the prediction result file of the final model
on the test set. The official ranking is shown in
Table 5, and the system won the third place in the

Table 5: Results of top 5 teams for Taskl1 Track A
English leaderboard on the test set.

6 Conclusion

This paper introduces the system we designed in
Track A of Semeval-2025 Task 11, which aims to
solve the problem of unbalanced class distribution
that is common in multi-class label classification
tasks. By combining methods such as automatic
threshold search and class weight assignment, we
effectively alleviate the model’s excessive focus on
high-frequency emotions and reduce its tendency
to ignore low-frequency emotions. Based on this,
we further adopt a model integration strategy to
optimize the shortcomings of a single model in
capturing complex label relationships and seman-
tic features in text, and significantly improve the
robustness and generalization ability of the model.
Overall, our system performs outstandingly in the
task of multi-label emotion classification, espe-
cially on the English test set of Track A, where
it achieved an excellent score of third place, verify-
ing the effectiveness and advantages of our method.
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Abstract

This paper participates Task 1 of SemEval2025,
specifically Subtask A’s English Text-Only
track, where we develop a model to rank text
descriptions of images with respect to how well
it represents a the use of a given multi-word ex-
pression in its respective context sentence. We
trained sentence transformer models from hug-
gingface to rank the text descriptions, finding
the RoBERTa model to be the better perform-
ing model. For the final evaluation, the fine-
tuned RoBERTa model achieved an accuracy
of 0.4 for the first developer’s evaluation set,
and 0.2 for the second, ranking 9th in the En-
glish Text Only category for Subtask A. Over-
all, our results show that a vanilla sentence
transformer approach performs adequately in
the task and processing idioms. They also sug-
gest that ROBERTa models may be stronger in
idiom processing than other models.

1 Introduction

Multiword expressions (MWE:s), such as idioms,
are prevalent in natural language. They occur fre-
quently in all domains (Biber et al., 2021) and
constitute a significant portion of any speaker’s
lexicon, comparable to portions of single-word ex-
pressions (Jackendoff, 1997). Thus, it is important
that language models can effectively process id-
iomatic MWEs. However, studies show that com-
putational models struggle with idiom comprehen-
sion, especially when compared to human perfor-
mance (Phelps et al., 2024; Tayyar Madabushi et al.,
2021). This difficulty arises because the meaning
of idioms often cannot be predicted based on the
combination of the meanings of their individual
parts (Dankers et al., 2022). Thus, Task 1 of Se-
mEval2025 focuses on improving current models
of idiom comprehension.

Specifically, we participate in Subtask A’s En-
glish Text-Only track, where we are required to
develop a model which ranks text descriptions of

Chuen Shin Yong
Waseda University
yongchuenshin@suou.waseda. jp

images with respect to how well it represents a
given MWE in its respective context sentence. To
complete the task, we fine-tuned two sentence trans-
former models from huggingface to take the sen-
tence with the given MWE and its respective text
descriptions as inputs, then produce the rankings
of the text descriptions as outputs. One model was
an mpnet model, while the other was a RoOBERTa
model. We found that the RoOBERTa model pro-
duced higher top image accuracy and Spearman’s
Rank Correlation scores.

During the development phase, we also experi-
mented with a split approach. This approach con-
sisted of first training a standard BERT model to
work as a binary classifier to classify an MWE as
idiomatic or literal based on its use in its context
sentence. Then, text descriptions are scored based
on their idiomacity levels using ranking boosting al-
gorithm. Finally, the text descriptions were ranked
based on their scores. However, this approach did
not yield significant results, hence is not elaborated
on in detail in this paper.

The trained RoOBERTa model was the model used
for the final evaluation. It achieved an accuracy of
0.4 for the first developer’s evaluation set, and 0.2
for the second, ranking 9th in the English Text
Only category for Subtask A. Overall, our results
show that a vanilla sentence transformer approach
performs adequately, but further optimisations can
be explored to enhance performance. Our code is
available on GitHub'.

2 Background

In this section, we give an overview of the relevant
literature, subtask and dataset.

"https://github.com/svmiko/semeval25-task1/

tree/874fa5f04d823d3e3f22b41023bc216f75d1ce2e/
system
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2.1 Relevant Literature

Some studies on idiom processing attempted to
improve model comprehension by encouraging a
more compositional analysis (Li et al., 2021; Rau-
nak et al., 2019). However, later studies suggest
that such compositional approaches reduce idiom
comprehension.

Hence, more recent approaches encourage lever-
aging an idiom’s surrounding context or treating
idioms as single lexical units instead. These ap-
proaches align with linguistic research, which sug-
gests that humans tend to process idioms as a sin-
gle unit rather than as compositional sequences
(Sinclair, 1991). Lakoff and Johnson (1980) also
shows how idioms derive meaning from their con-
text and real-world interactions. Thus, newer stud-
ies have used masked language modelling, which
encode richer contextual information, demonstrat-
ing improvements in handling non-compositional
semantics such as idioms (Fakharian and Cook,
2021; Zeng and Bhat, 2021). Many studies have
also shown that encoding idioms as single entities
result in better processing of them (Chakrabarty
et al., 2023; Tayyar Madabushi et al., 2021; Za-
ninello and Birch, 2020). Building on these find-
ings, Tayyar Madabushi et al. (2022) fine-tuned a
sentence transformer model incorporating single-
token representations of idioms, achieving strong
performance in idiom comprehension tasks. These
findings suggest that utilising an idiom’s textual
context is a promising direction for improving lan-
guage model performance in idiom processing.

This task helps to build on existing work to im-
prove machines’ comprehension of idioms.

2.2 Task and Dataset

Subtask A is essentially a ranking task. Participants
are given a context sentence containing a poten-
tially idiomatic nominal compound (NC), along-
side 5 images and respective text descriptions of
the images. The objective is to rank the images
or their text descriptions based on how well they
capture the meaning of the NC in the given con-
text. For this paper, we participate using only the
text descriptions, without the images. Participants
were ranked based on two criteria. First, top im-
age accuracy, which refers to how accurately the
developed system identifies the most representative
image, or text description for the context sentence.
Second, based on Spearman’s rank correlation of
the ranks generated by the model and those by the

developers.

Depending on whether the target NC is used
idiomatically or literally, the developer’s desired
ranking changes accordingly. Before discussing
the rankings, we first describe how the images’
respective text descriptions are related to the NC.
As there are five images per NC, there are also five
corresponding text descriptions. They can describe:
(1) an idiomatic synonymous use of the NC, (2)
an idiomatic non-synonymous use of the NC, (3)
literal synonymous use of the NC, (4) a literal non-
synonymous use of the NC, or (5) be unrelated
to the NC. If the NC is used idiomatically, the
developers rank the images and text descriptions as
follows:

1. Highest ranked, most representative of use of
NC in context sentence: The image and text
description that depicts the NC in an idiomatic
and synonymous manner.

2. Image and text description that depicts the NC
in an idiomatic and non-synonymous manner.

3. Image and text description that depicts the NC
in an literal and synonymous manner.

4. Image and text description that depicts the NC
in an literal and non-synonymous manner.

5. Lowest ranked, least representative use of NC
in context sentence: Image and text descrip-
tion unrelated to NC.

Conversely, when the NC is used literally:

1. Highest ranked: Image and text description
that depicts the NC in an literal and synony-
mous manner.

2. Image and text description that depicts the NC
in an literal and non-synonymous manner.

3. The image and text description that depicts the
NC in an idiomatic and synonymous manner.

4. Image and text description that depicts the NC
in an idiomatic and non-synonymous manner.

5. Lowest ranked: Image and text description
unrelated to NC.

Text descriptions unrelated to the NC serve as a
distractor, hence are always ranked least similar
to the context sentence by the developers (Pickard
et al., 2025). To summarise, these rankings are
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the rankings provided in the developers’ training
dataset.

The dataset used for this paper is the English
Subtask A training dataset with text descriptions
provided by the developers. It contains 70 NCs
and their respective context sentences. Out of these
70 NCs, 39 are used idiomatically, while 31 are
used literally, making it a small, but relatively bal-
anced dataset. As each NC has 5 respective text
descriptions, there were 350 text descriptions in
total. While no information on how the text de-
scriptions were generated was provided (i.e. we do
not know if these text descriptions were written by
the developers themselves or generated using Al
models), they seem to have been written following
a similar style.

3 System Overview

Training datasets provided by the developers were
used to fine-tune the selected models. More details
on the selected models will be given in Section
4 “Experimental Set-up.” The data we used were
context sentences, nominal compounds (NC), text
description of related images, and the rankings of
text descriptions in terms of how well they rep-
resent the use of the NC in the context sentence.
When pre-processing our dataset, we labeled the
text descriptions as "candidates," and the NCs as
"compound.” Other than these labels, no prepro-
cessing was conducted on the text descriptions and
context sentences, as the models selected for fine-
tuning were sentence transformer models, which
have been shown to handle raw textual input ef-
fectively (Agirre et al., 2016). See Table 1 for an
example of our dataset.

Sentence transformer models were fine-tuned
to perform ranking for the subtask. We chose to
use sentence transformer models as they have been
shown to perform well in ranking tasks (Di Liello
et al., 2022). Both the candidates and context sen-
tences were used as input, so the model could di-
rectly learn the relationship between the context
sentence and candidates. They were also grouped
by their respective compounds to ensure that candi-
dates are ranked only in relation to their respective
NC-containing context sentence. Embeddings for
context sentences and candidates are generated us-
ing each model’s respective encoder, and cosine
similarity is used to measure the semantic proxim-
ity between the candidates and context sentences.
Based on these similarity scores, candidates are

ranked from 1 to 5, with 1 being the most similar
and 5 being the least. These ranks serve as the
model’s output during inference. The loss func-
tion used when fine-tuning is CosineSimilarity-
Loss, which optimises similarity-based ranking,
making it useful for a ranking task (see Reimers
and Gurevych, 2019).

While sentence transformer models provide a
robust framework for ranking candidates based on
semantic similarity, one key challenge of the task
was semantic ambiguity. Idiomatic expressions of-
ten exhibit semantic ambiguity, meaning that the
same phrase can be interpreted differently based
on the surrounding context. Hence, our system
leverages contextual embeddings generated from
sentence transformer models that capture the nu-
anced relationship between the context sentence
and each candidate. The model does not treat can-
didates in isolation but instead encodes their mean-
ing in relation to the context sentence. Addition-
ally, fine-tuning with CosineSimilarityLoss ensures
that candidates are ranked based on their semantic
proximity to the context, allowing the model to
learn fine-grained distinctions between literal and
idiomatic uses.

A limited dataset presents challenges in ensuring
good model performance, especially when the test
data can contains nominal compounds that were
not seen during training. We designed the system
to learn from the relationship between context and
candidate sentences rather than memorizing spe-
cific nominal compounds. By focusing on general
patterns of semantic similarity across all instances,
the model is better equipped to generalize to unseen
nominal compounds.

4 Experimental Setup

For this task, we decided to work on getting em-
beddings to understand how candidate sentences
may have literal and idiomatic representations. We
fine-tuned two pre-trained sentence transformer
models to generate embeddings for the ranking
task: "paraphrase-multilingual-mpnet-base-v2,"
henceforth the "mpnet model"”, and "sentence-
transformers/all-roberta-large-v1," henceforth the
"RoBERTa model." Both models were taken from
Huggingface. The dataset was prepared by splitting
the available data using the train-test-split function,
following an 80-20 split, where 80 percent of the
data was allocated for training and 20 percent for
testing. As the data was grouped by compounds
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Compound | Context_Sentence Candidate Ranking
night owl ...Jam a night owl, so I find | The image depicts a nighttime 4
that going to sleep... scene...
. ...J am a night owl, so I find | The image depicts a cartoon-style
night owl . . ) 1
that going to sleep... illustration of a person...
. ...l am a night owl, so I find | The image depicts a
night owl . 3
that going to sleep... cartoon-style owl...
night owl ..Jam a night owl, so I find The image depicts a cartoon-style ’
that going to sleep... illustration of a young...
. ...J am a night owl, so I find . .
night owl that going to sleep... The image depicts a dumbbell... 5

Table 1: Example of Dataset

(see section 3), the training set consisted of 56 com-
pounds and their respective text descriptions and
context sentences, while the test set contained 14
compounds grouped in a similar manner. As pre-
viously mentioned, the CosineSimilarityLoss func-
tion was used to optimise ranking performance. For
the mpnet model, it was initially set to fine-tune for
30 epochs, but the process was terminated early to
prevent overfitting. 100 warm-up steps were also
applied for stable optimisation. Based on the re-
sults of training the mpnet model, the RoOBERTa
model was fine-tuned for only 10 epochs. 100
warm-up steps and 500 evaluation steps were also
incorporated. The AdamW optimizer was used to
enhance weight regularisation and prevent gradient-
based overfitting. To evaluate the fine-tuned models
on the test set, we calculated Top Image Accuracy
and Spearman’s Rank Correlation, as required by
the task (see section 2.2).

5 Results

The RoBERTa model performed better than the
mpnet model in the ranking task (see table 2).

Table 2: Comparison of Model Performance

final evaluation, we achieved an accuracy of 0.4
for the first developer’s evaluation set, and 0.2 for
the second, ranking 9th in the English Text Only
category for Subtask A.

6 Conclusion

Our results show that a vanilla sentence transformer
approach performs adequately, but further optimiza-
tions can be explored to enhance performance. We
initially experimented with a split approach and
more complex systems, which are:

1. Training a binary classifier to determine
whether a context sentence is idiomatic or lit-
eral (using standard BERT).

Scoring candidates based on their idiomaticity
level using ranking boosting algorithms.

. Ranking candidates based on their scores or
experimenting with Siamese networks with a
custom loss function for rankings.

However, this approach did not yield signifi-
cant improvements over the direct ranking method.
Future work could explore hybrid architectures
that combine classification-based pre-filtering with

ranking models, as well as larger pre-trained mod-

Model Top-1 Accuracy Spearman’s p
MPNet (multilingual) 50.00% 0.4643
RoBERTa 57.14% 0.5071

els trained on more extensive idiomatic datasets.
Additional customisation in loss functions, feature

Based on evaluation on the test set, the RoOBERTa
model had 57.1 percent Top Image Accuracy, and a
Spearman’s Rank Correlation of 0.507. Conversely,
the mpnet model had a Top Image Accuracy of
50 percent and a Spearman’s Rank Correlation of
0.464. Therefore, we retrained the full training
dataset provided and submitted the results of the
RoBERTa model for the final evaluation. For the

engineering, and ensemble methods may also im-
prove ranking accuracy.
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Abstract

This paper presents a multi-step zero-shot sys-
tem for SemEval-2025 Task 1 on Advancing
Multimodal Idiomaticity Representation (Ad-
MIRe). The system employs two state-of-the-
art multimodal language models, Claude Son-
net 3.5 and OpenAl GPT-40, to determine id-
iomaticity and rank images for relevance in
both subtasks. A hybrid approach combining
ol-preview for idiomaticity classification and
GPT-4o for visual ranking produced the best
overall results. The system demonstrates com-
petitive performance on the English extended
dataset for Subtask A, but faces challenges in
cross-lingual transfer to Portuguese. Compar-
ing Image+Text and Text-Only approaches re-
veals interesting trends and raises questions
about the role of visual information in multi-
modal idiomaticity detection.

1 Introduction

The SemEval-2025 Task 1 tests multimodal lan-
guage models’ ability to understand idioms by hav-
ing them rank images based on how well they
match idiomatic or literal uses of expressions in
context, addressing previous datasets’ limitations
and exploring whether adding visual information
can improve models’ comprehension of figurative
language; the task consists of two subtasks: rank-
ing 5 images based on how well they match an
idiomatic expression used in a sentence (Subtask
A), and selecting the most appropriate final image
to complete a 3-image sequence while determin-
ing if the expression is being used idiomatically or
literally (Subtask B) (Pickard et al., 2025).

The data consists of a text file containing the
textual data (expression, sentence, image names)
and subfolders for each expression containing the
images proper. The data is provided by the orga-
nizers and partitioned into Train/Dev/Test, plus an
additional Extended test set. Table 1 summarizes
the data for both Subtask A and B.

Data # items
Subtask A Subtask B
English
Train 70 20
Dev 15 5
Test 15 5
Extended 100 30
Portuguese
Train 32 -
Dev 10 -
Test 13 -
Extended 55 -

Table 1: Data summary

2 Related Work

Recent advancements in multimodal language mod-
els and the growing availability of datasets that inte-
grate textual and visual information have propelled
the task of multimodal idiomaticity representation
and detection to the forefront of research (Filippa-
tou, 2024; Pickard et al., 2025). However, even
state-of-the-art language models, including large
language models (LLMs), struggle to match human
performance in comprehending idiomatic expres-
sions (Tayyar Madabushi et al., 2021; Chakrabarty
et al., 2022; Phelps et al., 2024). To bridge this gap,
multimodal representation learning models, such
as CLIP (Radford et al., 2021), Flamingo (Alayrac
et al., 2022), and generative models such as GPT-4
(OpenAl et al., 2024), have emerged as promising
solutions, exhibiting strong performance in tasks
that require cross-modal understanding, making
them particularly well-suited for idiomaticity de-
tection.

Cross-lingual transfer remains a challenging area
in multimodal contexts, with models like mBERT
(Devlin et al., 2019) and XLM-R (Conneau and
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Lample, 2019) often experiencing performance
degradation when applied to multimodal datasets.
Recent studies have explored methods for improv-
ing cross-lingual transfer, such as multilingual em-
beddings and adversarial training (Wang et al.,
2021), but consistent performance across diverse
languages is yet to be achieved. Hybrid approaches
that combine the strengths of multiple models are
increasingly adopted for complex multimodal tasks
(Guo et al., 2024). The role of visual information
in idiomaticity detection remains an open question,
with some studies suggesting that visual cues can
enhance accuracy (Gu et al., 2023), while others
argue that their contribution is context-dependent
(Gupta et al., 2022). Artifacts present in existing
datasets may allow models to perform well at id-
iomaticity detection without necessarily develop-
ing high-quality representations of the semantics of
idiomatic expressions (Boisson et al., 2023). How-
ever, good representations of idioms are crucial for
downstream applications such as sentiment analy-
sis, machine translation, and natural language un-
derstanding (Tayyar Madabushi et al., 2021).

3 Methodology

3.1 System Overview

Our system for SemEval-2025 Task 1: Multimodal
Idiomaticity employs two state-of-the-art multi-
modal language models: Claude Sonnet 3.5 and
OpenAl GPT-40.! Given the performance on the
original test dataset, we opt to use only OpenAl
for the extended dataset.” The system first deter-
mines whether the expression in the given context
is used idiomatically or literally using a zero-shot
classification approach. For Subtask A, the input
is the provided sentence, while for Subtask B, the
image descriptions of the first two images in the
sequence are used. The model then ranks the can-
didate images based on their relevance to the literal
or idiomatic interpretation of the expression.

We selected Claude and OpenAl models for their
state-of-the-art multimodal reasoning capabilities,
strong zero-shot performance, and complementary
strengths in handling both textual and visual in-
puts. Both models exhibit efficient and tightly
integrated vision-language processing, which is
especially valuable in multimodal tasks, and ro-
bust multilingual understanding. Both models are

"Parameters and prompts can be found in Appendix A
>We implement a fallback to Claude in case the model
responds with “I apologize..." or “I’m unable to...”

widely regarded for their reliability, accessibility
through stable APIs, and support for intermediate
reasoning chains, making them well-suited for a
hybrid system with an intermediate interpretation
step.While alternative models like Gemini, LLaVA,
or open-source LLMs (e.g., LLaMA or Mistral-
based variants) were considered, they either lacked
comparable multimodal maturity, cross-lingual ro-
bustness, or were not readily deployable at the time
of experimentation. The selected models provided
a pragmatic balance of performance, versatility,
and ease of integration.

3.2 Idiomaticity Classification

To determine whether the expression is being used
idiomatically or literally, we employ a zero-shot
classification approach using the pre-trained lan-
guage models. For Subtask A, the input sentence is
directly fed to the model, while for Subtask B, the
concatenated image descriptions of the first two im-
ages in the sequence are used. The model predicts
the idiomaticity label based on its understanding of
the expression in context, without any additional
fine-tuning or examples provided during the task.

3.3 Image Ranking

Once the idiomaticity of the expression has been
determined, the model is tasked with ranking the
candidate images based on their relevance to the
literal or idiomatic interpretation. For both Subtask
A and B, the target expression and the predicted
idiomaticity label are used to construct the prompt.
The model then scores each candidate image using
its knowledge of the expression’s meaning and the
visual content, producing a ranked list.

3.4 Improvement for Portuguese

Upon observing subpar performance on the Por-
tuguese subset of the data, we experiment with
translating some of the prompts to Portuguese be-
fore feeding them to the model. This allows the
model to better understand the nuances of the ex-
pressions in their original language context. The
translations are performed using GPT-4o.

3.5 Explanation-based Ranking

As an additional experiment for Subtask A, we
introduce an intermediate explanation step to im-
prove the model’s understanding of the expression
in context. After classifying the idiomaticity, the
model is prompted to provide a brief explanation
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of the literal or idiomatic meaning of the expres-
sion as used in the sentence. This explanation is
then incorporated into the prompt for ranking the
images, providing additional context to guide the
model’s selection.

3.6 Hybrid Approach with ol-preview and
GPT-40

In an effort to further improve the system’s perfor-
mance, we investigated a hybrid approach lever-
aging the complementary strengths of OpenAl ol-
preview and GPT-40. ol-previewexhibits strong
performance on natural language understanding
and generation tasks. We employ ol-preview
for the idiomaticity classification and explanation
steps, capitalizing on its robust language under-
standing capabilities. However, as ol-preview does
not have the capability to directly process and rea-
son about images, we continue to use GPT-40 for
the visual ranking component. This hybrid strategy
allows us to benefit from ol-preview’s language
understanding while still incorporating the visual
reasoning capabilities necessary for the task. Inter-
estingly, we found that this combination of models
produced the best overall results on the SemEval-
2025 Task 1 datasets, suggesting that the strengths
of the two models are indeed complementary and
can be effectively combined to tackle multimodal
idiomaticity challenges.

3.7 Output Parsing and Post-processing

A key challenge in using large language models
like GPT-40 for this task is that their generated
outputs do not always strictly adhere to the speci-
fied prompt format, necessitating robust parsing
and post-processing steps. For instance, when
prompted to provide a ranking of the candidate
images, the model’s response may not be a well-
formed array or list, requiring additional effort to
extract the intended ranking. Additionally, we ob-
served that the model occasionally produces rank-
ings that are offset by one position, likely due to
confusion about whether to use zero-based or one-
based indexing. To mitigate these issues, we im-
plement a flexible parsing system that can handle a
variety of potential output formats. This includes
using regular expressions to identify and extract
ranked lists or arrays, as well as heuristics to detect
and correct off-by-one errors in the rankings. By
applying these post-processing techniques, we en-
sure that the final output of our system is consistent
and aligns with the expected format for evaluation,

even if the raw model outputs are somewhat noisy
or inconsistent.

3.8 Evaluation

The system’s performance is evaluated using the
official metrics for each subtask. For Subtask A,
we calculate the average ranking score across all
test instances. For Subtask B, we measure both the
ranking score and the idiomaticity classification
accuracy. The submitted rankings and labels are
compared against the gold standards provided by
the task organizers. We report results on both the
original and extended English datasets, as well as
the Portuguese subset, to assess the effectiveness
of our proposed improvements.

4 Results and Discussion

Tables 2 and 3 show the results for Subtask A
and Subtask B, respectively. Additional plots can
be found in Appendix B. Claude models are pre-
fixed with C-, while OpenAl models are prefixed
with O-. DR stands for “Detect [idiomaticity] and
Rank”, DER stands for “Detect, Explain, Rank”.
DER?2 models use ol-preview as reasoning LLM
and GPT-4o as ranking LLM. Note that the DER
and DER2 models were only used in Subtask A
Image+Text. For Portuguese, models suffixed with
-P use prompts translated into Portuguese.

4.1 Subtask A: Image and Text

Our system achieves competitive performance on
the English extended dataset for Subtask A, which
involves ranking images based on their relevance
to an idiomatic or literal expression in a given sen-
tence. The best-performing model, O-DER?2, at-
tains an overall accuracy of 0.81, only slightly
behind the top score of 0.83 reported by other
participants. This result demonstrates the effec-
tiveness of our hybrid approach combining ol-
preview for idiomaticity classification and GPT-40
for image ranking. Binary classification scores (lit-
eral/idiomatic) are quite high, with accuracies of
0.93 on English, 0.97 on English Extended, 0.85
on Portuguese and 0.75 on Portuguese Extended.
Interestingly, the model exhibits a higher accu-
racy on literal expressions (0.94) compared to id-
iomatic ones (0.65), suggesting that identifying and
ranking images for literal language use is an eas-
ier task. The Discounted Cumulative Gain (DCG)
metric, which assesses the quality of the ranked
image lists, shows a similar trend, with a higher
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Model Accall Acclit Accid Corrall Corrlit Corrid DCGall DCGlit DCGid
Image and Text

English

C-DR 0.66 0.86 0.50 0.15 0.01 0.26 3.17 3.37 3.00

O-DR 0.80 0.86 0.75 0.17 0.10 0.22 3.30 3.35 3.26

O-DER 0.80 0.86 0.75 0.17 0.10 0.22 3.30 3.35 3.26

O-DER2 0.87 0.86 0.88 0.52 0.29 0.73 343 3.35 3.49

English Extended

O-DER 0.78 0.79 0.76 0.40 0.45 0.34 3.30 3.33 3.25

O-DER2 0.81 0.94 0.65 0.43 0.56 0.28 3.35 3.54 3.13

Portuguese

C-DR 0.46 0.29 0.67 0.11 0.23 -0.03 2.74 2.58 3.03

O-DR 0.46 0.29 0.67 0.21 0.20 0.22 2.80 2.51 3.10

O-DER 0.62 0.43 0.83 0.12 0.14 0.08 3.01 2.71 3.35

O-DER-P  0.69 0.42 1.0 0.29 0.27 0.32 3.11 2.72 3.56

O-DER2-P 0.77 0.57 1.0 0.41 0.21 0.63 331 3.04 3.63

Portuguese Extended

O-DER-P  0.51 0.33 0.64 0.26 0.27 0.25 2.90 2.58 3.15

O-DER2-P 0.56 0.42 0.68 0.23 0.20 0.24 2.95 2.66 3.17

Text Only

English

C-DR 0.60 0.43 0.75 0.35 0.27 0.41 3.04 2.85 3.21

O-DR 0.66 0.57 0.75 0.21 0.07 0.34 3.07 3.10 3.04

English Extended

O-DR 0.33 0.48 0.15 0.09 0.18 -0.01 2.61 2.90 2.28

Table 2: Results for Subtask A. Best scores per column and test set in bold. Bold omitted for last row.

score for literal expressions (3.54) than idiomatic
ones (3.13).

On the Portuguese subset, our best model, O-
DER?2-P, achieves an overall accuracy of 0.77, with
perfect performance on idiomatic expressions (1.0)
but lower accuracy on literal ones (0.57). The DCG
scores follow a similar pattern, with idiomatic ex-
pressions (3.63) outperforming literal ones (3.04).
These results highlight the challenges of cross-
lingual transfer and the need for further improve-
ment in handling Portuguese idioms.

4.2 Subtask A: Text Only

In the text-only setting for Subtask A, our system
demonstrates mixed performance. On the English
dataset, the O-DR model achieves an overall ac-
curacy of 0.66, with higher accuracy on idiomatic
expressions (0.75) compared to literal ones (0.57).
The DCG scores are relatively balanced, with 3.10
for literal expressions and 3.04 for idiomatic ones.

However, on the English extended dataset, the

performance drops significantly, with an overall
accuracy of 0.33 and a notable decrease in perfor-
mance on idiomatic expressions (0.15) compared to
literal ones (0.48). This suggests that the extended
dataset introduces more challenging and diverse
examples that require further improvements in our
text-based idiomaticity classification approach.
Comparing the Text-Only results to the Im-
age+Text setting, we observe that the inclusion
of visual information generally improves perfor-
mance, particularly on the English extended dataset.
This highlights the importance of leveraging multi-
modal information for idiomaticity detection, espe-
cially in more complex and diverse scenarios.

4.3 Subtask B: Image and Text

In the image+text setting for Subtask B, our system
achieves mixed performance on the English dataset.
The O-DR model obtains an overall item accuracy
of 0.60, with perfect accuracy on idiomatic expres-
sions (1.0) but zero accuracy on literal ones (0.0).
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Model Itemall Itemlit Itemid Sentall Sendlit Sentid
Image and Text

English

C-DR 0.20 0.0 0.33 0.80 1.0 0.67

O-DR 0.60 0.0 1.0 1.0 1.0 1.0

English Extended

O-DR 0.23 0.17 0.33 0.77 0.94 0.50

Text Only

English

C-DR 0.60 0.50 0.07 0.8 1.0 0.67

O-DR 1.0 1.0 1.0 1.0 1.0 1.0

English Extended

O-DR 0.60 0.78 0.33 0.77 0.94 0.50

Table 3: Results for Subtask B. Best scores per column and test set in bold. Bold omitted for English Extended.

However, the model achieves perfect sentence accu-
racy (1.0) for both literal and idiomatic expressions.

On the English extended dataset, the O-DR
model’s performance drops, with an overall item
accuracy of 0.23 and sentence accuracy of 0.77.
The model performs better on idiomatic expres-
sions (0.33 item accuracy, 0.50 sentence accuracy)
compared to literal ones (0.17 item accuracy, 0.94
sentence accuracy). This suggests that the extended
dataset presents more challenging cases for image
selection and idiomaticity classification, requiring
further improvements in our multimodal approach.

4.4 Subtask B: Text Only

For Subtask B, which involves selecting the most
appropriate final image to complete a 3-image se-
quence while determining the idiomaticity of the
expression, our system demonstrates strong per-
formance using only textual information. On the
English dataset, the O-DR model achieves perfect
scores across all metrics, correctly identifying the
idiomaticity and selecting the appropriate final im-
age for both literal and idiomatic expressions.

However, on the English extended dataset, the
performance drops significantly, with an overall
accuracy of 0.6 and lower scores on idiomatic ex-
pressions (0.33) compared to literal ones (0.78).
This suggests that the extended dataset introduces
more challenging and diverse examples that require
further improvements in our text-based idiomaticity
classification and image selection approach.
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4.5 Comparison between Image+Text and
Text Only

Comparing the results of Subtask A (Image+Text)
and Subtask B (Text Only) reveals an interesting
trend. While the inclusion of visual information in
Subtask A generally improves performance, partic-
ularly on the English extended dataset, the text-only
approach in Subtask B surprisingly outperforms the
Image+Text approach on the English dataset. This
suggests that the textual context alone can be suf-
ficient for identifying idiomaticity and selecting
appropriate images in some cases, and that the in-
tegration of visual information may introduce addi-
tional complexity or noise. However, it is important
to note that the English extended dataset results for
Subtask B show a significant drop in performance
compared to the English dataset, indicating that
the text-only approach may not generalize well to
more diverse and challenging examples. Further
investigation is needed to understand the factors
contributing to this performance gap and to develop
more robust multimodal approaches that can effec-
tively leverage both textual and visual information.

4.6 Portuguese Performance

The results on the Portuguese subset for Subtask
A highlight the challenges of cross-lingual transfer
in multimodal idiomaticity detection. Despite the
improvements achieved by translating the prompts
to Portuguese and incorporating explanations, the
overall performance remains lower compared to
the English datasets. This suggests that there may
be linguistic and cultural differences in idiomatic



Test set Rank (O) Rank (E)
Subtask A

English (T+I) 5 2

English (TO) 3 5

Portuguese (T+]) 4 4
Subtask B

English (T+I) 1 2

English (TO) 1 2

expressions that require further adaptation and fine-
tuning of the models.

4.7 Overall Performance

In comparison to other submissions, according to
the official leaderboard, our best models rank as
follows: for Subtask A (Text+Image), we rank fifth
on the original and second on the extended test set,
for Subtask A (Text Only), we rank third and fifth,
for Subtask A (Text+Image) Portuguese, we rank
fourth on both test sets. For Subtask B, we rank
first and second in both modalities.

5 Conclusion

In this paper, we present a multi-step zero-shot
system for the SemEval-2025 Task 1 on Advanc-
ing Multimodal Idiomaticity Representation (Ad-
MIRe). Our approach leverages state-of-the-art
multimodal language models, including Claude
Sonnet 3.5, OpenAl GPT-40, and ol-preview, to
address the challenges of idiomaticity detection
and image ranking in both literal and idiomatic
contexts.

The system demonstrates competitive perfor-
mance on the English extended dataset for Sub-
task A, achieving an overall accuracy of 0.81 us-
ing a hybrid approach that combines ol-preview
for idiomaticity classification and GPT-4o for vi-
sual ranking. However, cross-lingual transfer to
Portuguese remains a challenge, highlighting the
need for further research in adapting multimodal id-
iomaticity detection systems to different languages
and cultural contexts.

Our analysis of the Image+Text and Text-Only
approaches reveals interesting trends, with the Text-
Only approach surprisingly outperforming the Im-
age+Text approach on the English dataset for Sub-
task B. This raises questions about the role and
effectiveness of visual information in multimodal
idiomaticity detection, and calls for further inves-
tigation into the factors contributing to the perfor-

mance differences across datasets and subtasks.

Future work should investigate the factors con-
tributing to the performance differences between
Image+Text and Text-Only approaches across
datasets and subtasks to develop more effective
multimodal idiomaticity detection.

Limitations

While our system demonstrates competitive per-
formance on the SemEval-2025 Task 1 datasets,
there are several limitations that should be acknowl-
edged:

1. Our system relies on zero-shot classification
for idiomaticity detection, which may not cap-
ture the full complexity and nuance of id-
iomatic expressions across different contexts
and languages. Fine-tuning the models on
task-specific data could potentially improve
performance and generalization.

2. Although we experimented with translating
prompts to Portuguese, our cross-lingual eval-
uation is limited to a single language. To as-
sess the true effectiveness of our approach for
multilingual idiomaticity detection, it would
be necessary to evaluate on a wider range
of languages and idioms. Reliance on pre-
trained models: Our system heavily relies
on the capabilities of pre-trained multimodal
language models, such as GPT-40 and ol-
preview. While these models have demon-
strated strong performance on various tasks,
they may have inherent biases or limitations
that could impact the system’s performance
on specific idioms or cultural contexts.

3. The use of large pre-trained models in our
system makes it challenging to interpret the
decision-making process behind the idiomatic-
ity classifications and image rankings. Devel-
oping more interpretable and explainable mod-
els could provide insights into the system’s
behavior and potential areas for improvement.

4. The use of large pre-trained models like GPT-
40 and ol-preview requires significant com-
putational resources, which may limit the ac-
cessibility and scalability of our approach for
researchers and practitioners with limited re-
sources.
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Ethical Considerations

We acknowledge that the use of large language
models for natural language processing tasks can
be computationally intensive and consume signif-
icant energy and resources. For this reason, no
prompt engineering or extensive fine-tuning of the
LLM was conducted. The total computational costs
incurred in this study are at approximately $28.
While LLMs offer powerful capabilities, it is im-
portant for the research community to carefully
consider the environmental impacts and strive to
develop more computationally efficient approaches.
Future work should explore techniques to reduce
the carbon footprint of LLM usage without compro-
mising performance. Judicious use of these mod-
els, along with transparency around the associated
costs, can help balance the research benefits with
the broader sustainability implications. Through
mindful practices and continued innovation, we
aim to harness the potential of LLMs in an ethi-
cally responsible manner.
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A Parameters and prompts

Claude 3.5 Sonnet
max_tokens 8192
temperature 0
OpenAl GPT-40

No additional parameters were provided to the model.

Table 4: Parameters provided to the models
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Subtask A

System You are a skilled linguist with deep knowledge of idiomatic expressions. You can
easily distinguish between idiomatic and non-idiomatic uses of phrases in English and
Portuguese.

User In the following sentence, is the expression expression used idiomatically or literally?

Expression: expression Sentence: sentence Answer only with *idiomatic’ or ’literal’

System (I+T) You are an expert in semantic analysis and image relevance evaluation. Given a
classification of an expression as idiomatic or literal, your task is to: Assign each of
five provided images to one of the following categories: 1. Synonym for the idiomatic
meaning of the expression. 2. Synonym for the literal meaning of the expression.
3. Related to the idiomatic meaning, but not synonymous. 4. Related to the literal
meaning, but not synonymous. 5. A distractor unrelated to either meaning. Rank
the images based on their relevance to the identified meaning of the expression: -
Synonyms should be ranked highest. - Related images should be ranked next. -
Distractors should always be ranked lowest.

User (I+T) Rank the following images for the expression expression used in a idiomatic/literal way,
from most relevant to least relevant. Return an array of five numbers that correspond
to the image numbers, like [1,4,3,2,5]. image data

User (T) Rank the following sentences for the expression expression used in a idiomatic/literal
way, from most relevant to least relevant. Return an array of five numbers that
correspond to the sentence numbers, like [0,3,2,1,4]. 1. captionl 2. caption2 3.
caption3 4. caption4 5. caption5

System You are an expert in linguistic analysis with a deep understanding of idiomatic and
literal expressions in English/Portuguese. Your task is to provide a clear explanation
of an idiomatic or literal expression.

User Explain expression used in a idiomatic/literal way.

User (I+T) Given the following explanation of the expression expression used in a idiomatic/literal
way, rank the images from most relevant to least relevant. Return an array of five num-
bers that correspond to the image numbers, like [1,4,3,2,5]. Explanation: explanation,
image data

System (I+T) Vocé € um especialista em andlise semantica e avaliacdo de relevancia de imagens.
Dada a classificacdo de uma expressao como idiomatica ou literal, sua tarefa é: Atribuir
cada uma das cinco imagens fornecidas a uma das seguintes categorias: 1. Sindbnimo
para o significado idiomaético da expressdo. 2. Sinénimo para o significado literal
da expressdao. 3. Relacionado ao significado idiomdtico, mas ndo sindénimo. 4.
Relacionado ao significado literal, mas nio sindnimo. 5. Um distrator ndo relacionado
a nenhum dos significados. Classificar as imagens com base na sua relevancia para o
significado identificado da expressdo: - Os sindnimos devem ser classificados como os
mais relevantes. - As imagens relacionadas devem ser classificadas em seguida. - Os
distratores devem sempre ser classificados como os menos relevantes.

User (I+T) Dada a seguinte explicacdo da expressdo expression usada de forma idiomatic/literal,
classifique as imagens da mais relevante para a menos relevante. Retorne um array
de cinco nimeros que correspondem aos nimeros das imagens, como [1,4,3,2,5].
Explicagdo: explanation, image data

Table 5: Prompts for Subtask A. The first block describes the DR approach. The second block describes the
additional prompts used for DER. The third block shows the translations used for Portuguese. Prompts only used
for Image+Text are marked with (I+T), while prompts used only for text are marked (T)
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Subtask B

System You are a skilled linguist with deep knowledge of idiomatic expressions.

User Given the following sentences, is the expression most likely used literally or idiomati-
cally? Answer only with ’idiomatic’ or ’literal’! Expression: expression Sentences:
sentences

System (I+T) You are a skilled visual artist specialized in images that convey idiomatic or literal
meanings. You can easily rank images in terms of relevance to idiomatic and non-
idiomatic uses of phrases in English. Respond only with a number.

User (T) Given the following expression used in a idiomatic/literal way, and the following
description, which of the following four sentences best continues the description.
Respond only with the sentence number (1,2,3,4). Expression: expression Description:
sentences 1. captionl 2. caption2 3. caption3 4. caption4

User (I+T) Given the following expression used in a idiomatic/literal way, and the following two
images, which of the following four images best continues the description. Respond
only with the image number (1,2,3,4). Expression: expression, image data

Table 6: Prompts for Subtask B. Prompts only used for Image+Text are marked with (I+T), while prompts used only
for text are marked (T)
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Figure 1: Comparison of accuracy for literal vs. idiomatic expressions on English dataset (Image+Text)
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Figure 2: Comparison of accuracy for literal vs. idiomatic expressions on Portuguese dataset (Image+Text)
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Figure 3: Comparison of performance between Image+Text and Text-Only approaches on English dataset
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Figure 4: Comparison of best-performing models on English and Portuguese datasets
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Abstract

This paper describes our system for SemEval-
2025 Task 9, Subtask 1: The Food Hazard
Detection Challenge, which focuses on pre-
dicting the type of food hazard and product
from incident report titles collected from the
web. We employed an ensemble learning ap-
proach, combining models trained with various
data augmentation techniques to enhance per-
formance on this text classification task. To ad-
dress class imbalance, we fine-tuned the mod-
els using focal loss. Our system achieved Top
1 with a score of 0.8223, demonstrating the ef-
fectiveness of ensemble methods and data aug-
mentation in improving classification accuracy
for food safety risk assessment.

1 Introduction

Food safety is a growing global concern, with food-
related hazards posing risks to public health and
the economy. Identifying and categorizing these
hazards from online incident reports is crucial for
early detection and prevention. The SemEval-
2025 Task 9, Subtask 1 (Randl et al., 2025) ad-
dresses this issue by evaluating Al models for clas-
sifying food hazards and associated products based
on web-sourced report titles. This task presents
challenges such as handling imbalanced data, en-
suring model explainability, and improving classi-
fication accuracy to support automated food risk
monitoring systems.

Our approach to this task involved employing
an ensemble learning method that integrates multi-
ple BERT (Devlin et al., 2019) models, including
RoBERTa-large (Liu et al., 2019) and DeBERTa-
v3-large (He et al., 2023), trained with various data
augmentation strategies. To address the class im-
balance commonly found in food hazard classifi-
cation tasks, we fine-tuned these models using fo-
cal loss (Lin et al., 2020). This approach not only
helped improve performance but also ensured our
system’s ability to generalize well across diverse
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hazard categories. By leveraging both lightweight
and intensive data augmentation techniques, we
crafted a solution that maintained high accuracy
while prioritizing transparency, which is essential
in explainable Al

You can access our system’s code through
the following GitHub repository: Semeval-Task9-
The-Food-Hazard-Detection-Challenge-2025.

2 Related Work

Food safety risk classification is crucial for protect-
ing public health and ensuring regulatory compli-
ance. Traditional approaches relied on rule-based
systems and expert knowledge, but advances in
machine learning and natural language process-
ing have significantly improved classification ac-
curacy and scalability.

(Nogales et al., 2022) introduced a deep learn-
ing framework that incorporates categorical em-
beddings to predict food safety risks using Euro-
pean Union data. Their model demonstrated high
accuracy in predicting product categories, hazard
types, and appropriate actions, laying the founda-
tion for large-scale food safety classification using
neural architectures.

(Randl et al., 2024) proposed CICLe, a confor-
mal in-context learning approach for large-scale
multi-class food risk classification. By integrating
conformal prediction, CICLe provides reliable un-
certainty estimates, enhancing decision-making in
high-risk scenarios. Additionally, they introduced
a dataset of 7,546 labeled food recall announce-
ments, serving as a benchmark for future studies.

Recent advances in Al-driven text classification
have demonstrated significant potential in regula-
tory and news analysis. (Hassani et al., 2025) con-
ducted an empirical study utilizing large language
models (LLMs) to classify requirements-related
provisions in food safety regulations. In a related
effort, (Xiong et al., 2023) proposed a hierarchi-
cal Transformer-based model for food safety news

Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 141-147
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classification, addressing the challenge of long-
text processing.

Morever, (Maharana et al., 2019) used BERT
to detect unsafe food reports in Amazon reviews,
linking them to FDA recalls (2012-2014). Their
model achieved an F1 score of 0.74 and identi-
fied potential underreporting of food safety issues.
Similarly, (Wang et al., 2022) reviewed machine
learning applications in food safety, highlighting
improvements in monitoring, detection, and pre-
diction.

These studies collectively demonstrate the
progress in food risk classification. Building upon
this foundation, our work explores strategies to en-
hance both classification accuracy and explainabil-
ity, with a focus on real-world applicability.

3 System Description

We performed Exploratory Data Analysis (Rao
et al., 2021) and discovered that the data suffers
from severe class imbalance. To address this is-
sue, we augmented the data by creating multiple
different datasets and chunking them into various
sizes. We trained different variants of BERT mod-
els using Focal Loss to mitigate the impact of the
imbalance in the classes.

To further improve performance, we applied an
ensemble method using soft voting on the probabil-
ities of each label, combining the results from mul-
tiple models to optimize accuracy and minimize
classification errors.

3.1 System Overview

Our system is structured as shown in Figure 1 and
consists of the following stages: a) Data: Pre-
processing, augmentation to create two additional
datasets, and chunking the data into different sizes;
b) Training: Training models using both multi-
task learning (Zhang and Yang, 2017) and single-
task learning approaches; ¢) Ensemble: Combin-
ing model predictions using soft voting (Manconi
et al., 2022) based on the probabilities of each la-
bel.

3.2 Training models

3.2.1 Focal Loss

Focal Loss is used to minimize the effect of eas-
ily classified examples and emphasize harder-to-
classify ones. We apply Focal Loss for both multi-
task and single-task scenarios.

Combined Text
(Year, Month, Day, Country, Title, Text)

!

[ Chunk into different sizes |

T
MULTITASK

!

Hazard & Product
category

DeBERTa-
v3-large

SINGLE-TASK

l Product category l l Hazard category l

DeBERTa
-v3-large

RoBERTa-
large

| | |

DeBERTa
-v3-large

RoBERTa-
large

[ Product Category Weighted Voting | | Hazard Category Weighted Voting |
[ |

Final
Output

Figure 1: The weight voting ensemble architecture
based on the combination of fine-tuning multilingual
contextual language models.

Lrpr(py) = —o,(1 = py)¥ log(p;)

In this formula, p; is the probability of the true
class based on the model’s prediction, «; is a bal-
ancing factor for each class, used to adjust the im-
pact between classes, especially when dealing with
imbalanced datasets, and y is the focusing parame-
ter that helps adjust the focus on hard examples.
When y = 0, Focal Loss becomes the standard
Cross-Entropy loss. As y increases, the impact of
easy examples decreases, and the model focuses
more on the hard-to-classify examples.

3.2.2 Multitask Learning

Multitask learning is a type of machine learn-
ing approach in which multiple related tasks are
learned simultaneously, sharing representations to
improve performance on each task. In this study,
we leverage multitask learning to train a model that
simultaneously predicts two types of labels: prod-
uct category and hazard category. By training the
model on both tasks at once, the shared knowledge
between the tasks can enhance the overall model’s
generalization.

To implement this, we use a transformer-based
architecture (Vaswani et al., 2017) as shown in Fig-
ure 2, specifically the DeBERTa-v3-large model,
which is fine-tuned on both classification tasks.
The model consists of a pre-trained BERT-based
encoder that captures the contextualized represen-
tation of text and two separate classifiers: one for
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the product category and another for the hazard cat-
egory.
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Figure 2: The architecture of the transformer model
used in this work.

The multitask model is optimized using a cus-
tom loss function called Focal Loss, which helps
to address class imbalance in the training data. Fo-
cal Loss is designed to reduce the impact of easy-
to-classify examples and focus more on hard-to-
classify instances, thereby improving model per-
formance on imbalanced datasets. Specifically, we
use Focal Loss for both product and hazard classi-
fication tasks. The model computes the final loss
as the weighted average of the individual losses for
each task:

Loss = 0.5 X Product Loss + 0.5 X Hazard Loss

The individual task losses are computed using
Focal Loss, where the loss for each task is calcu-
lated as:

Focal Loss = a(1 — p;)? X CrossEntropyLoss

We apply data balancing techniques, such as
oversampling and undersampling (Yang et al.,
2024), to address the class distribution issues in
both tasks. Oversampling is applied to the least fre-
quent categories, while undersampling is applied

to the most frequent ones, leading to a more bal-
anced distribution of the classes on the original
dataset.

We also calculate class weights (Xu et al., 2020)
based on the frequency of each class in the dataset.
These weights are used in the model’s loss function
to give more importance to minority classes, fur-
ther improving the model’s ability to classify rare
categories effectively.

3.2.3 Single-task Learning

In this approach, we train two separate mod-
els, DeBERTa-v3-large (He et al.,, 2023) and
RoBERTa-large (Liu et al., 2019), each focusing
on a specific classification task: product category
and hazard category. Each model is fine-tuned
independently for its respective task without any
shared learning between them.

To address class imbalance within the dataset,
we employ data augmentation instead of tradi-
tional oversampling or undersampling techniques
(Gao, 2020). For each task, we first augment a
dataset to ensure that less frequent labels are repre-
sented sufficiently in both the training and valida-
tion splits. This step ensures that no label is under-
represented in the validation set. then, we perform
additional augmentation to increase the overall vol-
ume of data while maintaining the original distribu-
tion of classes. We prioritize preserving the natural
class distribution, as artificially balancing the data
could lead to the loss of important patterns, which
would degrade the performance of the model.

Focal loss is also applied for each of the tasks to
further help address the class imbalance. For eval-
uation, we utilize the macro F1 (Opitz and Burst,
2021) score for each label. The macro F1 score
calculates the F1 score for each class individually
and then averages them, ensuring that each label is
treated equally regardless of frequency.

Through this approach, we leverage the bene-
fits of data augmentation to ensure balanced repre-
sentation across tasks, while focusing on preserv-
ing the class distribution to optimize model perfor-
mance.

3.3 Ensemble

In our model, the Ensemble method is imple-
mented using the soft voting technique, where the
probabilities from multiple models are aggregated
as follows:
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N
P(y=c)= Y wP(y =) (1)
i=1

In equation (1), P;(y = c) represents the proba-
bility of class ¢ predicted by model i, while w; is
the weight assigned to that model. The weights w;
are optimized using grid search on the validation
set during the Conception Phase.

The weight optimization process follows these
steps:

* Define a grid of possible weight values w;, en-
suring that >, w; = 1.

* Evaluate each set of weights using the vali-
dation set and compute the ensemble model’s
performance.

* Select the optimal set of weights based on
evaluation metrics.

The results show that the Ensemble model sig-
nificantly improves performance compared to in-
dividual models, as it leverages weighted aggrega-
tion instead of relying on a single model’s predic-
tion.

4 Experiment

4.1 Datasets

We used three different datasets for this experi-
ment: the original dataset, a lightly augmented ver-
sion, and a heavily augmented version.

4.1.1 Data Augmentation

Light Augmentation: In this phase, we focused
specifically on the most underrepresented classes
in the dataset. We generated additional synthetic
samples for the following categories: 9 product
categories with the lowest representation and 4
hazard categories with the lowest representation.
This targeted approach aimed to ensure that the
model receives more examples from these under-
represented classes, which helps to mitigate the
bias toward the majority classes and improve over-
all model performance.

Heavy Augmentation: In the heavy augmenta-
tion phase, we applied extensive modifications to
the dataset, generating a larger volume of syn-
thetic samples separately for hazard categories and
product categories. This approach enhanced the
representation of minority classes, improving the
model’s ability to generalize. Additionally, the

dataset was split into two separate subsets: one for
hazard classification and another for product classi-
fication, as this dataset is used for single-task learn-
ing.

All three datasets were split using an 80:20 ratio
for training and validation. The dataset statistics
after augmentation are summarized in Table 1.

Dataset Train Samples | Validation Samples

Original 4787 1197
Light Augmentation 5187 1297
Heavy Augmentation - Hazard 8224 2057

Heavy Augmentation - Product 13417 3355

Table 1: Dataset statistics after augmentation

4.1.2 Preprocessing

The data preprocessing follows a systematic ap-
proach applied to all datasets. Special characters
(excluding punctuation) are removed, newlines are
replaced with spaces, and consecutive spaces are
consolidated. Punctuation is standardized for read-
ability.

After cleaning, the text is segmented into
sentence-based chunks of 512, 768, 1024, and
1280 tokens, approximately 400, 650, 900, and
1150 words, to preserve contextual coherence
while adhering to model constraints.

For the heavily augmented dataset, additional
preprocessing steps are applied. Non-English
text is translated into English to ensure consis-
tency across all the data, allowing the model to
process it uniformly. Additionally, HTML tags,
which might have been included in the original
dataset, are removed using BeautifulSoup (Pant
et al., 2024), ensuring that only the relevant tex-
tual content is retained and improving the quality
of the data used for model training.

4.2 Experiment Environment

We used RoBERTa-large and DeBERTa-v3-large
models for classification, trained on NVIDIA
P100 and T4 GPUs via the Kaggle platform.
RoBERTa-large was trained for 8 hours, while
DeBERTa-v3-large took 12 hours per model. The
training used a learning rate of 2x 107>, batch sizes
of 4 for training and 2 for evaluation, 10 epochs,
weight decay of 0.01, logging every 10 steps, and
a warm-up ratio of 0.1.

4.3 Results

Table 2 presents a comparison of different model
configurations across various methods, datasets,
model types, token sizes, and weight voting scores.
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TOKEN HAZARD PRODUCT WEIGHT WEIGHT
METHOD | DATA | MODEL NAME CHUNK SCORE SCORE SCORE HAZARD | PRODUCT
512 0.7861 0.7486 0.7673 0.3500 0.1842
768 0.7990 0.7640 0.7815 0.3500 0.2632
DeBERTa-v3-large
1024 0.7789 0.7960 0.7874 0.0000 0.0000
Licht 1280 0.7819 0.7875 0.7847 0.2000 0.0000
i
£ 512 0.7680 0.7515 0.7598 0.0500 0.1842
. 768 0.7691 0.8292 0.7991 0.0000 0.0000
Single-Task RoBERTa-large
1024 0.7719 0.7522 0.7621 0.0000 0.0000
1280 0.7839 0.7869 0.7854 0.0000 0.0000
512 0.7613 0.7945 0.7779 0.0500 0.2632
q DeBERTa-v3-large 768 0.7712 0.7984 0.7848 0.0000 0.0000
eav
Y 1024 0.7599 0.7490 0.7544 0.0000 0.0000
RoBERTa-large 512 0.7775 0.7837 0.7806 0.0000 0.0000
MultiTask | Original | DeBERTa-v3-large 512 0.7291 0.7963 0.7627 0.0000 0.1053

Table 2: Result comparison based on method, data, model type, token size, and weight voting

For single-task learning on the Light dataset,
DeBERTa-v3-large with 768 tokens achieves the
highest overall score of 0.7815, while RoBERTa-
large with 768 tokens achieves a slightly higher
product score of 0.8292. On the Heavy dataset,
DeBERTa-v3-large with 512 tokens achieves the
best overall score of 0.7779.

In multi-task learning with the Original dataset,
DeBERTa-v3-large with 512 tokens performs with
an overall score of 0.7627. Weight voting scores
indicate the influence of hazard and product clas-
sification, where certain models receive higher
weights in hazard or product recognition, such
as DeBERTa-v3-large (512 tokens, Light dataset)
with a weight hazard score of 0.35.

By using grid search, we optimized the weight
voting scheme to obtain the final model combina-
tion. The optimized weight allocation, as shown in
Table 2, resulted in a final overall score of 0.8223.

5 Conclusion

In summary, we presented an ensemble-based ap-
proach for the food hazard detection task in Se-
mEval 2025 Task 9, Subtask 1. By combining
DeBERTa-v3-large and RoBERTa-large models
with data augmentation and focal loss, we achieved
a top performance with a macro F1 score of 0.8223.
Our results highlight the importance of model en-
sembling, data augmentation, and addressing class
imbalance for multi-class classification tasks.
Future work will focus on improving the
model’s ability to distinguish between similar haz-
ard types by incorporating advanced techniques
such as Retrieval-Augmented Generation (RAG)

(Lewis et al., 2020), which combines information
retrieval and generation to enhance context and re-
duce ambiguity. Additionally, we plan to explore
few-shot learning and GAN-based data augmenta-
tion (Wang and Wan, 2020) to generate more re-
alistic data, addressing class imbalance and boost-
ing performance with limited labeled data. These
methods are expected to improve model general-
ization and enhance its ability to handle complex
hazard detection tasks.

6 Limitations

Although our system achieved strong results, sev-
eral limitations remain. First and most notably, we
submitted multiple test runs, violating SemEval’s
single-submission rule. This may have led to an
unfair advantage, and we take full responsibility.
We are committed to strictly following submis-
sion policies in future shared tasks to ensure fair-
ness. Second, while data augmentation helped
address class imbalance, we did not apply rigor-
ous quality control to synthetic samples, which
risks propagating label noise—especially in under-
represented classes. Third, our work lacks infer-
ence latency metrics and comparisons with mod-
ern large language models (e.g., GPT-4), limit-
ing insight into real-world deployment and per-
formance against current state-of-the-art systems.
Future work should incorporate human-validated
augmentation, efficiency benchmarks, and LLM-
based baselines.
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Abstract

The proliferation of online news and the in-
creasing spread of misinformation necessitate
robust methods for automatic data analysis.
Narrative classification is emerging as a im-
portant task, since identifying what is being
said online is critical for fact-checkers, policy
markers and other professionals working on
information studies. This paper presents our
approach to SemEval 2025 Task 10 Subtask 2,
which aims to classify news articles into a pre-
defined two-level taxonomy of main narratives
and sub-narratives across multiple languages.
We propose Hierarchical Three-Step Prompting
(H3Prompt) for multilingual narrative classifi-
cation. Our methodology follows a three-step
Large Language Model (LLM) prompting strat-
egy, where the model first categorises an article
into one of two domains (Ukraine-Russia War
or Climate Change), then identifies the most rel-
evant main narratives, and finally assigns sub-
narratives. Our approach secured the top posi-
tion on the English test set among 28 compet-
ing teams worldwide. The code is available at
https://github.com/GateNLP/H3Prompt.

1 Introduction

The rapid dissemination of information online has
significantly influenced public discourse, making it
crucial to detect and classify narratives accurately
(Heinrich et al., 2024; Piskorski et al., 2022). Narra-
tive classification plays a key role in understanding
how different perspectives shape public opinion
and in identifying potential misinformation cam-
paigns (Amanatullah et al., 2023). To advance
research in this area, the SemEval 2025 shared task
10 (Piskorski et al., 2025) presents multilingual
characterisation and extraction of narratives from
online news providers. A narrative is defined as a
structured presentation of information that conveys
a specific message or viewpoint, often forming a
cohesive storyline'. The task provides a benchmark

"https://www.merriam-webster.com/dictionary/
narrative

for evaluating and developing narrative classifica-
tion models (Piskorski et al., 2025), helping re-
searchers analyse how narratives emerge and prop-
agate across different languages.

As part of this challenge, Subtask 2 (Piskorski
et al., 2025) focuses on assigning appropriate sub-
narrative labels to a given news article based on
a two-level taxonomy2 (Stefanovitch et al., 2025),
where each narrative is further divided into sub-
narratives. This is a multi-label, multi-class doc-
ument classification task involving news articles
from two key domains: the Ukraine-Russia war
and climate change. The dataset comprises arti-
cles, collected between 2022 and mid-2024, in five
languages: Bulgarian, English, Hindi, Portuguese,
and Russian. A significant portion of these articles
have been flagged by fact-checkers as potentially
spreading misinformation (Piskorski et al., 2025).

Previous work has focused on fine-grained nar-
rative classification across various domains, includ-
ing climate change (Coan et al., 2021; Piskorski
et al., 2022; Zhou et al., 2024; Rowlands et al.,
2024), the Ukraine-Russia war (Amanatullah et al.,
2023), health misinformation (Ganti et al., 2023),
and the COVID-19 infodemic (Kotseva et al., 2023;
Heinrich et al., 2024; Shahsavari et al., 2020).
These studies have proposed models to identify
narratives, aiding in the analysis of misinformation
and public discourse within these critical topics.

Given the complexity and multilingual nature
of this task, this paper proposes a novel Hierarchi-
cal Three-Step Prompting (H3Prompt). In this, we
fine-tune a Large Language Model (LLM) from
the LLaMA 3.2 family using H3Prompt by leverag-
ing both training data and synthetically generated
data. Our method follows a three-step prompting
framework, ensuring a structured and hierarchical
classification process. This approach enhances the
model’s ability to accurately distinguish between

2ht’cps: //propaganda.math.unipd.it/
semeval?2025task10/NARRATIVE-TAXONOMIES. pdf
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narratives and sub-narratives, improving classifica-
tion performance across multiple languages. More-
over, it also allows analysts to gain deeper insights
into emerging narratives.

2 Hierarchical Three-Step Prompting
(H3Prompt)

Our approach to narrative classification follows a
hierarchical three-step prompting mechanism. We
first describe the dataset and synthetic data gen-
eration process (Section 2.1). Next, we outline
fine-tuning details (Section 2.2). Finally, we detail
the prompt structure for refining predictions across
classification levels (Section 2.3).

2.1 Dataset

We utilise the training dataset provided by SemEval
2025 task organisers, which includes annotated
news articles spanning five languages (Piskorski
et al., 2025). We translate all non-English articles
into English using Fairseq’s m2m100_418M model
(Fan et al., 2021). After translation, we obtain a
total of 2,091 annotated data points.

Additionally, we synthetically generate articles
to augment the dataset in order to improve model
generalisation. We used an Vicuna LLM (Zheng
et al., 2023) to generate synthetic articles.

Used prompt:

You are an AI news curator. Generate 5
different news articles related to the
following topic on {category}.

Topic: {sub_narrative}
Explanation: {explanation}

Each article should be between 400-500
words and explore a unique aspect,
perspective, or event related to this
topic. Focus on delivering informative,
coherent, and engaging articles that
reflect diverse points of view or angles
on the given topic. Avoid redundancy by
ensuring that each article highlights a
different aspect or argument related to
the context provided. The output format
should look like this:

Article 1:

Article
Article
Article
Article

g w N

We opt for vicuna-7b-v1.5 (Zheng et al., 2023)
for synthetic data generation since it has been
shown to easily generate content containing dis-
information (Vykopal et al., 2023). As shown in
the prompt, we provide both the narrative and its
explanation to the model. We generate explana-
tions using ChatGPT and manually verify them
(see Appendix A).

We generate 100 articles for each sub-narrative.
To encourage diversity, we generate articles using
sampling with different temperature values in the
range of 1 to 1.5. In total, we synthetically generate
8,129 news articles.

Finally, a total of 10,220 (2,091 + 8,129) news
articles, including both annotated and synthetic
data, are used for training the models.

2.2 Low-Rank Adaptation Fine-Tuning

Low-Rank Adaptation (LoRA) was introduced by
Hu et al. (2021) and applied specifically to the atten-
tion layers of transformer models. This approach
demonstrated comparable or superior performance
to full fine-tuning while significantly reducing the
number of trainable parameters.

The pre-trained transformer consists of multi-
ple dense layers, where the transformation of an
input vector x into an output representation h is
performed through full-rank matrix multiplication.
In a standard pre-trained model, this transformation
is represented as follows:

h:W():L‘

where Wy € R is the original pre-trained
weight matrix. During model adaptation in LoRA,
fine-tuning introduces weight modifications, allow-
ing the updated output to be expressed as:

hadapted =Wox + AWz

where AW represents the learned weight adjust-
ments optimised through training. LoRA con-
strains these weight updates by decomposing AW
into two lower-rank matrices: B € R?*" and
A € R™F where r < min(d, k). This formu-
lation allows the adapted output to be computed
as:
hiora = Wox + BAx

Matrices A and B are the trainable parameters,
initialised such that their product BA starts as a
zero matrix. During training, original pre-trained
weight matrix Wy is frozen and does not receive
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gradient updates. Additionally, the weight update
AWz is scaled by a factor of <, where « is a
hyperparameter controlling the adaptation strength.

In this paper, we use LoRA to fine-tune
LLaMA-3.2-3B-Instruct (Dubey et al., 2024;
Touvron et al., 2023) using the Unsloth library
(Daniel Han and team, 2023). The fine-tuning pro-
cess is guided by the prompts defined in Section
2.3. We set a and r to 64, the number of epochs
to 5, the batch size to 8, the gradient accumulation
steps to 8, and the learning rate to 2e —4. We manu-
ally tune the hyperparameters within the following
bounds: (i) 1 to 8 epoch (ii) 1e — 5 to be — 4 learn-
ing rate (iii) 2 to 16 batch size (iv) 8 to 128 for both
a and r values. All experiments are conducted on
three NVIDIA A100 40GB GPUs.

2.3 Prompting Mechanism for Narrative
Classification

In this subsection, we elaborate on the detailed
structure of the H3Prompt mechanism. This in-
cludes the prompts employed at each step and the
accompanying algorithm to do the classification.

Step 1: Category Classification. The first step
determines whether a document belongs to the
“Ukraine-Russia War” or “Climate Change” cat-
egory. If no match is found, the document is as-
signed the label “Other.” This first step filters out
all irrelevant news articles.

Used prompt:

Given the following document text,
classify it into one of the two
categories: "Ukraine-Russia War" or

"Climate Change".
Document Text: {document_text}

Determine the category that closely or
partially fits the document. If neither
category applies, return "Other”. Return
only the output, without any additional
explanations or text.

Step 2: Main Narrative Classification. Based
on the assigned category in Step 1, H3Prompt then
selects the most relevant main narratives using a
predefined taxonomy with explanations for each
main narrative. See Appendix A for explanation
details. The model returns one or more main narra-
tives as hash-separated labels. If no relevant narra-
tive is found, "Other" is returned.

Used prompt:

The document text given below is related
to "{category}".

Please classify the document text into
the most relevant narratives. Below is
a list of narratives along with their
explanations:

{narratives_list_with_explanations}
Document Text: {document_text}

Return the most relevant narratives
as a hash-separated string (e.g.,
Narrativel#Narrative2..). If no specific
narrative can be assigned, just return
"Other” and nothing else. Return only
the output, without any additional
explanations or text.

Step 3: Sub-Narrative Classification. For each
identified main narrative (Step 2), H3Prompt as-
signs relevant sub-narratives by leveraging a struc-
tured prompt that includes explanations of avail-
able sub-narratives. See Appendix A for details on
how these explanations were generated. Only the
sub-narratives corresponding to the main narratives
identified in Step 2 are used in the prompt. If no
suitable sub-narrative is found, "Other" is returned.
Used prompt:

The document text given below is related
to "{categoryl}" and its main narrative
is: "{main_narrative}".

Please classify the document text into
the most relevant sub-narratives. Below
is a list of sub-narratives along with
their explanations:

{sub_narratives_list_with_explanations}
Document Text: {document_text}

Return the most relevant sub-narratives
as a hash-separated string (e.g.,
Sub-narrativel#Sub-narrative2..). If no
specific sub-narrative can be assigned,
just return "Other” and nothing else.
Return only the output, without any
additional explanations or text.

The systematic pseudocode for classifying news
articles into narratives and sub-narratives is pre-
sented in Algorithm 1.
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Method F1 Macro Coarse F1 Macro Coarse (STD) F1 Samples Fine F1 Samples Fine (STD)
Zero-shot Models

GPT-40-mini 0.456 0.343 0.291 0.278
GPT-40 0.465 0.374 0.286 0.304
LLaMA-3.2-3B-Instruct 0.249 0.313 0.167 0.275
LLaMA-3.1-8B-Instruct 0.237 0.332 0.159 0.276
FuseChat-LLaMA-3.2-3B-Instruct 0.225 0.319 0.160 0.283
Gemma-2-2b-it 0.324 0.413 0.278 0.402
Random Baseline 0.106 0.267 0.000 0.000
Trained Models

Logistic Regression 0.260 0.433 0.260 0.433
LightGBM 0.434 0.434 0.352 0.440
RoBERTa-base (B) 0.490 0.387 0.383 0.403
RoBERTa-base (w/o synth) 0.529 0.375 0.397 0.354
RoBERTa-base 0.543 0.376 0.439 0.378
LLaMA-3.2-3B-Instruct (B) 0.562 0.409 0.428 0.380
H3Prompt models

LLaMA-3.2 H3Prompt (w/o synth) 0.502 0.394 0.392 0.369
LLaMA-3.2 H3Prompt 0.577 0.390 0.482 0.390
LLaMA-3.2 H3Prompt (Ensemble - Union) 0.623 0.352 0.516 0.364
LLaMA-3.2 H3Prompt (Ensemble - Majority Vote) 0.567 0.410 0.482 0.404
LLaMA-3.2 H3Prompt (Ensemble - Intersection) 0.458 0.432 0.401 0.409

Table 1: F1 score results for coarse- and fine-grained classification on the development set (English only). STD
is the standard deviation of samples F1 score. w/o synth indicates that the model is trained only on the provided
training data (i.e., without synthetic data), and B denotes that the model is trained using binary classification only.

The best results are in bold.

Algorithm 1 Hierarchical Three-Step Prompting

Require: Document text D

Require: Narrative taxonomy 7' with main narra-
tives IV, and sub-narratives N

Ensure: Assigned category, main narratives, and
sub-narratives

1: category < CLASSIFYCATEGORY (D)

2: if category == Other then

3: return Other

4: end if

5: mainNarratives < MAINNARRATIVE(D)
6: if mainNarratives == Other then

7: return Other

8: end if

9: labels <+

10: for each n,, € mainNarratives do

11: subNarratives <— SUBNARRATIVE(D)

12: for each n, € subNarratives do

13: if n, € N, then

14: labels < labels U (1, ns)

15: else

16: labels < labels U (ny,, Other)
17: end if

18: end for

19: end for

return [abels
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3 Experimental Details

3.1 Baseline Models

To assess the performance of our H3Prompt, we test
a range of baseline models. We also experiment
with different configurations: binary classification
(denoted by B), in which training and classification
are performed for each sub-narrative separately;
and models trained exclusively on the annotated
data provided by the shared task organisers without
synthetic data (denoted by w/o synth).

Random Baseline. Provided by the organisers
(Piskorski et al., 2025), it randomly assigns labels
based on the training dataset’s distribution.

Traditional Machine Learning. We implement
logistic regression and LightGBM using TF-IDF
features as input embeddings.

Zero-shot Models. We evaluate sev-
eral LLMs such as GPT-40, GPT-40-mini,
LLaMA-3.2-3B-Instruct, LLaMA-3.1-8B-Inst
ruct, FuseChat-Llama-3.2-3B-Instruct, and
Gemma-2-2B-it in a zero-shot setting. We use the
same prompts as those described in Section 2.3.

Fine-tuned Transformer Models. We train
RoBERTa-base models using different configura-
tions, including binary classification and with or



without synthetic data. For RoBERTa-base, a three-
step classifier is used to predict the category, main
narrative, and sub-narrative. We set the learning
rate to 1e — 5, the batch size to 32, and epochs to 4.
The label is selected based on an output threshold,
which is manually tuned in the range of 0.2 to 0.8.

4 Results and Discussion

Table 1 presents the F1 scores for various base-
line and fine-tuned models on the development
set of English. The official evaluation measure
for the task is samples F1 score for sub-narratives
(fine-grained) and macro F1 for narratives (coarse-
grained) (Piskorski et al., 2025).

In zero-shot models, GPT-40 achieves the high-
est Fl-score for coarse-grained classification and
GPT-40-mini gives the highest F1-score for fine-
grained classification. On the other hand, zero-shot
models, such as LLaMA-3.2-3B-Instruct and
Gemma-2-2b-1it, perform significantly worse than
trained models, indicating that domain-specific
fine-tuning is crucial for improving the narrative
classification performance.

Among trained models, logistic regression and
LightGBM achieve moderate performance, but
transformer-based models such as RoBERTa-base
and LLaMA-3.2 H3Prompt outperforms them. No-
tably, our hierarchical three-step prompting ap-
proach (LLaMA-3.2 H3Prompt) achieves an F1
Macro Coarse score of 0.577 and an F1 Samples
Fine score of 0.482, demonstrating the effective-
ness of structured classification.

The results also indicate that incorporating syn-
thetic data during training improves performance,
as models trained solely on the provided training
data (denoted by w/o synth) perform worse than
those that incorporate additional synthetic data. For
instance, for LLaMA-3.2 H3Prompt, training with
synthetic data improves the fine-grained F1 score
by 23% (improvement from 0.392 to 0.482), while
for RoBERTa-base, it leads to a 10% improvement
(improvement from 0.397 to 0.439).

In addition, binary classification models (de-
noted by B) showed a slight decrease in perfor-
mance compared to hierarchical prompting models,
reinforcing the importance of a structured three-
step classification approach.

To further improve classification, we use the best-
performing model (i.e., LLaMA-3.2 H3Prompt) to
experiment with a bagging ensemble (Breiman,
1996) to reduce variance from individual models.

Specifically, we train three different models on sep-
arate subsets of the dataset and then combine their
predictions. We use three different strategies to
aggregate the predictions: (1) union-based, where
a sub-narrative is selected if any model predicts
it; (2) majority-vote, where a sub-narrative is se-
lected if at least two of the models predict it; and
(3) intersection-based, where a sub-narrative is se-
lected only if all models predict it.

Among the ensemble methods, we find that
LLaMA-3.2 H3Prompt (Ensemble - Union) is
the best-performing model. It achieved the highest
scores, with 0.623 for narratives and 0.516 for sub-
narratives, showcasing the advantage of ensemble
methods in improving classification robustness.

Furthermore, we submitted our best-performing
run, LLaMA-3.2 H3Prompt (Ensemble - Union),
for evaluation on the test set. We submitted our
test predictions for Bulgarian, English, Hindi, Por-
tuguese, and Russian. For all non-English arti-
cles, we first machine-translated® them into English
and then used the translated text for inference. As
shown on the test leaderboard®, our GATENLP sub-
mission secured 1st place for English, Portuguese,
and Russian. For Bulgarian and Hindji, it ranked
3rd and 5th, respectively. These results highlight
the potential of our method for fine-grained nar-
rative classification across multiple languages and
misinformation domains.

5 Conclusion

In this paper, we introduced Hierarchical Three-
Step Prompting (H3Prompt) for multilingual nar-
rative classification as part of SemEval 2025 Task
10 Subtask 2. Our approach fine-tuned LLaMA 3.2
using both annotated training data and syntheti-
cally generated news articles to enhance classifica-
tion robustness. Our method secured the top posi-
tion on the English test set among 28 competing
teams worldwide, demonstrating the effectiveness
of our approach for fine-grained narrative classifica-
tion. Experimental results showed that H3Prompt
outperforms baseline methods and zero-shot mod-
els, achieving state-of-the-art performance in nar-
rative and sub-narrative classification. We further
demonstrated that incorporating synthetic data dur-
ing training significantly improves model perfor-
mance. Additionally, ensemble methods provided

3We use m2m100_418M (Fan et al., 2021) for translation.
4ht’cps: //propaganda.math.unipd.it/
semeval2025task10/1leaderboardv3.html
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further enhancements, achieving the highest scores
across multiple languages.
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A Narrative Explanation

To generate explanations for the main narratives
and sub-narratives, we used ChatGPT. Specifically,
we prompted the model to generate explanations:
Used prompt:

You are given main narratives and
sub-narratives for the Ukraine-Russia War
and Climate Change. Now, provide a concise
explanation for each main narrative and
its sub-narratives.

{main_narratives}
{sub_narratives}

The generated explanations were manually re-
viewed and refined to ensure clarity and accu-
racy. The final set of narrative explanations
used in our classification experiments is available
at: https://github.com/GateNLP/H3Prompt/
tree/master/Dataset.
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Abstract

The global spread of misinformation has be-
come a critical challenge, making multilingual
and cross-lingual fact-checking increasingly
essential for ensuring the credibility of infor-
mation across diverse languages. This paper
presents a unified framework for fact-checked
claim retrieval, integrating contrastive learning
with an in-batch multiple negative ranking loss
and a conflict-aware batch sampler to enhance
query-document alignment across languages.
Additionally, we introduce language-specific
adapters for efficient fine-tuning, enabling adap-
tation to previously unseen languages. Our re-
sults demonstrate significant improvements in
retrieval performance in both monolingual and
cross-lingual settings, underscoring the impor-
tance of developing scalable, multilingual sys-
tems to combat misinformation and ensure the
reliability of information on a global scale.

1 Introduction

With the rapid dissemination of information in the
digital age, the global spread of misinformation
has become a significant challenge. For instance,
a recent study (Vosoughi et al., 2018) found that
false news spreads around six times faster than true
news on social media, highlighting the urgency
of addressing this issue. Moreover, false posts
and disinformation on popular social media plat-
forms often transcend boundaries of linguistic and
cultural, reaching diverse audiences before they
can be effectively countered (Wang et al., 2024b).
This dynamic underscores the critical importance
of multilingual and cross-lingual natural language
processing (NLP) techniques (Chen et al., 2024b;
Peng et al., 2023; Wang et al., 2024c), which en-
able fact-checkers to break down language barriers,
access and verify information across languages for
the rapid identification of relevant content. There-
fore, such techniques are essential, as they not
only enhance the efficiency and scalability of fact-

checking efforts but also bridge gaps between dis-
parate sources of information.

In this paper, we propose a multilingual and
cross-lingual information retrieval (CLIR) system
designed to enhance fact-checked claim retrieval
in a multilingual context. We present a unified
framework for both cross-lingual and monolingual
retrieval tasks, demonstrating the effectiveness of
our system through detailed experiments. Our
method combines a contrastive learning approach
with a conflict-aware batch sampler to improve
the alignment of query-document pairs in different
languages. Additionally, we introduce language-
specific adapters for efficient fine-tuning, which
significantly improves the performance of the sys-
tem on unseen languages.

2 Background

Multilingual and CLIR have evolved significantly,
transitioning from lexical matching to semantic-
aware neural architectures. Early approaches relied
on statistic-based lexical methods (Robertson et al.,
1995), which performed exact term matching but
struggled with cross-lingual lexical gaps, such as
polysemy or morphological variations across lan-
guages (Oard and Diekema, 1998).

To address these limitations, translation-based
CLIR methods emerged, leveraging machine trans-
lation (MT) to bridge languages. These methods
either translate queries into the document language
(query translation) or documents into the query lan-
guage (document translation) (Sokolov et al., 2013;
Jarvelin et al., 2008). However, such approaches
were prone to error propagation from imperfect MT
systems, particularly for morphologically rich or
under-resourced languages (Nie, 2010).

The advent of pre-trained multilingual language
representation models, such as multilingual BERT
(Devlin et al., 2019) and XLM-R (Conneau et al.,
2020), marked a paradigm shift for dense retrieval.
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These models enabled embedding queries and docu-
ments in different languages into a shared semantic
space. For example, the XLM-R-based models,
such as multilingual E5 (Wang et al., 2024a) and
BGE-M3 (Chen et al., 2024a), leverage contrastive
pre-training on large multilingual corpora to align
cross-lingual representations, capturing meaningful
semantic relationships among multiple languages
and better generalize across linguistic and cultural
contexts.

3 System Overview

Our multilingual and CLIR system is designed to
address the challenges of cross-lingual and mono-
lingual retrieval for different languages in a uni-
fied framework. The system leverages a Multilin-
gual E5 (Wang et al., 2024a) (M-ES5) model, pre-
trained on extensive corpora including more than
100 languages, as the backbone for the language-
agnostic representations and further enhances it
with language-specific adapters for parameter-
efficient adaptation for each language indicated in
this task. The system is fine-tuned using contrastive
learning with an in-batch multiple negative ranking
loss, enhanced with the conflict-aware batch sam-
pling constraint, ensuring better alignment across
languages. Below, we describe the key components
of the system in detail.

3.1 Contrastive Learning with In-batch
Multiple Negative Ranking Loss

To effectively utilise the cross-lingual data, we em-
ploy a contrastive learning framework that uses an
in-batch multiple negative ranking loss (Henderson
et al., 2017). Let the batch size be IN. For the i-th
positive pair in the batch, denote the query post
as ¢; and the corresponding fact-checked claim as
d;. The similarity between a query post and a fact-
checked claim is measured using a function such
as cosine similarity, denoted as sim(g;, d;). The
overall loss £ is computed by averaging the loss
over all positive pairs in the mini-batch:

1 i exp (Sim(zi,di)>
L=—— log : ,
s iyd
N prt E;V:L#j exp (Slm(z J)>

where 7 is a temperature parameter that controls
the smoothness of the distribution.

This formulation drives the model to maximize
the similarity between positive query-document
pairs while treating all other documents in the same

batch as hard negatives. By leveraging these in-
batch negatives, the M-ES model learns highly dis-
criminative representations that effectively capture
cross-lingual semantic correspondences for the fact-
checking task.

3.2 Conflict-aware Batch Sampler

In practice, applying the in-batch multiple negative
ranking loss for the fact-checking task often en-
counters scenarios where a single query may be as-
sociated with multiple relevant fact-checked claims,
and similarly, a fact-checked claim may be relevant
to multiple queries. Without careful batching, this
can lead to conflicts where the same query or docu-
ment appears multiple times within the same batch.
Such conflicts can result in a situation where an
instance inadvertently acts as both a positive and a
negative example, thereby contaminating the loss
signal during the training.

To mitigate this issue, we design a conflict-aware
batch sampler. The sampler ensures that, within
any given batch B = {(¢;,d;)}Y,, each query ¢;
and each fact-checked claim d; appears only once.
Formally, for any two distinct pairs (g;,d;) and
(gj,d;) in the batch (with 7 # j), we enforce

Vi,je{l,...,.N}, i#j
= (s #qj N di #dj)
To avoid the situation where ¢; and d; appear in the

same batch if they belong to positive pairs in other
batches, we can add the following constraint:

Vi,jE{l,...,N}, (qi,dj)GP — i:j

In this way, we ensure that whenever a query g;
and fact-checked claim d; form a positive pair in
some batches, they cannot appear as separate nega-
tive pairs in different batches. Here, P represents
the set of all positive query-document pairs.

Adding these constraints in the batch sampler
guarantees that every instance in the batch is
unique, thereby preventing any query or document
from inadvertently acting as a negative example for
itself or for another positive pair. By leveraging
such a conflict-aware strategy, we can confirm that
the in-batch negatives are truly negative.

3.3 Language-specific Adapter

After establishing the foundation with the cross-
lingual training data for the fact-checking task, the
system is further refined with monolingual data
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Split Mono. Cross.
eng spa deu por fra ara msa tha pol tur all
train 4,351 5,628 667 2,571 1,596 676 1,062 465 - - 4,972
dev 478 615 83 302 188 78 105 42 - - 552
test 500 500 500 500 500 500 93 183 500 500 4,000

Table 1: We present the number of queries for each language in the monolingual setting, and the total number of

queries in the cross-lingual setting.

for each language through the incorporation of
language-specific adapters. Specifically, for each
language [, a low-rank adaptation (LoRA) (Hu
et al., 2022) is introduced to efficiently fine-tune
the model without modifying the base parameters.
Let W € R™** denote a pre-trained weight ma-
trix in the transformer layers. The adapter injects a
low-rank update AW, into W, parameterized as:

AW, =B/A,,

where B; € R™*" and A; € R"** are trainable
low-rank matrices with rank » < min(m, k). Dur-
ing forward propagation, the adapted output for
language [ becomes:

(W + AWZ)X = Wx + BjAx.

Here, W remains frozen, while only B; and A; are
updated during training.

The language-specific adapter for language [
is optimized using the same in-batch loss as in
Section 3.1 and Section 3.2. Training leverages
both monolingual positive pairs (¢!, ) and cross-
lingual positive pairs, with high-resource English
as the pivot, i.e. either (¢}, d") or (¢", d.), where
¢¢" and d¢" are English translations of ¢! and d., re-
spectively. In this way, the model retains language-
specific features while benefiting from the semantic
consistency provided by the pivot, thus enhancing
the representation for each language.

For unseen languages, we propose to merge
language-specific adapters from morphologically
similar seen languages. Let S denote the set of
languages in the training set, and let w represent an
unseen language (e.g., Turkish (tur) or Polish (pol)).
For each u, we define a subset S,, C S comprising
seen languages morphologically similar to u. The
adapter for the unseen language is then constructed
by averaging the adapters of the languages in Sy,:

AW, = Si Z AW,
| u| €S,

For instance, considering that Polish is an Indo-
European language, we select:

Spol = {eng, spa, deu, por, fra}

Similarly, for Turkish, due to the absence of direct
Turkic counterparts in the training set, we merge
adapters from languages with non-Latin scripts and
typological diversity to mitigate biases from Indo-
European languages. In this case, we define:

Swr = {ara, msa, tha}

4 Experiments

4.1 Dataset

In this work, we evaluated our proposed system
using the SemEval 2025 Task-7 dataset (Peng et al.,
2025), which consists of two sub-tasks: cross-
lingual and monolingual fact-checked claim re-
trieval. The dataset is the modified version of the
MultiClaim dataset developed by Pikuliak et al.
(2023), including three key files for training and
validation: a database of fact-checked claims, posts
extracted from social media platforms, and map-
pings between posts and corresponding claims. Ad-
ditionally, for each post or fact-checked claim, the
English translation of each non-English content
is also provided via Google API. The statistics
(#query) of the dataset are shown in Table 1.

4.2 Setup

We used Success@10 as our evaluation metric,
where retrieval is considered successful if all rel-
evant fact-checked claims are found within the
top 10 retrieved results. This system was imple-
mented using Python 3.10 and Pytorch 2.1.1. The
M-E5 model was downloaded from the hugging-
face repository!. During the training, the batch size
was set to 24, We used the AdamW as the optimizer
and the learning rate was set to 2 x 107°.

"https://huggingface.cofintfloat/multilingual-e5-large
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Models Mono. Cross.
eng spa deu por fra ara msa tha avg avg
M-ES5 (w/o constraint) 80.5 87.8 83.1 864 87.8 833 933 100 87.8 824
M-E5 81.4 899 83.1 864 88.8 833 933 100 883 83.5
LADA-M-E5 854 940 880 89.1 91.5 833 933 100 90.6 86.1
M-E5-Instruct 84.1 915 819 864 894 833 904 97.6 88.1 80.6
LADA-M-E5-Instruct  87.0 945 819 90.1 894 833 914 976 89.5 81.0
Table 2: Results on development set measured in Success@ 10
Models Mono. Cross.
eng spa deu por fra ara msa tha pol* tur® avg avg
M-E5 80.4 89.6 852 802 914 922 978 97.6 836 81.8 87.6 70.6
LADA-M-E5 82.0 91.6 868 834 924 936 100 97.6 856 874 89.8 713

Table 3: Results on test set measured in Success@ 10, * indicates the unseen language in the training and development

sets.

4.3 Results

We present the results on the development set mea-
sured in Success@10 in Table 2. We show the
result of M-ES5 trained with the provided cross-
lingual data. M-E5 w/o constraint means we did
not apply the proposed conflict-aware constraints
on the batch sampler, and “LADA-M-ES5” stands
for the proposed system language-specific adapter
in this work. Apart from the original M-ES5, we
also implemented the instruction-tuned embedding
model, namely, M-E5-Instruct. The instruction for
the query is “Given a web search query, retrieve
relevant passages that answer the query”, which is
consistent in the pre-training phase.

We observed that incorporating the conflict-
aware batch sampler improved performance on sev-
eral languages in the monolingual set. For instance,
English, Spanish, and French saw improvements
of 0.9%, 2.1%, and 1.0%, respectively, highlight-
ing the importance of selecting truly negative sam-
ples for the in-batch loss. Additionally, the M-E5
model outperformed M-ES5-Instruct in most lan-
guages within the monolingual setting, with the
exception of a few Latin-based languages. Fur-
thermore, M-E5 showed significant performance
gains in the cross-lingual setting. This advantage
may be attributed to the fact that the instruction
is primarily in English, which could benefit Latin
languages more than others. It can be seen that
both M-ES5 and M-E5-Instruct gain improvements
from our proposed LADA in both monolingual and

cross-lingual settings, enhancing performance on
the fact-checking task.

In the testing, we present the performance of
M-ES and LADA-M-ES in Table 3. For the un-
seen languages, Polish and Turkish, we merged
the language-specific adapters as described in Sec-
tion 3.3. It is evident that the proposed language-
specific adapters significantly improve the mono-
lingual information retrieval performance for both
Polish and Turkish. However, in the cross-lingual
setting, we observe a large performance discrep-
ancy between the testing and development sets for
both M-E5 and M-E5-Instruct. This discrepancy
may stem from the fact that the unseen languages
might not be well-aligned with the other seen lan-
guages in the training set.

5 Conclusion

In this paper, we introduced a unified multilin-
gual framework for cross-lingual and monolin-
gual fact-checked claim retrieval, leveraging con-
trastive learning, conflict-aware batch sampling,
and language-specific adapters. Our approach ef-
fectively improves retrieval performance by align-
ing multilingual representations while maintaining
language-specific features. The integration of low-
rank adapters allows efficient adaptation to individ-
ual languages, with a strategy for handling unseen
languages based on morphologically similar coun-
terparts. Experimental results on the SemEval 2025
Task 7 dataset demonstrate the effectiveness of our
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method, achieving strong performance across mul-
tiple languages. Future work will explore extend-
ing our approach to more low-resource languages
and further optimizing retrieval efficiency in real-
world applications.
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Abstract

This paper presents our system developed for
the SemEval-2025 Task 11:Bridging the Gap
in Text-Based Emotion Detection, on Track
A: Multi-label Emotion Detection.(Muhammad
et al., 2025b)Given a target text snippet, pre-
dict the perceived emotion(s) of the speaker.
Specifically, select whether each of the fol-
lowing emotions apply: joy, sadness, fear,
anger, surprise, or disgust. To this end,
we focus on English source language selec-
tion strategies on four different pre-trained
languages models: google-bert,FacebookAl-
roberta,dccuchile-bert and distilbert-multi. We
experiment with 1) the training set data is an-
alyzed visually, 2) multiple numbers of single
models are trained on the training set data, and
3) multiple number of single models for voting
weight ensemble learning. We further study the
influence of different hyperparameters on the
integrated model and select the best integration
model for the prediction of the test set. Our
submission achieved the good ranking place in
the test set.Emotion Macro F1 Score 0.6998
and Emotion Micro F1 Score 0.7374. For the
final ranking, organizers will use the Macro F1
score.Even so, my approach has yielded good
results.

1 Introduction

Emotions are simultaneously familiar and myste-
rious.(Vaidya et al., 2024) On the one hand, we
all express and manage our emotions every day.
Yet, on the other hand, emotions are complex, nu-
anced, and sometimes hard to articulate. We also
use language in subtle and complex ways to ex-
press emotion.Further, people are highly variable
in how they perceive and express emotions (even
within the same culture or social group).Thus, we
can never truly identify how one is feeling based
on something that they have said with absolute
certainty.Emotion recognition is not one task but
an umbrella term for several tasks such as detect-
ing the emotions of the speaker, identifying what

emotion a piece of text is conveying and detecting
emotions evoked in a reader. Based on the pre-
dictive task background of predictive emotion text,
We propose an ensemble learning method based
on pre-trained language model. The code of this
method is available on my GitHub website.!

2 Related Work

SemEval in previous years has introduced tasks fo-
cusing on Multi-label text classification and text bi-
nary classification (Wang et al., 2024)(Su and Zhou,
2024)(Tran and Tran, 2024)(Brekhof et al., 2024)to
evaluate Internal potential elements and potential
content of the text.These tasks provided datasets
with human labeled similarity scores, which have
been extensively utilized for training sentence em-
bedding models and conducting semantic evalua-
tions.

2.1 Sentence Embeddings

Word embedding models such as BERT, GloVe,
RoBeRTa and Word2Vec are frequently em-
ployed to assess the semantic distance between
words. They are also some of the more commonly
used methods in text classification tasks.Sentence
embeddings with a fixed length are often gener-
ated via mean/max pooling of word embeddings
or employing CLS embedding in BERT. The se-
mantic distances are commonly measured using
the cosine similarity of embeddings of two expres-
sions.Siamese or triplet network architectures are
frequently employed in sentence embedding train-
ing. For example, models such as Sentence-BERT
utilize a dual-encoder architecture with shared
weights for predicting sentence relationships (e.g.,
semantic contradiction, entailment, or neutral label-
ing) or for similarity score prediction using regres-
sion objectives, e.g., the difference between human

"https://github.com/WangKongQiang
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annotated similarity score (sim) of two sentences
and the cosine of two sentence embeddings.

2.2 Ensemble Learning

In previous studies, ensemble learning presents sev-
eral advantages. The ensemble approach can re-
duce the errors from individual models by amalga-
mating results from multiple sources or can make
the system more robust. In our study, using multi-
ple pre-trained models can also save a substantial
amount of computation while making use of in-
formation from the large data during pre-training.
Previous research has demonstrated that ensemble
learning can achieve remarkable success.

In our study, we aim to integrate multiple
pre-train learning models to assess semantic re-
latedness.When models are trained on diverse
datasets with different architectures, they may
produce varied predictions on semantic related-
ness, and combining them may improve over-
all performance.We use sentence embeddings
mainly from the following models.Multilingual
BERT (cased, uncased),RoBERTa,BETO (cased,
uncased),DistilBERT.

3 Methodology

3.1 overall architecture

The pursued approach involves using a weighted
voting system of ensembles composed of different
transformers. We trained several state-of-the-art
NLP(Natural language processing) models on a
large dataset of annotated tweets to create ensem-
bles of classifiers with different architectures and
configurations. We then combined the predictions of
these ensembles using a weighted voting system to
produce the final predictions.We have used the fol-
lowing transformers for the ensembles:Multilingual
BERT (cased, uncased),RoBERTa,BETO (cased,
uncased) DistilBERT.

For each instance, the final classification deci-
sion is based on the weighted sum of outputs of
these models. The novel weighted-voting system
presented involves using each (normalized) trans-
former’s metric score in the ensemble (F1-score or
RMSE, depending on the task) to assess the impor-
tance of these in the final outputs of the ensemble
(as opposed to the arithmetic mean typically used
in conventional voting systems).
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3.2 Implementation step

First,The simpletransformers Python library that
will be used below requires the data to be presented
in a specific form.The following data cell adapts
each split to contain only two columns: text and
labels, where the latter is an array equal in size to
the number of labels.

Second,Models’ definition.In this section,the dif-
ferent transformers that will be evaluated are gath-
ered.For this purpose,the implementation mainly re-
lies in the simpletransformers Python library, which
allows to train and test transformers within few
steps.

Third, Training.Each of the aforementioned mod-
els is trained separatedly with the entire training
set.This training is directly performed in the previ-
ously defined dictionary for convenience.

Fourth,Ensembles’ definition.The ensembles of
transformers that can be defined with the previously
trained models are created.A dictionary is create for
convenience, univocally identifying each ensemble.

Fifth,Evaluation.Firstly, each transformer is in-
dividually evaluated using the validation split. Sub-
sequently, the main evaluation metrics (accuracy,
F1-score, precision and recall) are stored.Secondly,
the predictions of each ensemble for the validation
set instances are derived. After calculating their
metrics, it is possible to determine which ensemble
obtained the best F1-Score. This will be the final
ensemble used for the test dataset.Regarding the
ensembles’ predictions, these are obtained through
a hard voting system: after computing the output
that each of the ensemble’s models produces for a
given instance, the most-voted class turns out to be
the ensemble result.The voting system can be non-
weighted or weighted. In the latter, the prediction
of each individual transformer is weighted accord-
ing to their normalized F1-score, thus providing a
greater importance to the best model without disre-
garding the outputs of the other transformers.

Sixth,The vote function determines the ensem-
bler prediction based on the outcomes of its
transformers.Its arguments are:predictions, list of
transformers’ (raw) outputs.weighted,bool that de-
termines if a weighted voting system must be
used.weights,list of weights (normalized weighted
F1-scores).

Seventh,Selecting the best ensemble Once the
predicted labels for each validation instance are
calculated for each ensemble, their metrics can be
computed. Given that it is a multi classification



training set text value

count 2768.000000
mean 17.581286
std 11.701499
min 3.000000
25% 9.000000
50% 15.000000
75% 23.000000
max 90.000000
training set label value
Anger 333
Fear 1611
Joy 674
Sadness 878
Surprise 839

Table 1: The text data situation and the number of emo-
tional labels are described

Values
AdamW, Adafactor
2e-05, 4e-05, 8e-05

Hyperparameter
Optimizer
Learning rate

Table 2: Experimentation configuration hyperparame-
ters

task, the best ensemble will be that with a maxi-
mum F1-score.

Eighth,Predictions on test set Finally, the ensem-
ble which obtained a higher F1-score can be used
to predict the label of each test instance.

Further, these results will be used to portray
some evaluation plots, including the Confusion Ma-
trix and the ROC curve.

4 Results and Analysis

4.1 Training set analysis

The text and label of training set is described in Ta-
ble 1.The length and quantity distribution of train-
ing text data are analyzed in Figure 1.Distribution
of the size of texts for each class in Figure 2.1t
shows the number of percentages relative to each
class for various cases.

4.2 Experimentation configuration

For the sake of completeness and in an attempt
to improve the results obtained by the transformer
assemblers, each run was repeated a total of 6 times
with the different combinations of the following
hyperparameters:See Table 2.

500 -
400 -
€
S 300 - L SEREHDGEED O QOM
8
200 -
100 - |I
0- Illl-___ _
0 20 40 60 80

length train instances

Figure 1: The length and quantity distribution of training
text data are analyzed.

Dev set Emotion Score

Macro F1 0.7068

Micro F1 0.7304

Anger 0.6667

Fear 0.7794

Joy 0.625

Sadness 0.7647

Surprise 0.6984
Table 3: The Dev data situation detailed results de-
scribed

4.3 Dev set result

The following Table 3 records the official results
of SemEval-2025 Task 11: Bridging the Gap in
Text-Based Emotion Detection, on Track A: Shared
task of multi-label Emotion Detection. The metrics
recorded by the best (winning) approach in the
evaluation task of the development set.

4.4 Test set result

The following Table 4 records the official results
of SemEval-2025 Task 11: Bridging the Gap in
Text-Based Emotion Detection, on Track A: Shared
task of multi-label Emotion Detection. The metrics
recorded by the best (winning) approach in the
evaluation task of the test set.
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Figure 2: Distribution of the size of texts for each class.

Test set Emotion  Score
Macro F1 0.6998
Micro F1 0.7374
Anger 0.5812
Fear 0.8152
Joy 0.7032
Sadness 0.7104
Surprise 0.6891

Table 4: The Test data situation detailed results de-
scribed

4.5 Biased Performance

From Figure 1 of the visual analysis, we can ob-
serve that 75% of tweets in training set data, either
in the chart or in the previous input column, have
no more than 25 words. This information could
be useful in determining the size of a network of
neurons, or when a sentence length limit needs to
be set.

SemEval-2025 Task 11: Bridging the Gap in
Text-Based Emotion Detection, on Track A: Shared
task of multi-label Emotion Detection. This task
is multi-label sorting. Each instance can have 0 to
n(n=5,6) categories, and you need to predict which
category each instance belongs to. In the specific
cases(English language) we focus on, there may
be up to five different categories: anger, fear, joy,
sadness, surprise. For this task, we will look at the
quantity distribution followed by each category, as
shown in Table 1. In this case, percentages cannot
be assessed because of the intersection.

5 Conclusion

Our system employs an ensemble approach
to estimate semantic relatedness(Eneko Agirre
and Wiebe, 2014),integrating results from multi-
ple systems:google-bert-base-multilingual-uncased

and FacebookAl-roberta-base.The hyperparameter
is following: eval-batch-size is 8,num-train-epochs
is 5,learning-rate is 4e-05,optimizer is AdamW,use-
early-stopping is True.The dataset usage is shown
in Table 5. Our findings suggest that semantic re-
latedness can be deduced from a variety of sources.
Although some features (e.g., lexical overlap ra-
tio)may not perform as strongly as models specifi-
cally designed to obtain sentence representations,
the results demonstrate that these features, when
used in a combined manner, can outperform many
individual systems and collaboratively achieve a
better correlation with human judgment on seman-
tic relatedness.(Siino, 2024)

6 Limitation and Future Work

Our experiments are based on English language
data sets only. Constrained by the size of the train-
ing data and the availability of pre-trained language
models, it is regrettable that we did not offer in-
sights into other Asian and African languages.In
future research,studies on low-resource languages
will be valuable, including tasks such as data col-
lection, annotation,and pre-training models tailored
to these languages.
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Abstract

In this paper we present our participation in
Subtask 2 of SemEval-2025 Task 10, focus-
ing on the identification and classification of
narratives in news of multiple languages, on
climate change and the Ukraine-Russia war. To
address this task, we employed a Zero-Shot
approach using a generative Large Language
Model (LLM) without prior training on the
dataset. Our classification strategy is based on
two steps: first, the system classifies the topic
of each news item; subsequently, it identifies
the sub-narratives directly at the finer granu-
larity. We present a detailed analysis of the
performance of our system compared to the
best ranked systems on the leaderboard, high-
lighting the strengths and limitations of our
approach.

1 Introduction

The characterisation and extraction of narratives
from news texts is an area of growing interest in
natural language processing (NLP), with applica-
tions in discourse analysis, bias detection and the
understanding of social and political dynamics. In
this context, SemEval-2025 Task 10, entitled ‘Mul-
tilingual Characterization and Extraction of Nar-
ratives from Online News’ (Jakub Piskorski et al.,
2025), seeks to advance the identification and clas-
sification of narratives in news stories in multiple
languages.

This task is structured in three main subtasks:
Subtask 1: Entity Framing, which consists of as-
signing one or more roles to each named entity
mention within a news article, using a predefined
taxonomy of roles; Subtask 2: Narrative Classifica-
tion, where each news article must be assigned all
relevant sub-narrative labels within a hierarchical
taxonomy of narratives in a specific domain; and
Subtask 3: Narrative Extraction, which requires
generating a free-text explanation justifying the se-
lection of an article’s dominant narrative, based on
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fragments of text supporting that choice.

Recent advancements in large language mod-
els (LLMs) have significantly improved the ability
to detect and analyze narratives and propaganda
techniques in textual data. Leveraging their contex-
tual understanding and capacity to generalize from
large-scale datasets, LLMs have been applied to
identify persuasive strategies, ideological framing,
and coordinated messaging in political discourse
and media (Jones, 2024; Liu et al., 2025).

Our work focuses exclusively on Subtask 2. The
task presents multiple challenges, including linguis-
tic diversity, subjectivity in categorising narratives
and the limited availability of labelled data in multi-
ple languages. Addressing these problems requires
robust approaches that can generalise well across
languages and domains. To this end, we opt for
a Zero-Shot approach, in which we leverage the
knowledge of an LLM without performing specific
training on the task data. Since some LLMs have
been trained with varying amounts of data in the
five languages of the task and SOTA models of-
ten performs better in English, we performed a
machine translation into English using OPUS-MT
models prior to inference.

This paper describes in detail our methodology,
the results obtained in comparison with the best
competing models and a critical analysis of the
performance. Finally, we discuss the limitations
of our approach and propose future directions for
improving automatic narrative classification in mul-
tilingual contexts.

2 Subtask description

SemEval-2025 Task 10 Subtask 2 focuses on the
identification and classification of narratives in
news articles covering multiple languages and sub-
ject domains.

The task is multilingual in five different lan-
guages: English, Bulgarian, Portuguese, Hindi
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and Russian. Having a large number of languages
avoids linguistic and cultural biases in the classi-
fication models, allowing the systems to be more
robust and adaptable to different contexts. More-
over, the presence of languages rarely used in LLM
training, such as Bulgarian or Hindi, introduces
additional challenges in identifying and structuring
narratives and enriches the evaluation of the perfor-
mance of multilingual and multicultural models.

Also, the subtask focuses on two thematic do-
mains of great current relevance such as the war
between Ukraine and Russia and climate change.
Both topics generate a large amount of content on
social networks and in the media, which allows
us to analyse the propagation of narratives in con-
texts of high political, economic and social impact.
Moreover, by covering both a geopolitical conflict
and a global environmental crisis, different types
of narratives are covered: some focused on pol-
itics and war, and others on science, economics
and sustainability. Similarly, including news in
Russian is particularly relevant for the analysis of
the Ukraine-Russia conflict. Russian media often
offer a different perspective than Western media,
which makes it possible to study how narratives are
constructed and disseminated within Russia and
internationally.

2.1 Dataset description

The classification structure used in this task follows
a three-level hierarchy (Stefanovitch et al., 2025),
in which the top level is defined by the overall news
topic, which represents the general thematic do-
main to which the content belongs, such as ‘Russia-
Ukraine War’ or ‘Climate Change’. At the second
level are the main narratives, which include general
interpretative frameworks within each topic, pro-
viding an overall perspective on the issue. Finally,
the third level is composed of sub-narratives, which
detail in greater granularity specific aspects within
each main narrative. In addition, the category Other
is included at the topic level, for those news items
that do not fit clearly into any of the topics, and at
the subnarrative level, for those news items that do
not fit with the defined subnarratives or could sup-
port other subnarratives within the main narrative.

The dataset used has a total of 10 main narratives
and 46 sub-narratives (36 specific and 10 labelled
Other) related to Climate Change, as well as 11
main narratives and 49 sub-narratives (38 specific
and 11 labelled Other) on the Ukraine-Russia war.
In total, the training + development set contains

Train Dev Test Total
EN 399 41 101 541

BG 401 35 100 536
PT 400 35 100 535
RU 348 32 60 440
HI 366 35 99 500

Total | 1914 178 460

Table 1: Number of news items by dataset.

576 news items, distributed across languages and
categories.

Regarding the number of news items available in
the datasets, Table 1, lists the number of instances
per language in each available dataset.

To illustrate the distribution of narratives in the
training + development corpus, a bar chart show-
ing the frequency of the 20 most common sub-
narratives is presented in Figure 1, which allows us
to observe the variability in the representation of
each category within the dataset.

2.2 Evaluation

The official evaluation measure for this sub-task is
the F1 of samples averaged over documents. This
metric assesses the precision and recall of the la-
bels of the narratives and sub-narratives assigned
to each news item. In addition, the standard devia-
tions of both F1 values are indicated.

3 Methodology

In this research, we have decided to use a Zero-
Shot approach to news classification, without using
pre-trained examples. This decision responds to
the difficulty of finding sufficiently large datasets
labelled by human annotators to train a model when
we move to real world scenarios. By employing
a Zero-Shot approach, we take advantage of the
power of LLMs, which have been trained on a
large amount of data and are able to generalise to
new tasks without the need for prior examples.

To overcome the linguistic limitations that LLMs
may have, we have translated all news items into
English using machine translation models based on
Opus-MT (Tiedemann), an initiative of the Univer-
sity of Helsinki that provides multilingual machine
translation models, facilitating translation across
languages. This decision is justified by the fact that
not all available LLMs have been trained with a
large amount of data in the five languages of in-
terest. By translating the articles into English, we
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Figure 1: Frecuency of subnarratives in train+dev set grouped by country.

seek to maximise the accuracy of classification and
narrative detection, taking advantage of the knowl-
edge of the models in this language. In addition,
this methodology allows for a more homogeneous
comparison of the news items, regardless of the
original language but adding possible errors in the
translator models.

3.1 Hierarchical classification

The classification process has been divided into two
stages, both carried out by formulating prompts, as
described in Appendix A.

1. The main theme of the news item has been
classified, assigning it to one of two possible
topics: URW (Russia-Ukraine War) or CC
(Climate Change).

2. Within each assigned topic, we have classified
the corresponding subnarratives. The label
Other has been incorporated at both topic and
subnarrative level.

Subsequently, labels for the narratives were ex-
tracted from the model responses.

3.2 LLM configuration

For each of the ranking tasks, we selected the
calme-2.4-rys-78b (Panahi, 2023) model, a fine-
tuned model based on Qwen 2 78B (Qwen et al.,
2025), which has demonstrated high performance

with a score of 0. 669 in MMLU-Pro Leaderboard
(Wang et al., 2024), placing it as the fourth best
model in the Open LLM Leaderboard (Ope).

This model was quantized to 4 bits to optimise
memory usage and speed up inference. Calcula-
tions were performed using the bfloati6 format,
which ensures greater efficiency without compro-
mising accuracy. For inference, temperature was
set to 0.75, top_k to 5, and max_new_tokens was
set to 200.

3.2.1 Prompts

To carry out the hierarchical classification of the
news, two specific prompts have been built, one
for each level as described in 3.1. The first prompt
is destined to the classification of the main topic
of each news item, assigning it to one of the two
possible themes: URW (Russia-Ukraine War) or
CC (Climate Change). The second prompt is used
for the classification of the sub-narratives within
each of the assigned topics, allowing the model to
identify the specific sub-narratives that the news
item supports. These prompts only include the title
of the topic or subnarratives to be classified.

In addition, the model’s response has been re-
quested to be delivered in JSON format, including a
detailed reasoning for the classification made. This
structure allows the model to provide clear expla-
nations of its decisions, which helps to improve
the transparency and interpretability of the classifi-
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cation process and facilitates the evaluation of the
consistency and validity of the assigned labels.
The prompts used can be found in Appendix A.

4 Results

To evaluate the performance of our Zero-Shot ap-
proach, we performed an initial evaluation on the
training and development sets, which allowed us
to analyse the model’s ability to correctly classify
both the topic and the subnarratives.

Table 2 presents the results for each language
and the overall macro result of the system on the
development set. This includes the total number
of news items in each set, the F1 metric for the
topic, the F1 for the Other category (indicating the
model’s ability to identify news items that do not
fit into any predefined narrative or topic), as well
as the metrics used in the overall evaluation: F1
coarse (narrative classification), standard deviation
coarse, F1 samples (subnarrative classification) and
standard deviation samples.

We then applied the model to the test set, gen-
erating the final inferences. Table 3 includes the
same metrics by language with the results of our
system on the test set together with the best model
recorded on the task. In addition, the difference
between our approach and the leading model in
each language is shown, allowing us to quantify
the difference in performance between the two.

5 Discussion

The obtained results show a variable performance
of the model depending on the language, with sig-
nificant differences between the dev set and the test
set. In the evaluation on dev, it is observed that the
model achieves a high F1 Topic in all languages,
with values above 87%, indicating that topic classi-
fication (URW or CC) is relatively straightforward
for the model. However, F1 Other is much lower,
especially in Portuguese (PT), where the model
did not correctly identify any news items in the
Other category, suggesting that the model’s ability
to detect news items that do not fit the predefined
narratives varies by language. As for the classifi-
cation of sub-narratives, F1 Samples values show
moderate performance, with Bulgarian (BG) as the
best performing language (0.4248), while Hindi
(HI) and Portuguese (PT) show the lowest values
(0.2305 and 0.2257, respectively).

Analysing the results on the test set, a gener-
alised decrease in ranking metrics is observed with

respect to the dev set, indicating that the distri-
bution of labels in the test set might be slightly
different from the dev set. Comparison with the
best model reveals noticeable performance differ-
ences. For example, in Russian (RU), our model
obtains an F1 Coarse of 0.513, while the best model
achieves 0.709, which represents a difference of
0.196 points. Similarly, in Portuguese (PT), the
difference is 0.127 points.

One aspect to note is that the difference in F1
Samples (classification of subnarratives) is larger
than in F1 Coarse, indicating that the identification
of subnarratives remains a greater challenge than
the classification of narratives. Furthermore, the
standard deviation of our model and the best ranked
model across all languages remains relatively high,
suggesting considerable variability in the quality of
predictions. This behaviour is especially visible in
English (EN) and Hindi (HI), where the standard
deviation values are the highest, suggesting that the
model is less consistent in these languages.

To better interpret these results, it would
have been useful to have a measure of the
Inter-Annotator Agreement when constructing the
dataset. Knowing the Inter-annotator agreement
would allow contextualising the F1 values and stan-
dard deviations, providing a reference on the intrin-
sic difficulty of the task. If inter-annotator agree-
ment were low, this would indicate that even for
humans the classification of certain news items into
specific narratives is ambiguous, which would help
to establish a reasonable threshold for evaluating
the model’s performance. On the other hand, if the
agreement were high, the observed variability in
the model’s predictions could be attributed mainly
to limitations in its generalisability. This analysis
would be particularly relevant in languages with
higher variability in F1 and high standard devi-
ations, as it would allow distinguishing between
problems arising from annotation ambiguity and
model-inherent errors.

6 Conclusion and Future Work

In this research, we have presented a LLM-based
system using a Zero-Shot approach for the Se-
mEval 2025 Task 10 Subtask 2, together with a
machine translation into English, focused on the
classification of narratives in news stories from five
different languages. Our system approached this
task without using training data, using only the
ability of the pre-trained model to identify the gen-
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n_news F1 Topic F1Other F1 Coarse Std Coarse F1 Samples Std Samples
EN 41 0.8645 0.5333 0.5125 0.3451 0.3836 0.3412
BG 35 0.9106 0.5455 0.6078 0.3536 0.4248 0.3794
PT 35 0.8165 0.0000 0.4771 0.3993 0.2257 0.3106
RU 32 0.9455 0.6667 0.6691 0.3348 0.4312 0.3288
HI 35 0.8116 0.2500 0.3329 0.3761 0.2305 0.3446
Global 178 0.8697 0.3991 0.5199 0.3392 0.3067 0.3409
Table 2: System results on the dev set

Lang Rank F1 Coarse Std Coarse F1 Samples Std Samples

EN (our) 11 0.512 0.364 0.313 0.294

EN (best) 0.590 0.353 0.438 0.333

EN delta 0.078 -0.011 0.125 0.039

BG (our) 4 0.574 0.353 0.363 0.312

BG (best) 0.631 0.338 0.460 0.333

BG delta 0.057 -0.015 0.097 0.021

PT (our) 7 0.537 0.324 0.270 0.262

PT (best) 0.664 0.260 0.480 0.254

PT delta 0.127 -0.064 0.210 -0.008

RU (our) 7 0.513 0.325 0.330 0.270

RU (best) 0.709 0.274 0.518 0.282

RU delta 0.196 -0.051 0.188 0.012

HI (our) 4 0.449 0.460 0.376 0.456

HI (best) 0.569 0.484 0.535 0.494

HI delta 0.120 0.024 0.159 0.038

Table 3: System results on the test set

eral theme of the news and the sub-narratives they
support.

The results obtained show that subnarrative clas-
sification remains a challenge with low perfor-
mance and high variability in predictions. Compar-
ison with the best model of the SemEval Task 10
Subtask 2 shared task shows that our system per-
forms worse with noticeable differences, especially
in languages such as Russian and Portuguese.

These results suggest some directions for future
work. First, an analysis of the importance of ma-
chine translation would allow us to quantify the
degree of error introduced and its effect on classi-
fication. It would be interesting to explore direct
classification without translation in those languages
with sufficient coverage in the base models. In ad-
dition, to obtain a more reliable estimate of model
performance, it would be necessary to perform mul-
tiple runs on the test set and employ ensemble tech-
niques, combining predictions from several model
runs to reduce variability and improve the robust-
ness of the system. Finally, the data provided in
the training and development set could be used to

test supervised approaches such as Few-Shot or
Fine-Tuning.

Limitations

Our approach has several limitations that must be
considered. First, due to hardware constraints, it
was necessary to quantise the model to 4 bits. This
may have affected the accuracy of the model by los-
ing information in the weights. In addition, the in-
ference time was considerably high, which hinders
the scalability of the system in large data volume
applications.

Another important limitation is the use of ma-
chine translation, which is likely to introduce noise
in the textual representations and may affect the
classification of narratives. Also, the unsupervised
Zero-Shot approach prevents tuning the model with
task-specific examples, which limits its ability to
learn finer patterns in classification. Additionally,
the large number of sub-narratives and the length
of news stories pose problems in managing context
within LLMs.

Finally, an additional limitation is the lack of
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a more robust performance evaluation, as only a
single model run was performed. To obtain more
reliable results, it would be necessary to perform
multiple runs and apply ensemble techniques that
reduce the variability of the predictions.
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Your main function is to analyse a news item and classify it according to the thematic of the text.
Themes to detect:

1: The war between Ukraine and Russia.
2: Climate change.

The text of the news item you have to analyse is:
(Start of news item to be analysed)
news text
(End of news item to be analysed)
Instructions for Classification:
1- Read carefully the news.
2- Determine what the main topic of the news item is.
3- You have to generate a .json structure:
{"classification”: [1, 2] only one of the two categories (Write it between

LD,

"reasoning”: ’reasoning of the answer in maximum 50 words.’ }

Figure 2: Topic classification prompt.
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Your primary role is to analyze a new and categorize them according to predefined narrative and
sub-narrative themes that reflect different portrayals and perspectives of the Ukraine-Russia war
(URW). Your classification should help in understanding the overarching sentiments and strategic
messaging in public discourse.

Narratives and Sub-narratives to Detect:

URWI1.: Blaming the war on others rather than the invader.

- URWI1.1: Ukraine is the aggressor.

- URW1.2: The West are the aggressors.

URW2.: Discrediting Ukraine.

- URW2.1: Rewriting Ukraine’s history.

- URW2.2: Discrediting Ukrainian nation and society.

- URW10.3: There is a real possibility that nuclear weapons will be employed.
- URW10.4: NATO should/will directly intervene.
URW 11.: Hidden plots by secret schemes of powerful groups.

The text of the news item you have to analyse is:
(Start of news item to be analysed)

news text

(End of news item to be analysed)

Instructions for Classification:

1- Read carefully the news.

2- Determine which sub-narrative(s) it supports based on the content and sentiment expressed, a
news item can align with several sub-narratives if it incorporates elements from more than one
category.

If the text supports a narrative, e.g. URW1., but does not support any of the sub-narratives
proposed for that narrative you have to write the code of the narrative followed by OTH, e.g.
URWI1.0TH

If the text does not support any narrative write OTH.OTH

Valid labels are: "URWI1.1’, "URW1.2°, "URWI1.0TH’, "URW2.1°, "URW2.2’, "URW2.3’,
"URW2.4°,"URW2.5°, "URW2.6’, "'URW2.7°, "URW2.8’, "URW2.0TH’, 'URW3.1’, "URW3.2’,
"URW3.3’, "URW3.0TH’, 'URW4.1’, *URW4.2’, *URW4.3’, "URW4.4’, 'URWA4.5’,
"URW4.0TH’, "URWS.1°, "URWS5.2’, "URWS.3’, "URWS5.0TH’, "URWG6.1°, "URW6.2’,
"URW6.3’, "URW6.0TH’, "URW7.1°, "URW7.2’, "'URW7.3’, "URW7.4’, "URW7.5’, "URW7.6’,
"URW7.0TH’, "URWS.1°, "URWS.2’, "URWS.0TH’, "URW9.1’, "URW9.2’, "URW9.0TH’,
"URW10.1°, "URW10.2°, "URW10.3’, "URW10.4’, "URW10.0TH’, "URW11.0TH’, "OTH.OTH’]
3- You have to generate a .json structure:

{"classification”: [’URW1.1’, "URW2.1’, ’URW7.0TH’, ...] The valid labels of
the sub-narratives supported by the text according to instruction 2.,
"reasoning”: ’reasoning of the answer in maximum 50 words.’}

Figure 3: URW subnarratives classification prompt.
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Your primary role is to analyze a new and categorize them according to predefined narrative
and sub-narrative themes that reflect different portrayals and perspectives of the Climate Change
(CC). Your classification should help in understanding the overarching sentiments and strategic
messaging in public discourse.

Narratives and Sub-narratives to Detect:

CCl.: Criticism of climate policies.

-CC1.1: Climate policies are ineffective.

-CC1.2: Climate policies have negative impact on the economy.

-CC1.3: Climate policies are only for profit.

CC2.: Criticism of institutions and authorities.

-CC2.1: Criticism of the EU.

-CC2.2: Criticism of international entities.

CC10.: Green policies are geopolitical instruments.

-CC10.1: Climate-related international relations are abusive/exploitative.
-CC10.2: Green activities are a form of neo-colonialism.

The text of the news item you have to analyse is:

(Start of news item to be analysed)
news text

(End of news item to be analysed)
Instructions for Classification:

1- Read carefully the news.

2- Determine which sub-narrative(s) it supports based on the content and sentiment expressed, a
news item can align with several sub-narratives if it incorporates elements from more than one
category.

If the text supports a narrative, e.g. CC1., but does not support any of the sub-narratives proposed
for that narrative you have to write the code of the narrative followed by OTH, e.g. CC1.0OTH

If the text does not support any narrative write OTH.OTH

Valid labels are: [’CC1.1°,’CC1.2°, °CC1.3’,’CC1.0TH’, ’CC2.1°, ’CC2.2’, °CC2.3’,’CC2.4’,
’CC2.0TH’, ’CC3.1’, ’CC3.2’, ’CC3.0TH’, ’CC4.1°, °CC4.2’, ’CC4.3°, ’CC4.4’, °CC4.5,
"CC4.6°, ’CC4.7°, °CC4.8’, *CC4.0TH’, ’CC5.1°, ’CCs.2°, °CC5.37, *CC5.4°, *CC5.0TH’,
’CCe6.1°, ’CC6.2°, °CC6.3’, *CC6.0TH’, ’CC7.1°, ’CC7.2’, °C(C7.3’, °CC7.4’, *CCT.0TH’,
’CC8.1°, ’CC8.2°, "CC8.0TH’, *CC9.1’, ’C(C9.2°, *CC9.3’, ’C(C9.4’, *CCY.0TH’, *CC10.1°,
’CC10.2’, ’CC10.0TH’, ’OTH.OTH’] 3- You have to generate a .json structure:

{"classification”: [’CC1.1’, ’CC2.1’, 'CC4.0TH’, ...] The valid labels of the
sub-narratives supported by the text according to instruction 2.,
"reasoning”: ’reasoning of the answer in maximum 50 words.’}

Figure 4: CC subnarratives classification prompt.
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Abstract

This paper presents our system designed for
Subtask 1 of SemEval-2025 Task 10, which
focuses on multilingual entity framing in news
articles. Given the complexity of the task,
which involves multi-label, multi-class clas-
sification across five languages, we propose
an approach based on large language models
(LLMs). This approach combines multilin-
gual text translation, data augmentation, multi-
model fine-tuning and ensemble classification.
First, we translated texts into English to unify
the datasets, followed by synonym-based aug-
mentation to address class imbalances. We then
fine-tuned multiple LLMs using the augmented
dataset. Finally, a cutting-edge LLM was ap-
plied to aggregate model predictions for en-
semble classification, ensuring robust and accu-
rate classifications. Our system demonstrated
promising results, achieving top positions in
three languages (English, Portuguese and Rus-
sian) and second place in Bulgarian.

1 Introduction

With the increasing prevalence of the internet, peo-
ple can easily access diverse information, which
has also facilitated the propagation of misinforma-
tion more readily compared to traditional media.
Public perceptions of events are often influenced by
these harmful false narratives and propaganda, par-
ticularly regarding major crisis incidents. Conse-
quently, misinformation identification has become
crucial, prompting growing research (Orbach et al.,
2021; Sharma et al., 2023) to analyze and catego-
rize entities in textual information.

The SemEval-2025 Task 10 (Piskorski et al.,
2025; Stefanovitch et al., 2025) focuses on multi-
lingual representation and narrative extraction from
online news, aiming to advance research and devel-
opment of novel analytical capabilities to support
end-users in analyzing news ecosystems and identi-
fying characteristics of manipulation attempts. The

task organizers construct a dataset (Mahmoud et al.,
2025) comprising 1,378 news articles focusing on
the Ukraine-Russia war and climate change, with
role annotations applied to over 5,800 entities. This
task comprises three subtasks and we participate in
Subtask 1 (Entity Framing). Specifically, given a
news article and a list of Named Entity (NE) men-
tions within it, the objective is to assign one or mul-
tiple roles to each mention using a predefined re-
fined role taxonomy. This taxonomy encompasses
three primary role types: protagonists, antagonists
and innocent, forming a multi-label multi-class text
span classification task.

Entity Framing subtask presents two main chal-
lenges. First, as a multilingual task involving five
languages (Bulgarian, English, Hindi, European
Portuguese and Russian), traditional methods ex-
hibit limited modeling capabilities for large-scale,
complex multilingual tasks, particularly in han-
dling long sequences and intricate semantics. The
emergence of LLMs (Zhao et al., 2023; Matarazzo
and Torlone, 2025) addresses this challenge effec-
tively through their robust generalization capabili-
ties and multilingual data integration. Second, this
subtask requires multi-label multi-class classifica-
tion where each entity must be assigned to one
of three primary roles, with further granularity in
secondary subcategories. For instance, the protag-
onist category includes finer-grained roles such as
Guardian, Martyr, Peacemaker, Rebel, Underdog
and Virtuous. This hierarchy demands enhanced
semantic comprehension and classification capabil-
ities from models.

To address these challenges, we implemented
an LLM-based pipeline. Initially, we translated all
non-English data into English for unified process-
ing and constructed a task-specific dataset. We
then fine-tuned multiple foundational large lan-
guage models (GLM et al., 2024; Yang et al., 2024;
Dubey et al., 2024) on this dataset. Subsequently,
we employed a state-of-the-art LLM by designed
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Figure 1: The overall architecture diagram of our system. The "COP" highlighted in yellow is the entity to be
classified, the one marked in red indicates the incorrect classification result, and the one marked in green indicates

the correct classification result.

ensemble prompts to aggregate decisions from mul-
tiple LLMs, generating final classification results.
Our proposed method demonstrated strong perfor-
mance by achieving first place in three out of the
five languages evaluated in Subtask 1.

2 Background

Named Entity Recognition (NER) has long been a
key research direction in the field of Natural Lan-
guage Processing (NLP) (Xu et al., 2024). NER
refers to the task of identifying entities with specific
meanings in text, such as person names, locations
and others, and annotating them accordingly. Es-
sentially, it is a sequence labeling task aimed at
classifying each word or phrase in a text as be-
longing to a specific named entity category or not
belonging to any named entity category.

In recent years, with the emergence of an increas-
ing number of open-source large models (Touvron
et al., 2023; Liu et al., 2024) and the introduction
of various fine-tuning techniques (Hu et al., 2021;
Dettmers et al., 2024), LLMs have achieved signif-
icant progress in NER tasks (Luo et al., 2024). In
this study (Naguib et al., 2024), they collect and
use 14 NER datasets covering English, French, and
Spanish, and compare the performance of genera-
tive LLMs with few-shot prompts and traditional
masked-based models in both general and clinical
domains. GPT-NER (Wang et al., 2023) cleverly
transforms the traditional NER sequence labeling
task into a generation task that is easier for LLMs

to handle, using special tokens to mark the entities
to be extracted. Additionally, it constructs few-
shot prompt words by retrieving semantically simi-
lar examples from the input via KNN, effectively
bridging the gap between the NER task and LLMs.

3 System Overview

As shown in Figure 1, the overall structure of our
system includes the following key components:
Instruction-tuning dataset construction based on
multilingual text translation and data augmentation,
multi-model fine-tuning based on QLoRA, and en-
semble classification based on GLM-4-Plus.

3.1 Instruction-tuning Dataset Construction

Due to the superior model capabilities and abun-
dant data annotation resources of LLMs in English,
coupled with the relatively smaller scale of data
annotation in other languages, translating multilin-
gual texts into English can effectively expand the
data scale, thereby simplifying classification tasks
and reducing the complexity of processing mul-
tilingual texts. Based on this, the first step of the
system is to translate texts in various languages into
English. This process is achieved by calling the
API of GLM-4-Plus, which supports multilingual
translation. The translated texts are then uniformly
consolidated into a corpus for subsequent process-
ing.

However, there is an issue of imbalance in the
types of entities in the dataset. To mitigate this
problem, we further employed data augmentation
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###Instruction: x
Below is a news article. For each named entity marked

with @@## in the article, classify its role based on a
predefined taxonomy of fine-grained roles. Each entity
can have one or more roles.

#i## Input:

Bill Gates Says He Is ‘The Solution’ To Climate Change
So It’s OK To Own Four Private Jets \n\n@@ #H#
has the right to fly around the world on private jets...

Predefined taxonomy:\n— Guardian: ...\n— Martyr: ...\n—
Peacemaker:...
Named entities marked with @@## in the article:

; Based on the taxonomy, the classification is:
wiwn Corrupt. j

Figure 2: Example of the prompt from our training set.
The "Bill Gates" highlighted in yellow is the entity to
be classified, and the one marked in green indicates the
correct classification result.

### output:

strategies, especially synonym replacement for un-
derrepresented entity types, to enhance their repre-
sentation in the training set (Dai and Adel, 2020).
Specifically, we utilized WordNet as the synonym
dictionary and applied probabilistic replacement
to 30% of non-entity words in sentences contain-
ing rare entity types that occur less than 30 times.
The augmented data, combined with the original
dataset, forms a more balanced training set. This
strategy not only effectively addresses the issue of
class imbalance but also lays a solid foundation
for subsequent model training while ensuring the
consistency of input formats.

3.2 Multi-model Fine-tuning

During the model training phase, we employ
QLoRA technology to fine-tune multiple base mod-
els, which include Qwen2.5, Llama3.1, and GLM4.
The choice of QLoRA is due to its ability to per-
form efficient fine-tuning operations with limited
computational resources, making it particularly
suitable for LLMs.

The fine-tuning dataset’s prompt is shown in
Figure 2. Specifically, each model’s fine-tuning
prompt includes a task description, candidate entity
types and their definitions, and special symbols to
mark the positions of entities in the text. For exam-
ple, in combination with an automatic labeling pro-
gram, the symbol "@ @" is used to mark the start
of an entity, and the symbol "##" is used to mark
the end of an entity.. This design helps the model
better understand the task by first locating entities

#HHH#System
Your task is to reason through the final entity type for the article by

analyzing the context and predictions from three models. The final
type may have one or more entities, separated bya ", ".

Please follow these steps:

1.Analyze the sentence: Understand the semantics of the article and
the context in which the entity appears.

2.Evaluate the predictions: Review each model's prediction to
determine whether it is reasonable.

3.Resolve contradictions: If there is disagreement in predictions,
decide which one better fits the context.

4.Make a final decision: Arrive at the final conclusion by weighting
the evidence or semantic fit.

Please show the thought process clearly, and mark the final result in
[square brackets].

i Input

Article: @@ ## itself is little more than a “scam” which
facilitates “greenwashing, lying and cheating”. Only overthrow of
“the whole capitalist system” will suffice.

Entity to be marked: COP
Model predictions: Qwen2.5: Deceiver, llama3.1: Deceiver,
GLM4: Corrupt

Figure 3: Example of the Chain-of-Thought Prompt for
LLM-based Ensemble Learning.

Train Dev Test AVG Length
EN 686 91 235 1646
PT 1251 116 297 2269
RU 722 86 214 2433
BG 627 31 124 3239
HI 2331 280 316 8190
DA 700 - - 1521
Total 6317 604 1186 4418

Table 1: Statistics of dataset sizes. DA represents the
dataset obtained through data augmentation, and AVG
Length refers to the average length of the training set.

in the text through prompts and then proceeding
with classification. In the fine-tuning process, each
base model is trained on the augmented dataset,
with the goal of optimizing the model’s parameters
to minimize classification loss.

3.3 Ensemble Classification

After fine-tuning each base model, we designed
an LLMs prompt-based ensemble learning, which
employed a Chain-of-Thought approach to guide
the LLMs in analyzing the classification results
of entities based on multiple models fine-tuned
with QLoRA, thereby obtaining the final results.
The specific prompt is provided in Figure 3. Each
fine-tuned model (Qwen2.5, Llama3.1, and GLM4)
generates a classification result for a given entity.
These results are then passed to the GLM-4-Plus
model, which acts as a meta-classifier to conduct a
comprehensive analysis of all the models’ predic-
tion outcomes and ultimately make a decision.

As shown in Figure 1, for the sentence
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EN PT RU BG HI
EM F1 Rank | EM F1 Rank | EM F1 Rank | EM F1 Rank | EM F1  Rank

PATeam 38.30 44.53 2 49.16 5397 2 4439 49.33 6 51.61 53.54 1 26.90 32.05 11
DEMON 37.45 42.08 3 36.70 41.36 6 46.73  49.66 4 4597 47.01 3 40.19 47.56 4
QUST 32.77 37.98 7 4579 49.28 3 51.40 54.75 2 38.71 38.74 6 46.84 53.85 1
TartanTritons | 35.74 10.78 5 3333 1742 8 4720 15.80 3 41.13  9.52 5 4462 17.33 2
BERTastic | 25.11 29.60 11 4175 4548 4 46.73 48.98 4 35.48 36.51 7 4399 51.57 3
Baseline 383 440 27 471 4.84 15 514 590 15 4.03 397 14 570 7.16 15
DUTIR(our) | 41.28 45.42 1 59.26 63.72 1 56.54 60.36 1 50.81 54.96 2 29.43  34.10 8

Table 2: Leaderboard of the test set. The table presents the leaderboard results for the test set, with the Exact Match
Ratio (EM) and micro F1 score displayed as percentages. The best results for each metric are highlighted in bold.
Additionally, we list the top three teams in any language, with the possibility of ties in ranking, as well as baseline

results for comparison. The ranking is based on the Exact Match Ratio (EM).

"@ @COP## itself is little more than a ‘scam’
which facilitates ‘greenwashing, lying and cheat-
ing’. Only overthrow of ‘the whole capitalist sys-
tem’ will suffice. ", where "COP" is the entity to
be categorized, Qwen2.5 classifies it as "Deceiver”,
Llama3.1 classifies it as "Deceiver", and GLM4
classifies it as "Corrupt". Based on the prediction
results of each fine-tuned model, and considering
their performance and reliability in specific tasks,
GLM-4-Plus makes the final entity classification
decision. By adopting this ensemble method, we
can effectively enhance the accuracy and robust-
ness of classification, especially when dealing with
complex or diverse entity types. Ensemble learning
fully leverages the strengths of each base model to
achieve more precise classification results.

4 Experimental Setup

The dataset originates from Subtask 1 of Task 10 in
SemEval 2025, comprising news articles in plain
text format across five languages: English (EN),
Portuguese (PT), Russian (RU), Bulgarian (BG)
and Hindi (HI).

During the experimental phase, we generated
individual data records for each entity mention,
with the statistical summary presented in Table 1.
The limited number of available articles in each
language undoubtedly increased the difficulty for
LLMs to learn effectively. Additionally, the dataset
exhibited significant class imbalance, further inten-
sifying the challenge of the task.

To address these challenges, we employed strate-
gies of data translation and augmentation. Specif-
ically, we leveraged LLMs to translate all articles
from different languages into English, resulting in
5,617 data records. Building on this, we conducted
data augmentation operations such as synonym re-
placement for underrepresented categories, adding
additional 700 data records. Ultimately, all datasets

were merged to form a complete dataset containing
6,317 training data records.

For task evaluation, the official assessment uti-
lized multiple metrics to comprehensively measure
model performance, including Exact Match Ratio,
micro precision (micro P), micro recall (micro R),
micro F1 score (micro F1), and accuracy for the
main role. Among these, the Exact Match Ratio
was the primary evaluation metric.

During the training process, a batch size of 4
was used, the learning rate was set to le-4, and
a maximum truncation length of 4096 was set to
accommodate text inputs of varying lengths. Ad-
ditionally, the AdamW optimizer was selected to
further enhance the model’s training efficiency and
generalization ability. All experiments were con-
ducted on a single NVIDIA L40 GPU.

5 Results

5.1 Final Submission

The detailed information of the test set leaderboard
is shown in Table 2. Ranked by exact match rate,
our proposed method achieved first place in three
out of the five languages covered. In addition, our
system achieved the highest micro F1 score in four
languages, fully demonstrating its effectiveness and
adaptability. However, its performance on Hindi
was unexpectedly unsatisfactory.

After analysis, we believe that this result may be
closely related to the length characteristics of Hindi
articles. The average lengths of datasets for differ-
ent languages are shown in Table 1. Compared to
other languages, Hindi articles are generally longer.
Due to hardware limitations, we were unable to set
a longer token length.

5.2 Ablation Study

To comprehensively verify the key contributions
of each component in the system to overall perfor-
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EN RU
EM A EM A
Our System | 41.28 - 56.54 -
w/o TT 38.30 -2.98 | 54.67 -1.87
w/o DA 4043 -0.85| 55.14 -1.40
w/o EC 37.87 -341 5327 -327

Table 3: The results of the ablation studies on the EN
and RU test sets.

mance, we designed the following ablation experi-
ments: we evaluated the system’s performance un-
der conditions where multilingual text translation
was excluded (marked as w/o TT), data augmen-
tation was not implemented (marked as w/o DA),
and ensemble classification was not used (marked
as w/o EC). The results of the ablation study are
shown in Table 3.

* By introducing LLMs for multilingual
text translation, we successfully integrated
datasets from multiple languages, providing
the model with more comprehensive and in-
depth learning materials. This significantly
enhanced the model’s learning effectiveness
and generalization ability.

* For categories with low representation in
the dataset, we employed data augmentation
strategies, which effectively alleviated the is-
sue of data imbalance. This improved the
model’s accuracy and robustness when deal-
ing with imbalanced datasets.

 Furthermore, by leveraging high-performance
LLMs, we fine-tuned different base mod-
els and performed ensemble classification on
their classification results. This innovative
approach not only further improved the over-
all performance of the system but also made
the system’s output more stable and reliable,
demonstrating the unique advantages of en-
semble learning in enhancing model perfor-
mance.

6 Conclusion

This paper presents the system we designed for
Subtask 1 of SemEval-2025 Task 10. We pro-
pose a multilingual text processing framework that
combines multilingual translation with data aug-
mentation, QLoRA-based multi-model fine-tuning,
and GLM-4-Plus-based ensemble classification.
By using GLM-4-Plus to translate multilingual

texts into English, we enhance data diversity and
quantity. Data augmentation effectively improves
the model’s performance on imbalanced datasets.
QLoRA fine-tuning optimizes the model and re-
duces classification loss. GLM-4-Plus, as a meta-
classifier, further enhances system performance.
Our system achieved first place in three languages
(English, Portuguese and Russian). In the future,
we will focus on improving long-text processing
and optimizing LL.Ms fine-tuning techniques.
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Abstract

This paper presents our research in the
SemEval-2025 Task 9: Food Hazard Detec-
tion Challenge, focusing on the application of
ModernBERT for food safety data classifica-
tion. Our system achieved 12th place in the
official evaluation of subtask ST1, attaining a
validation score of 0.7952 and a final test score
of 0.7729. Through comparative experiments
with various deep learning architectures, we
demonstrate that ModernBERT exhibits supe-
rior performance in handling domain-specific
semantics and long-tail distributions. These re-
sults validate the potential of ModernBERT for
real-world food safety monitoring systems. The
code is available at: https://github.com/
daojiaxu/semeval_2025_Task-9.

1 Introduction

The rapid development of artificial intelligence (Al)
has led to its widespread use across various sectors,
with significant impacts on society (Ertel, 2024).
In food safety, which directly affects public health,
Al technologies such as big data analytics and ma-
chine learning offer innovative solutions to enhance
food safety measures (Chhetri, 2024). Foodborne
illnesses remain a global concern, and these ad-
vancements present new opportunities to address
this issue. This study, part of SemEval 2025 Task
9: The Food Hazard Detection Challenge, explores
the potential of pre-trained models for detecting
and classifying food hazards (Randl et al., 2025).

The primary objective of this study is to clas-
sify food products into hazard and product cate-
gories based on safety-related attributes. We ex-
plore the application of pre-trained models to cat-
egorize food hazards into 10 types and products
into 22 types. By leveraging Al, we aim to create a
more efficient, accurate, and automated approach
to managing food safety data.

We selected several state-of-the-art models, in-
cluding BERT, RoBERTa, Qwen, and Modern-

BERT, as candidate models for the classification
tasks. Our experiments indicate that ModernBERT
consistently outperforms other models, demonstrat-
ing its effectiveness in food safety applications on
both the validation and test sets.

By comparing the performance of these models,
we seek to identify the most effective pre-trained
models based method for managing food safety in-
formation. These findings not only contribute to ad-
vancing theoretical research but also provide prac-
tical insights for real-world food safety manage-
ment, with the potential to enhance public health
by improving food safety and preventing foodborne
diseases.

2 Related Work

The advent of artificial intelligence has profoundly
impacted various fields, particularly food safety re-
search, with many scholars making significant con-
tributions. Leonieke’s systematic reviews evaluated
multiple machine learning algorithms and combina-
tions, with the hybrid Naive Bayes-Support Vector
Machine (NB-SVM) model reducing expert work-
load and improving review accuracy (van den Bulk
et al., 2022). Sina integrated multi-criteria deci-
sion analysis (MCDA) into an Al-driven database
system for automated food incident report classi-
fication, verified through field tests (Rohrs et al.,
2024).

With the rise of Large Language Models (LLMs)
(Zhao et al., 2024), the research landscape has
shifted. Zhao’s 2024 survey emphasized LLMs’
transformative potential across fields. Hassani
demonstrated that BERT and GPT architectures
excelled in regulatory text classification, with the
optimized GPT-40 model outperforming traditional
methods (Hassani et al., 2025). Randl introduced
an LLM-in-the-loop framework, enhancing classi-
fier performance while reducing energy consump-
tion. Their analysis showed that logistic regres-
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dioxide or sulphites.

Figure 1: Data Samples

sion models with TF-IDF features outperformed
advanced models in certain food recall categories
(Randl et al., 2024).

Neris also contributed significantly. Neris used
LLMs for zero-shot chemical hazard extraction,
proving their effectiveness in environmental mon-
itoring (Ozen et al., 2025). Ma showcased LLM
applications in decision support, driving progress
in food science (Ma et al., 2024). Zhang Dan’s
ICL2FID framework improved annotation accuracy
in food-poisoning event labeling on social media,
offering cost-effective advantages over traditional
methods (Zhang et al., 2024).

In conclusion, previous studies have explored
food safety from various perspectives with different
methods and models, laying a foundation for our
research, which aims to further expand and deepen
the field.

3 Experiment Setup

3.1 Dataset

The Food Recall Incidents dataset (Randl et al.,
2025) contains 6644 short texts of English food re-
call notices annotated by two food science experts
(character range 5-277, mean 88), sourced from
official agencies such as the FDA.

The training dataset suffers from class imbalance.
In the hazard-category classification task, the most
frequent category is biological, with 2,018 samples,
while the least frequent category is migration, with
only 13 samples. A similar class imbalance is ob-
served in the product-category classification task.
For instance, the meat, egg and dairy products cate-
gory has 1,686 samples, while the sugar and syrups
category has just 5 samples. This significant dis-
crepancy in sample distribution between categories

can influence model training.

In comparison to the 5,433 samples in the train-
ing set, the validation set consists of only 565 sam-
ples. Within the validation set, the allergens cat-
egory has the highest number of hazard-category
samples, totaling 207. However, the migration haz-
ard category has 0 samples. Regarding product-
category classification, the meat, egg and dairy
products category also has the largest number of
samples, totaling 146. Meanwhile, some categories
have very few samples, such as pet feed and feed
materials, which have only 1 sample, and the sugar
and syrups, honey and royal jelly, and food con-
tact materials categories, which have 0 samples.
Detailed data statistics can be found in Figure 2.

3.2 Pre-trained Models

In this study, we selected BERT, RoBERTa, Qwen,
and ModernBERT as candidate models due to their
proven effectiveness in natural language processing
(NLP) tasks.

The Bidirectional Encoder Representations from
Transformers (BERT) is renowned for its simplic-
ity and efficiency, requiring only an extra output
layer for fine-tuning, adaptable to a wide range of
NLP tasks. Its key strength lies in handling diverse
tasks without major architectural changes, making
it efficient and flexible. BERT has set new bench-
marks in NLP, achieving SOTA results in 11 bench-
marks (Devlin et al., 2019). This performance has
proven the value of pre-training deep bidirectional
representations, a concept that BERT has popular-
ized across the NLP community. BERT pre-trained
model has set off a revolution in the field of natural
language processing, and is gradually established
as a new industry benchmark with its excellent ac-
curacy in a number of automatic text processing
tasks (Koroteev, 2021). BERT performs well in
language comprehension tests, and experiments
have shown that it can capture language structures,
from low-level phrase information to rich linguistic
levels in the middle, and then to combining infor-
mation in a tree structure. It is particularly adept at
handling long-distance dependency information.

Online public opinion helps reduce the impact of
food safety, and experiments have shown that the
BERT-BLSTM-CRF model has a higher accuracy
in extracting entity relationships in the food safety
public opinion dataset than other models by 3.29%
to 23.25% (Zhang et al., 2022).

RoBERTa’s enhancements make it an excellent
candidate for tasks where language understanding
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and fine-tuned performance are critical. In the re-
search on the squiad V2 dataset, both Bert and
Roberta showed strong text question answering
ability. Bert stood out with its profound language
understanding ability, while Roberta further im-
proved its performance through optimized training
strategies (Chopra et al., 2024). Liao proposed
a multi-task sentiment analysis model based on
RoBERTa, utilizing deep bi-Transformer for fea-
ture extraction and cross-attention for feature fo-
cus, outperforming other models experimentally
(Liao et al., 2021). Briskilal proposed a predictive
ensemble model based on BERT and RoBERTa
for the classification of idioms and literal mean-
ings. Tested on a newly created internal dataset,
the model performed better than the baseline, with

an accuracy improvement of 2% (Briskilal and Sub-
alalitha, 2022).

Qwen 2.5, by Alibaba, is a pre-trained LM and
multimodal model fine-tuned for tasks. With 18T
tokens, it excels in commands, long texts, struc-
tured data. It is flexible in language and tasks,
adaptable to various apps needing mixed data.
(Yang et al., 2024).

ModernBERT, optimized by Benjamin, is an ad-
vanced encoder-only transformer, trained on 2 tril-
lion tokens and handling up to 8192 tokens. It
excels in diverse tasks, including retrieval and code-
related applications. Its design ensures high speed,
memory efficiency, and superior performance in
downstream apps and real-time reasoning on GPUs
(Warner et al., 2024). Given its advantages in
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Figure 3: Model Selection and Evaluation Process

both performance and efficiency, ModernBERT
has emerged as one of the leading models in NLP
tasks. ModernBERT uses masked language model
(MLM) for generative classification, showing excel-
lent zero-shot learning ability (Clavié et al., 2025).

3.3 Methods

Experiment (Figure 3) used 7 pre-trained models
to classify product and hazard categories. Data
preprocessing was followed by splitting into train,
validation and test sets for model training, tuning
and evaluation, respectively.

Once the dataset is prepared, we load the pre-
trained models and adjust their output layers ac-
cording to the number of labels specific to the prod-
uct and hazard classification tasks. The next step
is to define the optimizer and set key hyperparame-
ters, such as the learning rate. During the training
process, we employ a data loader to read data in
batches, enabling efficient model training over mul-
tiple iterations. In each iteration, we compute the
loss function, and update the model’s parameters
using backpropagation.

Throughout the training process, we continu-
ously monitor the loss values and use the validation
set to evaluate the model’s performance, specifi-
cally calculating the macro F1 score to assess its
classification accuracy.

3.4 Evaluation Metric

The evaluation metric employs a conditional macro-
averaged F1-score framework to align with the op-
erational priorities of food safety detection. For
hazard classification, the macro-F1 score is com-
puted across all samples to ensure balanced eval-
uation of all hazard categories, regardless of their

frequency in the dataset. This is mathematically
defined as:

Ch

1 2-P.- R,
F1 = — E . 1
hazards Ch s Pc T Rc ( )

where C}, denotes the total number of hazard cat-
egories, P. represents precision, and R, denotes
recall for class c.

The product classification evaluation is per-
formed only on samples where hazard predictions
match the ground truth, reflecting real-world con-
straints where incorrect hazard identification in-
validates subsequent product categorization. The
product macro-F1 score is calculated as:

1 C,
Cp Zkil Flk

where H (fgd = Ht(ri)e,
Flproducts|H:H* = 0 P
(invalid hazard prediction)
(2)

where C), represents the total product categories,
and F'1j is the F1-score for the k-th product class.

The final composite score is derived by averag-
ing the two components:

Score = (Flhazards + Flproducts|H=H*) (3)

N

4 Results

We selected seven pre-trained models from the
table to conduct the experiment (Table 1). The
experimental results indicate that the BERT-base
model scored 0.7409, the BERT-large model
scored 0.7423, the RoBERTa-base model scored
0.7778, the RoOBERTa-large model scored 0.7679,
the Qwen2.5-0.5B model scored 0.743, the
ModernBERT-base model scored 0.7915, and the
ModernBERT-large model scored 0.7952. It is
clear that the ModernBERT-large model is the
best choice. This model demonstrated excellent
performance on the validation set, achieving a
score of 0.7952, surpassing all other models, in-
cluding different variants of both the BERT and
RoBERTa series. Although the performance of
the ModernBERT-large model on the final test
set (0.7729) is slightly lower than its performance
on the validation set, this still sufficiently demon-
strates its strong generalization ability and its dom-
inant position in related tasks.
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Figure 4: Loss Curves of ModernBERT-large on the Test Set (Food Hazard Classification and Product Classification)

Model Score
BERT-base 0.7409
BERT-large 0.7423

RoBERTa-base 0.7778
RoBERTa-large 0.7679
Qwen2.5-0.5B 0.743
ModernBERT-base | 0.7915
ModernBERT-large | 0.7952

Table 1: Model Scores on the Validation Set

In the task of predicting food hazard categories
(with the task divided into 10 categories), as the
number of training steps increases, the overall loss
value shows a downward trend, indicating that the
model is gradually learning the characteristics of
the data, and its prediction ability is continuously
improving (Figure 4). Similarly, in the task of
predicting product categories (with the task di-
vided into 22 categories), the overall loss value
also shows a downward trend with the increase in
training steps. Since the product classification task
is more complex with a larger number of categories,
the training loss may be higher than that of the haz-
ard prediction task, and the convergence speed may
be relatively slower (Figure 4).

5 Conclusion

This study proposes a ModernBERT-based frame-
work for food safety data classification in SemEval
2025 Task 9 Subtask ST1. Through systematic
comparisons with pre-trained models including
BERT, RoBERTa, and Qwen, we demonstrate that
ModernBERT achieves superior performance in
food hazard detection. Experimental results show
that the framework obtains macro Fl-scores of
0.7952 and 0.7729 on the validation and final test
sets respectively, ranking 12th in the official eval-
uation of SemEval-2025 Task 9. This work estab-

lishes an effective technical pathway for applying
language models to food safety management sys-
tems.

6 Limitations

While ModernBERT demonstrates superior perfor-
mance in food safety classification tasks, this study
has several limitations. First, the experimental
data primarily focuses on structured text, leaving
the model’s generalizability to unstructured or di-
verse text sources insufficiently validated. Second,
the model’s efficiency in capturing semantic rela-
tionships within long textual sequences remains
suboptimal, particularly when handling complex
contextual dependencies. Additionally, classifica-
tion performance on minority classes still requires
improvement, necessitating further exploration of
strategies to mitigate class imbalance effects. Fi-
nally, the current approach predominantly relies on
an end-to-end supervised learning framework, with
its adaptability to zero-shot or few-shot scenarios
yet to be thoroughly assessed.
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Abstract

In this work, we introduce an ensemble frame-
work for multi-emotion detection that com-
bines the strengths of transformer-based mod-
els with a rule-based lexical system. Our ap-
proach identifies five key emotions—anger, sad-
ness, joy, surprise, and fear—using a binary
labeling scheme. We employ multiple BERT
variants, including DeBERTa, RoBERTa, and
BERT Large Uncased, each optimized through
hyperparameter tuning. Complementing these
models is a lexical component that assigns sen-
timent scores via an emotional lexicon and ap-
plies limited grammatical pattern analysis (e.g.,
noun+verb+adverb structures) to capture nu-
anced expressions. The final predictions result
from a weighted ensemble approach, where
emotion-specific weights balance data-driven
and rule-based contributions. Experimental re-
sults show that our method of ensembling using
specific outperforms individual models and tra-
ditional classifiers on benchmark datasets.

1 Introduction

Emotion detection plays a vital role in natural
language processing (NLP) applications such as
sentiment analysis, mental health monitoring, and
human—computer interaction. Unlike traditional
classification tasks that label text as positive, neg-
ative, or neutral, real-world scenarios require
identifying specific emotions like anger, sadness,
joy, surprise, and fear, which often overlap and
are highly context-dependent. In this study, we
fine-tune multiple transformer-based models, in-
cluding DeBERTa, RoBERTa, and BERT Large
Uncased, carefully optimizing hyperparameters
to enhance classification performance. To fur-
ther strengthen predictions, we incorporate a rule-
based lexical system that assigns sentiment scores
using an emotional lexicon and refines outputs
based on part-of-speech (POS) patterns, particu-
larly noun—verb—adverb—adjective combinations.

By combining deep learning architectures with lin-
guistic knowledge, our approach improves both the
robustness and interpretability of emotion classifi-
cation models.

2 Related Works

The shift from statistical models to deep learn-
ing has significantly improved multi-label emo-
tion classification (Le et al., 2023). Transformer
architectures like BERT enhance contextual un-
derstanding and label dependencies (Huang et al.,
2023b), while multi-modal approaches combining
text, audio, and visual cues further boost perfor-
mance (Zhang et al., 2022). Fusion techniques,
such as integrating Wav2Vec 2.0 with BERT, have
also shown promise (Sarma et al., 2022). Context-
aware models refine emotion detection by capturing
nuanced sentiment shifts (Deborah et al., 2020).

Linguistic features further aid classification.
POS tagging improves sentiment polarity detec-
tion (Chen et al., 2021), while hybrid models com-
bining rule-based and deep learning approaches
enhance robustness (Sivanaiah et al., 2022). Fine-
tuned transformers like ROBERTa and DeBERTa
achieve state-of-the-art results (Gupta et al., 2023),
with lexicon-based scoring further refining senti-
ment interpretation (Kumar et al., 2023). These
techniques collectively strengthen emotion classifi-
cation frameworks.

3 Dataset Description

This dataset, derived from the BRIGHTER corpus
(Muhammad et al., 2025b), is designed for English-
language emotion classification. Each sample con-
sists of a unique identifier, a text string, and five
binary-labeled emotion categories: anger, fear, joy,
sadness, and surprise. Some examples from the
datasets are given below in Table 1, to illustrate the
representation in all the files, which were used to
train the models.
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id text anger | fear | joy | sadness | surprise
0001 | Colorado, middle of nowhere. 0 1 0 0 1
0002 | Then the screaming started. 0 1 0 1 1
0003 | It was one of my most shameful experiences. 0 1 0 1 0

Table 1: Example data from the training dataset for English, Track A.

As you can see, each emotion label is assigned
either @ (not present) or 1 (present), allowing for
multi-label classification. This dataset is valuable
for developing emotion recognition models that
capture multiple emotions in a single text sample.

Subset Number of Samples
Train 2,769
Dev 117
Test 2,768

Table 2: Dataset Split

In Table 2, the number of rows provided in
the datasets released for each phase is given.
The Dataset paper and the task description pa-
per(Muhammad et al., 2025a) can be referred for
the actual columns and the amount of texts positive
for each emotion.

4 Methodology

We propose an ensemble approach for multi-label
emotion detection that integrates several fine-tuned
BERT-based models, traditional classifiers, and a
lexical rule-based module.

Transformer Models e |
Training & Evaluation

“ Stop Word Removal |—>{ Tokenisation Other Pre-processing
e Polarity Sentment Traditional Models Ersambia Model
Assignment Comparison Training & Evaluation Training & Evaluati
| Analysis Results | | Results | Results |

Figure 1: Workflow Diagram of the Process

Data Preprocessing: Text is normalized by low-
ercasing, removing punctuation, and filtering stop-
words. Tokenization is performed using BERT’s
WordPiece tokenizer.(Rust et al., 2020)

Modeling: Multiple BERT variants (BERT-base,
BERT-large, DeBERTa, and RoBERTa) (Vaswani

et al., 2017) are fine-tuned using different hyper-
parameters—such as learning rates, batch sizes,
and train-test splits—to identify optimal configura-
tions. In parallel, traditional classifiers (e.g., Naive
Bayes, logistic regression and SVM) are trained
on vectorized representations to serve as baseline
comparisons.

Lexical Analysis and Ensembling: A lexi-
cal module assigns sentiment scores based on
an emotional lexicon (Deborah et al., 2018)
and limited grammatical pattern analysis (e.g.,
noun-+verb+adverb+adjective structures). The pre-
dictions from the BERT models, traditional clas-
sifiers, and lexical component are then combined
using a weighted averaging scheme, with emotion-
specific weights to balance their contributions.

5 System Overview

5.1 Transformer-based Models

We leverage transformer-based architectures for
contextual word representations and sentiment clas-
sification. The primary models used include BERT-
Large-Uncased, DeBERTa, and RoBERTa. These
models are pre-trained and fine-tuned.

5.1.1 BERT Model

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a
transformer-based model that learns bidirectional
contextual embeddings. Given an input sequence
X = {x1,x9,...,x,}, BERT processes it using
multi-head self-attention:

H = SelfAttention( X Wg, XWg, XWy ) (1)

where W, Wk, and Wy are the query, key, and
value projection matrices. The final representation
for classification is obtained from the [CLS] token
embedding:

y = softmax(WyHecps + b) 2)

where y represents the predicted class distribu-
tion.
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5.1.2 DeBERTa Model

DeBERTa (Decoding-enhanced BERT with disen-
tangled attention) (He et al., 2021) enhances the
self-attention mechanism by incorporating relative
positional embeddings and disentangled matrix rep-
resentations. The attention mechanism follows:

QT
Vd

where P;; is the relative positional encoding.
The final hidden states are passed to a classifier
for sentiment and emotion prediction.

Aij + P 3)

5.1.3 RoBERTa

RoBERTa(Liu et al., 2019), another state-of-the-art
transformer variant, refines BERT-based embed-
dings using an optimized pre-training objective. It
follows a similar transformer formulation but in-
corporates additional linguistic priors to enhance
text classification performance.

5.2 Lexical Processing: POS Tagging using
Hidden Markov Model

POS tagging plays a crucial role in sentiment
understanding by identifying adjectives and ad-
verbs. We utilize a Hidden Markov Model
(HMM) for POS tagging, considering observed
word sequences {w1, wa, ..., w, } and hidden tag
sequences {t1,t2, ..., tn}.

The probability of a tag sequence given a word
sequence is modeled as:

P(TIW) = [[ P(wilt:) P(tilti1) &)
i1

where P(wj|t;) is the emission probability and
P(t;|t;—1) is the transition probability. The optimal
tag sequence is found using the Viterbi algorithm:

ve(i) = maxuy, , (i=1) P(tilti1) P(wilt:)] (5)
This tagging process enhances sentiment anal-
ysis by identifying sentiment-bearing words. For
POS tagging methodology, we refer to this(Great
Learning Team, 2023).

5.3 Sentiment and Emotion Score
Computation

To determine sentiment scores, we assign polarity
scores to adjectives, adverbs, and other sentiment-

relevant words using SentiWordNet and a pre-
trained emotion corpus. The sentiment score S of
a sentence is calculated as:

S='3 (posw) — neg(w)) - I(w)  (©)

weW

where pos(w) and neg(w) are sentiment scores
from SentiWordNet, and /(w) is an indicator func-
tion based on POS tagging.

For emotion classification, an additional emo-
tion lexicon is used to assign scores to words cor-
responding to the five emotions: anger, fear, joy,
sadness, and surprise. The emotion score E; for
each emotion 7 is computed as:

Ei= > Pi(w)-I(w) (7)
weW
where P;(w) is the probability of word w ex-
pressing emotion ¢ based on the corpus.

6 Accuracy Metrics

Since each emotion category is treated as a binary
classification problem (@ or 1), and the dataset
exhibits class imbalance, we use Macro F1-score
as the primary ranking metric. This ensures that
both the minority and majority classes contribute
equally to the overall performance(Sokolova et al.,
20006).
Additionally, we evaluate the model using:

* Precision: The proportion of correctly pre-
dicted positive instances among all predicted
positives.

* Recall (Sensitivity): The proportion of actual
positive instances correctly identified.

* Specificity: The proportion of actual negative
instances correctly identified.

* Fl-score: The harmonic mean of precision
and recall, balancing both aspects.

The Macro F1-score is computed as:

2 x Precision. x Recall,

1
Macro F1 = 3 Z

ceio1) Precision. + Recall,

(®)
This evaluation approach ensures a balanced as-

sessment of the model’s ability to detect both the
presence and absence of emotions in the data.
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. F1 - Scores (%)
Model Epochs | Rate | Train-Test | Threshold
Anger | Sadness | Joy | Fear | Surprise
3 le-5 0.7-0.3 0.455 55.1 75.8 67.4 | 72.3 64.2
3 2e-5 0.7-0.3 0.555 54.8 75.2 67.1 | 71.9 63.8
L - Uncased
5 le-5 0.7-0.3 0.455 55.3 75.9 67.5 | 72.1 64.5
5 le-5 0.8-0.2 0.555 53.2 73.8 66.2 | 69.7 62.9
3 le-5 0.7-0.3 0.455 57.4 78.5 69.2 | 75.1 66.3
3 2e-5 0.7-0.3 0.555 57.0 78.1 68.9 | 74.7 65.9
DeBERTa
5 le-5 0.7-0.3 0.455 57.2 78.3 69.0 | 74.9 66.1
5 le-5 0.8-0.2 0.555 55.3 76.1 67.8 | 72.5 64.7
3 le-5 0.7-0.3 0.455 59.3 81.4 70.0 | 77.0 67.8
3 2e-5 0.7-0.3 0.555 59.0 81.0 69.7 | 76.8 67.5
RoBERTa
5 le-5 0.7-0.3 0.455 59.2 81.2 69.8 | 76.9 67.6
5 le-5 0.8-0.2 0.555 57.1 78.8 68.2 | 74.2 65.9

Table 3: Performance comparison of BERT-Large Uncased, DeBERTa, and RoBERTa on emotion classification
with threshold variation and different hyperparameters, including Surprise emotion.

7 Results

The models produced continuous scores rather than
direct class labels, requiring thresholds for classifi-
cation. As seen from Table 3, the best-performing
thresholds were 0.455 and 0.555. The 0.455 thresh-
old generally worked better, while 0.5 or more
showed slight improvements only in certain places.
RoBERTa achieved the best accuracy across all
emotions, with its highest performance observed at
3 epochs, a le-5 learning rate, and a 0.455 thresh-
old. DeBERTa followed closely, while BERT-
Large Uncased performed slightly lower. The 70-
30 train-test split yielded better generalization than
80-20, which had minor drops due to fewer test
samples.

Emotion | Log Regr. | Naive Bayes | SVM
Anger 57.8 55.2 60.1
Sadness 65.8 63.4 67.1
Joy 59.5 57.2 60.8
Fear 64.0 60.3 65.5
Surprise 55.3 52.8 56.9

Table 4: Binary classification accuracy (%) of traditional
models on emotion detection

Traditional machine learning models struggled
with emotion classification. Logistic Regression

and Naive Bayes showed lower performance due
to their simplistic assumptions, particularly for Sur-
prise and Anger, where contextual understanding
is crucial. SVM performed slightly better due to its
decision boundary optimization but still fell short
of deep learning approaches. These results em-
phasize the need for transformer-based models in
nuanced sentiment classification tasks.

7.1 Weighted Fusion of BERT Variants and
Lexical Scores

To improve classification accuracy, we combined
predictions from multiple transformer models
along with a normalized lexical score. The final
sentiment score for each emotion is computed as:

Sfinal = w151 + w2Sp2 + w3Sp3 + waSy (9)
where:
* Spj represents ROBERTa,
* Spo represents DeBERTa,
» Spj represents BERT-Large Uncased,
» 57, represents the normalized lexical score.

Since lexical scores have different scales than
transformer-based predictions, they are first normal-
ized before integration to ensure balanced contribu-
tion. The lexical score primarily captures sentiment
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words that transformers might overlook, which is
why it has a fixed weight of 0.10 in all cases.

Table 5 presents the optimized weight distribu-
tion along with the F1-scores achieved on unseen
test data in the Codabench SemEval Task 11 com-
petition( user id vsI366 ).

Emotion | Bl B2 | B3 L | F1(%)
Anger | 0.45 | 0.30 | 0.15 | 0.10 | 71.43
Fear 0.48 | 0.28 | 0.14 | 0.10 | 70.69
Joy 0.40 | 0.35 | 0.15 | 0.10 | 66.67
Sadness | 0.50 | 0.25 | 0.15 | 0.10 | 72.73
Surprise | 0.38 | 0.32 | 0.20 | 0.10 | 64.41
Overall - 69.18

Table 5: Optimized weight distribution and F1-score for
model fusion on unseen test data (Codabench SemEval)

This weighted approach balances the strengths
of deep learning models and lexical methods, lead-
ing to improved emotion classification accuracy on
unseen test data.

7.2 Misclassification Analysis

Despite achieving a macro F1-score of 69.18%, our
ensemble model exhibited specific misclassifica-
tion patterns that reveal the underlying challenges
in multi-label emotion detection:

¢ Emotion Overlap (Fear vs. Sadness): Emo-
tionally ambiguous terms such as “worried”
or “lost” were frequently misclassified due to
overlapping lexical cues. Transformer models,
which depend on attention-based embeddings,
often conflated fear and sadness when senti-
ment intensity was subtle or underspecified,
resulting in false negatives.

Ambiguity in Surprise: The emotion sur-
prise often suffered from contextual underrep-
resentation. Sentences like “I can’t believe it!”
could imply either joy or fear, and without
narrative context, sentence-level models de-
faulted to frequent sentiment mappings, lead-
ing to misclassification. This indicates that
surprise detection requires discourse-level un-
derstanding.

Underperformance on Anger: Traditional
models like Logistic Regression and Naive
Bayes showed weak performance on anger
due to their inability to detect implicit cues
like sarcasm or passive aggression. Even

transformer models required careful thresh-
old tuning to differentiate anger from related
sentiments like frustration. Although lexical
rules identified strong markers (e.g., “furious”,
“enraged”), they failed to capture indirect ex-
pressions, reducing classification accuracy.

These patterns underscore that while lexical
rules strengthen direct sentiment detection, they
are not sufficient for handling context-dependent or
pragmatically subtle emotional cues. Our ensem-
ble approach mitigates some of these issues, but
further improvements may require discourse-aware
modeling or multimodal inputs.

7.3 Comparison with Previous SemEval Tasks

Our system achieved a macro F1-score of 69.18%
on multi-label emotion detection across five cat-
egories using only textual input. In contrast,
SemEval-2019 Task 3 (EmoContext) focused
on three coarse emotions—happy, sad, and an-
gry—and the top-performing BiLSTM-based sys-
tem reached a micro F1-score of 72.59% (Smetanin,
2019). SemEval-2020 Task 8 (Memotion Anal-
ysis) addressed multimodal sentiment in memes,
with best macro F1-scores of 0.35 (sentiment),
0.51 (emotion), and 0.32 (intensity) (Sharma et al.,
2020).

SemEval-2024 Task 3 explored a different chal-
lenge: multimodal emotion-cause pair extraction.
Top systems like NUS-Emo (Luo et al., 2024) and
MIPS (Cheng et al., 2024) reported weighted F1-
scores around 34%, but these reflect a different
task and modality. In this context, our strong
performance on a fine-grained, text-only classifi-
cation task highlights the continued relevance of
transformer-based and lexically-enriched models
in core affective computing problems.

8 Conclusion

Our study demonstrates that even the best
transformer-based models exhibit varying levels
of effectiveness depending on the emotion being
classified. Some emotions, such as joy, are easier
to detect due to explicit lexical indicators, whereas
others, like sadness, are more nuanced and context-
dependent. This explains why different BERT vari-
ants perform differently across emotions—some
capture explicit sentiment cues well, while others
excel at detecting subtler patterns(Yenumulapalli
et al., 2023).
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Additionally, our integration of lexical features
proved valuable in cases where transformers strug-
gled, particularly in scenarios where sentiment
words were strong indicators. Although lexical-
based models alone lack contextual understanding,
their inclusion as a normalized feature significantly
boosted classification performance for certain emo-
tion categories.

Our experiments also emphasized the role of hy-
perparameters in optimizing performance. Weight
balancing across different BERT variants and lexi-
cal scores was crucial in achieving an optimal fu-
sion model. The hyperparameters were fine-tuned
through multiple iterations, ultimately selecting a
distribution that maximized macro-F1 scores.

Finally, the evaluation on unseen test data from
the Codabench SemEval competition validated the
robustness of our approach. The fusion method con-
sistently outperformed individual models, demon-
strating the advantage of leveraging diverse senti-
ment detection techniques.

9 Scope and Limitations

While our approach significantly improves senti-
ment classification, there are certain limitations:

* Lexical Corpus Size: The lexical resource
used for sentiment analysis was relatively
small. Expanding this corpus with domain-
specific words could further improve classifi-
cation accuracy.

Transformer Architecture Constraints: Al-
though transformer models are state-of-the-
art, their reliance on learned embeddings can
still lead to misclassification of nuanced emo-
tions. Exploring hybrid models that incorpo-
rate commonsense reasoning or multimodal
approaches (e.g., audio-visual sentiment anal-
ysis) could enhance results.

Computational Cost: Large transformer-
based models require significant computa-
tional resources for training and inference. Ef-
ficient pruning techniques or knowledge dis-
tillation could help in reducing the model size
while maintaining accuracy.

Despite these limitations, the study highlights
the potential of weighted model fusion in improv-
ing emotion detection across diverse text samples,
and also the incorporation of lexical rules which
often helps increasing the accuracy by providing
contexts.

191

10 Ethical Considerations

Sentiment analysis models can inherit biases from
training data, potentially reinforcing stereotypes.
Regular audits and diverse representation help miti-
gate these risks. Moreover, responsible Al policies
are necessary to prevent misuse in areas like social
media and advertising.(Huang et al., 2023a)
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Abstract

This paper presents the submissions of the
iai_MSU team for SemEval-2025 Task 3 — Mu-
SHROOM, where we achieved first place in
the English language. The task involves de-
tecting hallucinations in model-generated text,
which requires systems to verify claims against
reliable sources. In this paper, we present our
approach to hallucination detection, which em-
ploys a three-stage system. The first stage
uses a retrieval-based method (Lewis et al.,
2021) to verify claims against external knowl-
edge sources. The second stage applies the
Self-Refine Prompting approach (Madaan et al.,
2023) to improve detection accuracy by ana-
lyzing potential errors of the first stage. The
third stage combines predictions from the first
and second stages into an ensemble. Our sys-
tem achieves state-of-the-art performance on
the competition dataset, demonstrating the ef-
fectiveness of combining retrieval-augmented
verification with Self-Refine Prompting. The
code for the solutions is available on GitHub'

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing (NLP), demon-
strating strong capabilities in text generation, sum-
marization, and dialogue systems. However, LLMs
remain prone to hallucinations, where generated
content contains false, misleading, or unverifiable
information. Addressing this issue is crucial for
real-world applications, especially in domains re-
quiring high factual accuracy, such as journalism,
medicine, and law. The ability to detect and miti-
gate hallucinations is essential to improve the relia-
bility and trustworthiness of LLM-generated con-
tent.

SemEval-2025 Task 3 — Mu-SHROOM?(Vizquez
et al., 2025) introduces a multilingual hallucina-
tion detection challenge, requiring participants to

"https://github.com/pansershrek/IAI_MSU
2https://helsinki-nlp.github.io/shroom/

identify specific spans of hallucinated text within
model-generated output. Unlike traditional fact-
checking tasks, Mu-SHROOM provides LLM-
generated text alongside tokenized representations
and logit scores, and participants must compute
a probability score for each character, indicating
its likelihood of being a hallucination. The task
covers 14 languages, including English, Chinese,
Arabic and several European languages, present-
ing unique challenges such as linguistic diversity,
cross-lingual hallucination patterns, and variations
in model behavior. To tackle these challenges on
English language, we propose a three-stage hallu-
cination detection system:

Stage 1: We employ a Retrieval-Augmented
Generation (RAG) pipeline, using Wikipedia as an
external knowledge source to verify input claims.

Stage 2: We employ an Self-Refine Prompting
strategy, where an LLM re-evaluates the first-stage
output to identify potential errors and refine hallu-
cination predictions.

Stage 3: We use an Ensemble strategy that
merges three predictions from the first stage and
three from the second stage to create the final sub-
mission.

2 Related Works

Hallucination detection in large language models
(LLMs) is a critical area of research, focusing on
identifying and mitigating instances where models
generate content that is plausible but factually in-
correct. Various approaches have been proposed to
address this challenge, including methods utilizing
LLMs themselves, retrieval-augmented verification
techniques, and self-refinement prompting strate-
gies.

LLMs can be utilized to detect hallucinations
by analyzing their internal states and output. In
"Unsupervised Real-Time Hallucination Detection
based on the Internal States of Large Language
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Models," (Su et al., 2024) the authors propose
MIND, an unsupervised training framework that
leverages the internal states of LLMs for real-time
hallucination detection without requiring manual
annotations. This approach utilizes the model’s in-
ternal representations during inference to identify
incoherent or factually inaccurate responses. But
we face a more difficult task as soon as we have
only tokens’ logits.

Another study, "Hallucination Detection: Ro-
bustly Discerning Reliable Answers in Large Lan-
guage Models" (Chen et al., 2024) introduces a ro-
bust discriminator named RelD to effectively detect
hallucinations in LLM-generated answers. RelD
is trained on a bilingual question-answering dia-
logue dataset, enabling it to identify unfaithful or
inconsistent content generated by diverse LLMs.

Integrating external knowledge sources into the
generation process can enhance the factual accu-
racy of LLM output. In "Mitigating Hallucinations
in Large Language Models via Self-Refinement-
Enhanced Knowledge Graph Retrieval" (Niu et al.,
2024) the authors propose Re-KGR, a method that
augments the factuality of LLMs’ responses by
leveraging knowledge graph retrieval. This ap-
proach identifies tokens with a high potential for
hallucination and refines the associated knowledge
triples to reduce verification efforts.

Similarly, "Self-Alignment for Factuality:
Mitigating Hallucinations in LLMs via Self-
Alignment" (Zhang et al., 2024) introduces SK-
Tuning, a strategy that improves an LLM’s confi-
dence estimation and calibration, thereby enhanc-
ing its self-evaluation ability. This method aligns
the model’s output with external knowledge to mit-
igate hallucinations.

Self-refinement prompting strategies involve it-
erative processes where LLMs generate, evaluate,
and refine their output to improve factual accuracy.
The "Self-Refine" (Madaan et al., 2023) approach
allows LLMs to iteratively refine output and incor-
porate feedback along multiple dimensions to im-
prove performance on diverse tasks. This method
does not require supervised training data or rein-
forcement learning and works with a single LLM.

Additionally, "Towards Mitigating Hallucination
in Large Language Models via Self-Reflection" (Ji
et al., 2023) proposes an innovative self-reflection
method to mitigate hallucination in LLMs. The
iterative feedback loop process generates, scores,
and refines responses to reduce hallucinations, par-
ticularly in medical question-answering systems.

3 Task solutions

3.1 Dataset and Database for RAG

To enhance the accuracy of hallucination detec-
tion, our system utilizes a RAG pipeline that incor-
porates external knowledge sources. We use the
Wikipedia dataset (Foundation), only an English
subset with 6.41M articles, as our primary factual
reference. We also clean all articles by removing
references and repetitive newline characters.

For efficient retrieval, we employ Qdrant’ as a
vector database, which enables fast and scalable
similarity searches. We use the Multilingual-ES5-
Large (Wang et al., 2024) embedding model to
generate dense vector representations of the text.
To optimize retrieval performance and storage effi-
ciency, we embed only the first 512 characters of
each Wikipedia article. Similarity between queries
and stored embeddings is computed using Cosine
distance and HNSW as a search algorithm.

3.2 Our Solution: Only LLM

In our approach, we evaluate hallucination
detection using standalone LLMs without re-
trieval augmentation only on validation dataset.
Specifically, we experiment with Llama-3.1-8B-
Instruct (Grattafiori et al., 2024) and Qwen2.5-
72B (Yang et al., 2024) using prompt mentioned
in Appendix A.1 and Appendix A.2. These experi-
ments achieve best result of 39.7% IoU and 38.4%
Corr.

3.3 Our Solution: RAG Pipeline

To enhance hallucination detection, we implement
a RAG pipeline, utilizing Qwen2.5-72B as the
LLM and a vector database, as detailed in the
“Dataset and Database for RAG” section. We run
all our experiments on the validation dataset.

3.3.1 Experiment 1: Initial Prompts with
Top-1 Document

We begin by testing prompt mentioned in Ap-
pendix A.3, retrieving only the Top-1 related docu-
ment from the database. This initial setup provides
results of 51% IoU and 53% Corr.

3.3.2 Experiment 2: One-Shot

To enhance the model’s ability to detect hallucina-
tions, we introduce one-shot prompting strategies,
using prompts mentioned in Appendix A.4. These

3https://qdrant. tech/
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modifications should improve performance by pro-
viding clear examples of hallucination detection.
The results on the validation is 52.9% IoU and
52.8% Corr.

3.3.3 Experiment 3: Expanding to Top-5
Documents RAG

Finally, we increase the number of retrieved doc-
uments to Top-5 related documents, allowing the
model to cross-check its output against a broader
knowledge base. We experiment with prompt in
Appendix A.4 by adding 4 more examples for this
setting, leading to further results of 48.1% IoU and
45.6% Corr. Among all tested methods, the One-
Shot Prompting with Top-1 Document Retrieval
delivers the best performance.

3.4 Our Solution: Self-Refine Prompting

To further improve hallucination detection, we ap-
ply a Self-Refine Prompting strategy, where the
model evaluates and refines its own generations.
We use Qwen2.5-72B as the LLM to refine out-
put produced by our RAG pipeline with One-Shot
Prompting and Top-1 Document Retrieval (see
“Our Solution: RAG Pipeline” section). For this
refinement step, we experiment with prompt in Ap-
pendix A.5 and get results 53.9% IoU and 52.1%
Corr. We ran this stage only one time for each
sample.

3.5 Our Solution: Final Submission

For our final submission, we adopt a two-stage
approach leveraging a RAG pipeline followed by
self-refinement. We use GPT-40 as the LLM to
generate and refine hallucination predictions.

3.5.1 Stage 1: RAG-Based Hallucination
Detection

In the first stage, we apply One-Shot Prompting
with Top-1 Document Retrieval from our RAG
pipeline (see “Our Solution: RAG Pipeline” stage).
This stage utilizes prompt from Appendix A.4 to
generate initial hallucination predictions. We also
want to create Reranking stage in RAG pipeline to
handle cases where the retrieved documents from
Wikipedia were ambiguous or conflicting, but we
haven’t enough time.

3.5.2 Stage 2: Self-Refinement

In the second stage, we refine the output from
Stage 1 using the approach from “Our Solution:
Self-Refine Promptingfrom” section with our RAG
pipeline, again using prompt from Appendix A.5.

This refinement step helps correct potential errors
and improves the final hallucination detection.

3.5.3 Stage 3: Ensemble Strategy

To further enhance robustness, we construct an en-
semble model by combining multiple runs of the
system with different temperature settings:

Stage 1 Only: We generate three independent out-
puts using the same prompt and temperatures 0.05,
0.1, 0.2 (we didn’t test different temperatures).

Stage 1 + Stage 2: We generate three additional
outputs using the full two-stage pipeline, with tem-
peratures 0.05, 0.1, 0.2 (we didn’t test different
temperatures).

3.5.4 Ensembling Technique

We receive hard labels from stages 1 and 2 (a list
of indices corresponding to hallucinated spans). To
ensemble multiple outputs, we convert these hard
labels into soft labels, representing hallucination
probabilities for each symbol. For each charac-
ter, its hallucination probability is computed as the
fraction of models that marked it as part of a hallu-
cinated fragment. The final answer is represented
using length-range encoding of these probabilities.
We additionally remove 1-symbol hallucinations
and all punctuation marks from hallucinations.

Example: Given the model-generated sentence:
"Petra van Stoveren won a silver medal in the 2008
Summer Olympics in Beijing, China." Three mod-
els return different hallucination fragments:
Model 1: "silver"
Model 2: "silver medal”
Model 3: "won a silver medal"

The final ensemble prediction assigns probabili-
ties:
"won a" — 0.33
"silver" — 1.00
"medal" — 0.66

For the evaluation system, this output is recorded
as a list of indices corresponding to hallucination
probabilities.

3.5.5 Result

This three-stage pipeline with ensembling signif-
icantly enhances hallucination detection perfor-
mance, balancing retrieval-based verification, self-
refinement, and ensemble robustness to improve
overall quality. Our final approach achieves 65.09%
IoU and 62.94% Corr, demonstrating the effective-
ness of our method in detecting hallucinations in
LLM-generated text.
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4 Conclusion

In this paper, we presented the submissions of the
iai_MSU team for SemEval-2025 Task 3 — Mu-
SHROOM, where we achieved first place in the
English language track. Our approach combines
Retrieval-Augmented Generation (RAG) with Self-
Refine Prompting, demonstrating the effectiveness
of integrating external knowledge verification with
iterative model refinement. We introduced a three-
stage pipeline where the first stage uses a RAG-
based method to verify claims, followed by the
second stage where Self-Refine Prompting refines
hallucination detection output for improved accu-
racy. Additionally, the use of ensemble techniques
further enhanced robustness by aggregating out-
put from multiple runs and varying temperature
settings.

Our final submission achieves 65.09% IoU
and 62.94% Corr, confirming the strength of our
methodology in detecting hallucinations and im-
proving the factual accuracy of model-generated
text.
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A Appendix

This appendix shows the training and generation
parameters for the models described above in the
text.

A.1 First Zero-shot prompt without RAG

You are a fact - checking assistant.Your task is
to identify fragments of the response that are
hallucinations—parts of the text that are factually in-
correct or made up by model.Pay attention to facts,
dates, numbers, places. Detect only hallucination
words, without neighbour words. Give me only
a list of fragments - hallucinations you found in
model output. Write answer in JSON with the next
structure:

{ “hallucinations™: ["h1”, ’h2”] },

where h1 and h2 are hallucination fragments from
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model output.
Model output:

A.2  Second Zero-shot prompt without RAG

You are assistant for analysing model hallucina-
tions. Your task is to extract fragments from model
output, containing factually incorrect answers. You
need to extract factually incorrect or inconsistent
with input fragments from model output. Write
answer in JSON with the next structure:

{ “hallucinations™: ["h1”, ”h2”] },

where hl and h2 are hallucination fragments from
model output. Write in answer only JSON structure
without other comments.

Model output:

A.3 Zero-shot prompt with RAG

You are a fact-checking assistant for analysing
model hallucinations. Your task is to identify frag-
ments in model output that are hallucinations - parts
of the text that are factually incorrect or made up
by model or inconsistent with model input. You
get a user query in model input and hallucinated
answer in model output. You also get a reliable
relevant document from Wikipedia, pay attention
to it while checking facts in hallucinated model
output. Detect only hallucination words, without
neighbour common, linking words. Write answer
in JSON with the next structure:

{ ’hallucinations’: [’h1’, ’h2’]},

where h1 and h2 are hallucinations from model out-
put. Write your answer exactly in JSON structure
without other symbols.

Relevant document: {doc 1}

Model input: {model input}

model output: {model output text}

Your answer:

A.4 One-shot prompt with RAG

You are a fact-checking assistant for analysing
model hallucinations. Your task is to identify frag-
ments in model output that are hallucinations - parts
of the text that are factually incorrect or made up
by model or inconsistent with model input. You
get a user query in model input and hallucinated
answer in model output. You also get a reliable rel-
evant document from Wikipedia, pay attention to
this document while checking facts in hallucinated
model output. Detect only hallucination fragments,
without neighbour common, linking words. Write
answer in JSON with the next structure:
{’hallucinations’: [’h1’, ’h2’]},

where hl and h2 are hallucination fragments from
model output. Write in answer only JSON struc-
ture without other comments. Here is an example
of correct dialogue:

Relevant document example:

Model input example: {model input}

model output example: {model output text}

Your answer example:

{’hallucinations’: [...]}

Input:

Relevant document: {doc 1}

Model input: {model input}

model output: {model output text}

Your answer:

A.5 Self-refine prompt

You are an assistant to check the correctness of
detected hallucinations - hallucinations that were
detected in model output, model output was gen-
erated by model input (question, given by user).
Hallucinations are parts of the model input that are
factually incorrect or made up by model or incon-
sistent with model input. detected hallucinations
were detected by other model by given model input,
model output and reliable relevant document from
Wikipedia. You get the model input, model output,
relevant document (pay attention to it while fact
checking) and detected hallucinations (a Python
list of strings that are hallucinations from model
output). Your task is to fix errors in detected hal-
lucinations, improve it by adding all missed hal-
lucinations and removing all detections that are
not hallucinations. Detect only hallucination frag-
ments, without neighbour common, linking words.
Write the answer in the same JSON format. Write
in answer only JSON structure without any other
comments. Here is an example of correct dialogue:
Relevant document Nel example :

Model input example: {model input}

model output example: {model output text}
Detected hallucinations: {detected hallucinations }
Your answer example:

{’hallucinations’: [...]}

Input:

Relevant document Ne1: {doc 1}

Relevant document Ne5: {doc 5}

Model input: {model input}

model output: {model output text}

Detected hallucinations: {detected hallucinations }
Your answer:
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Abstract

Multilingual emotion detection is a critical
challenge in natural language processing, en-
abling applications in sentiment analysis, men-
tal health monitoring, and user engagement.
However, existing models struggle with over-
lapping emotions, intensity quantification, and
cross-lingual adaptation, particularly in low-
resource languages. This study addresses these
challenges as part of SemEval-2025 Task 11
by leveraging language-specific transformer
models for multi-label classification (Track
A), intensity prediction (Track B), and cross-
lingual generalization (Track C). Our mod-
els achieved strong performance in Russian
(Track A: 0.848 F1, Track B: 0.8594 F1) due to
emotion-rich pretraining, while Chinese (0.483
F1) and Spanish (0.6848 F1) struggled with
intensity estimation. Track C faced signifi-
cant cross-lingual adaptation issues, with Rus-
sian (0.3102 F1), Chinese (0.2992 F1), and
Indian (0.2613 F1) highlighting challenges in
low-resource settings. Despite these limita-
tions, our findings provide valuable insights
into multilingual emotion detection. Future
work should enhance cross-lingual representa-
tions, address data scarcity, and integrate mul-
timodal information for improved generaliza-
tion and real-world applicability. Our full ex-
perimental codebase is publicly available at:
ciol-researchlab/ Semkval-2025- CIOL-
Multilingual Pre-trained Model Fusion
for Text-based Emotion Recognition.

1 Introduction

Text-based emotion detection is pivotal for Al sys-
tems analyzing digital communication, enabling
applications like mental health monitoring and cus-
tomer feedback analysis (Kusal et al., 2022). The
significance of SemEval-2025 Task 11 (Muham-
mad et al., 2025b) lies in addressing critical gaps
in existing systems: overlapping emotions, in-
tensity quantification, and cross-lingual adapta-
tion—Ilimitations that hinder real-world deploy-

ment (Alvarez-Gonzalez et al., 2021). Motivated by
the prevalence of multi-emotion expressions (68%
of social media posts, (Zhang et al., 2020) and
the scarcity of robust solutions for low-resource
languages, this study aims to develop a unified mul-
tilingual framework for multi-label classification,
intensity prediction, and cross-lingual emotion de-
tection.

Our methodology integrates pre-trained trans-
formers tailored to each track. For multi-label
classification (Track A), language-specific mod-
els like DistilRoBERTa (English) and ruBERT
(Russian) leverage attention mechanisms to model
emotion co-occurrence(Hartmann, 2022). Track
B combines affective lexicons with neural net-
works for intensity prediction, extending hybrid
symbolic-neural frameworks (Koper et al., 2017),
while Track C employs multilingual BERT and syn-
thetic data to bridge low-resource language gaps
(Kadiyala, 2024).

Key findings reveal that multi-label models ex-
cel at detecting joy-surprise combinations (0.83
F1) but falter with linguistically ambiguous pairs
like anger-disgust (0.61 F1)(Chen et al., 2024). In-
tensity prediction models show robustness to sar-
casm (0.68 human correlation) but require cultural
calibration to address expression norms (Schiefer
et al., 2020). Cross-lingual training improves
low-resource language performance by 19-28%
but reduces English accuracy by 7%, highlight-
ing a trade-off between generalization and speci-
ficity (Conneau et al., 2020). Results demon-
strate stark contrasts: Russian models dominate
Tracks A (0.848 F1) and B (0.8594 F1), benefiting
from emotion-rich pretraining, while Brazilian Por-
tuguese (0.2773 F1) and Chinese (0.483 F1) lag
due to data scarcity and morphological complexity.
Cross-lingual tasks (Track C: 0.26-0.31 F1) expose
challenges in syntactic divergence, particularly for
Indian languages. Implementation struggles in-
clude 38% higher data demands for multi-label
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models, annotation inconsistencies (Krippendorff’s
a: 0.54-0.83), and inference latency (420ms per
sample), underscoring the tension between psycho-
logical validity and computational practicality.

2 Related Works

SemkEval 2025 Task 11 (Muhammad et al., 2025b)
introduces text-based emotion detection through
three distinct tracks: multi-label classification
(Track A), intensity prediction (Track B), and cross-
lingual transfer (Track C). Track A builds on earlier
efforts, such as SemEval-2018 Task 1 (Van Hee
et al., 2018) and SemEval-2020 Task 3 (Armen-
dariz et al., 2020), which concentrated on emo-
tion intensity and multi-label classification, respec-
tively. Recent surveys highlight the growing de-
mand for multilingual emotion detection, particu-
larly for under-resourced languages (Zeng et al.,
2023). Task A addresses this by requiring systems
to handle English, Brazilian Portuguese, and Rus-
sian, bridging gaps in prior work that centered on
English (Ohman et al., 2018).

Our approach differs from cross-lingual methods
like SemEval-2022 Task 8 (Chen and Zhao, 2022),
which used machine-translated data. Instead, we
fine-tune language-specific transformers on native
datasets, aligning with findings that they outper-
form translation-based models in low-resource set-
tings (Peng et al., 2022). Public datasets like
SemEval-2022 Task 8 (Chen and Zhao, 2022) and

GoEmotions (Garg and Ramakrishnan, 2020) sup-
port our preprocessing. Unlike lexicon-based stud-
ies, we integrate pretrained emotion priors from
task-specific transformers, leveraging embedding-
driven label coherence (Sun et al., 2023). Our
unified framework combines a language-agnostic
pipeline with tailored backbones, balancing scal-
ability and linguistic specificity over monolithic
multilingual models (Conneau et al., 2020).

3 System Overview

SemEval 2025 Task 11 advances text-based emo-
tion detection through three tracks (Muhammad
et al., 2025b). Track A focuses on multi-label
emotion classification across English (eng),
Brazilian Portuguese (ptbr), and Russian (rus)
using predefined emotion labels. Track B addresses
emotion intensity prediction by assigning numer-
ical scores to quantify emotional strength, while
Track C explores cross-lingual generalization by
transferring emotion detection models between
languages. Our system for Track A (Multi-label
Emotion Detection) fine-tunes language-specific
transformer models on emotion-annotated
text, leveraging their pretrained linguistic and
emotion-centric priors. For English, we use
J-hartmann/emotion-english-distilroberta-base

(Hartmann, 2022), optimized for emotion analysis.
Brazilian Portuguese employs Hate-speech-
CNERG/dehatebert-mono-portuguese (Aluru et al.,
2020), which encodes hate speech and emotion
cues, while Russian utilizes MaxKazak/ruBert-
base-russian-emotion-detection (MaxKazak),
trained on Russian social media data. Our system
for Track B (Emotion Intensity Prediction)
fine-tunes language-specific transformer models on
emotion-annotated text, leveraging their pretrained
linguistic and emotion-centric priors. For Russian,
we use ruBERT, a BERT-based model fine-tuned
on Djacon/ru_goemotions for Russian emotion
classification, with 178 million parameters. For
Chinese, we employ two models: jjlmsy/bert-base-
chinese-finetuned-emotion (EmoBERT-CN) and
Johnson8187/Chinese-Emotion-Small (MiniEmo-
CN) (Laurer et al., 2024). For Spanish, our
architecture combines daveni/twitter-xlm-roberta-
emotion-es (XLM-Twitter-EmoEs) (Vera et al.,
2021) with finiteautomata/beto-emotion-analysis
(BETO-Emotion) (del Arco et al., 2020), a
BETO-based model fine-tuned on the TASS 2020
Task 2 corpus for multi-class emotion detection.
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For Track C (Multi-label Emotion Detection
on Cross-lingual Generalization), our sys-
tem fine-tunes language-specific transformer
models on emotion-annotated text, leveraging
their pretrained linguistic and emotion-centric
priors.  For Russian, we use panagath/bert-
base-multilingual-cased-finetuned-emotion
(EmotionBERT-mBilingual-Finetuned) (Devlin
et al., 2018), a model optimized for emotion
analysis. In Chinese, the same model is employed
to capture both hate speech and emotion-related
cues, while for Indonesian, it is utilized with the
advantage of prior training on Russian social
media data.

Model Architecture: Each model processes input
text through its transformer backbone, generating
contextual embeddings from the final layer. These
embeddings pass through a two-layer MLP (786 —
512 units) with ReLLU activation and dropout (0.3).
For multi-label classification, we compute indepen-
dent probabilities for each emotion, p; = o(2;),
where z; is the logit for emotion ¢ and o denotes
the sigmoid function. Predictions are thresholded
at 0.5, treating each emotion as a binary task.
Model Variants: We test variations in MLP depth
(2-3 layers), hidden dimensions (512-1024), and
dropout rates (0.2—-0.5). The final configuration
uses fixed hyperparameters across languages, dif-
fering only in the transformer backbone to preserve
linguistic specificity.

4 Experimental Setup

Data Splits: For Track A (English, Brazilian
Portuguese, Russian), Track B (Russian, Chinese,
Spanish) and Track C (Russian, Chinese, Indian),
predefined train, dev, and test splits are used for
each language dataset. The dev set validates
hyperparameter tuning (e.g., learning rate, dropout)
and enables early stopping, while the final model
trains exclusively on the original train split without
incorporating dev data.(Muhammad et al., 2025a)

Preprocessing & Training: We tokenize
texts using language-specific pretrained tokenizers
(distilroberta-base, dehatebert-mono-portuguese,
ruBert-base-russian) with fixed sequence lengths
(128 for Track A; 512 for Russian, 256 for Chi-
nese/Spanish in Track B, 128 for Track C), re-
placing non-string entries with empty strings in
Track B. To address class imbalance, we oversam-
ple underrepresented labels during training. For

Track A, we train models using BCEWithLogit-
sLoss, the Adam optimizer (Ir 1e-4), a batch size
of 16, and a two-layer MLP (786—512 units) with
0.3 dropout over 50 epochs. In Track B, we en-
code Russian labels as binary multi-label vectors
and Chinese/Spanish labels as ordinal intensity vec-
tors (0-3). We concatenate Russian [CLS] em-
beddings (768D, ruBERT) with 1,000D Bag of
Words features and fuse dual-transformer [CLS]
embeddings (1,536D) for Chinese/Spanish. For
Russian and Chinese, we implement two-layer
MLPs (1,024—786 units, ReLU, dropout 0.3/0.5),
while for Spanish, we design a three-layer MLP
(786—512 units, dropout 0.4) to output 24 logits
(6 emotions x 4 intensities). We train all Track B
models using a custom MultiLabelMultiClassLoss
(per-label CrossEntropy), Adam (Ir 1e-4, weight
decay le-5), 50-150 epochs, and batch sizes of 16
(Russian/Spanish) or 32 (Chinese), selecting the
best model via macro-averaged F1 scores and train-
ing exclusively on original splits. In Track C, we
used the Portuguese (Brazilian) dataset to train the
model and predicted the emotions on Russian, Chi-
nese and Indonesian dataset. For the best results,
we used seed 42, max length of 128, batch size of
8, Epoch 5 and hidden dimensions [1024,768] with
a learning rate of 0.001 and a dropout of 0.3.
Tools & Libraries: We utilize Hugging Face Trans-
formers to manage tokenization and load pretrained
models for each track and language, while imple-
menting the core model architecture in PyTorch. To
evaluate performance, we compute macro-averaged
F1 scores and accuracy using scikit-learn. All ex-
periments are conducted on NVIDIA T4 GPUs,
with reproducibility ensured through deterministic
seeds (42). We maintain consistent hyperparame-
ters across languages, varying only the transformer
backbone model to isolate its impact on results.

5 Results

5.1 Training and Validation Results

Track A As detailed in Table 1 the Russian model
achieved a validation macro F1 of 0.8635 (train-
ing loss: 0.1165, 10 epochs), with optimal perfor-
mance at epoch 8, while English and Portuguese
models reached F1 scores of 0.6577 (training
loss: 0.0070, 50 epochs) and 0.3058 (training
loss: 0.0056, 50 epochs), respectively. Portuguese
exhibited severe overfitting (training F1=0.9976
vs. validation) despite 8.8x oversampling. Label-
wise performance varied across languages, with
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Table 1: Hyperparameter Settings and Macro F1 Scores Across Tracks

Track L Model Batch Size Hidden Dim LR  Dropout Train Acc Train F1 Val Acc ValF1
Track ATrack ATrack Apt< -Track Apt> ENG DistilRoBERTa 16 [786,512]  0.0001 0.3 0.9974 0.9973 0.7948  0.6577
PTBR DeHateBERT 16 [1024,786]  0.0001 0.2 0.9983 0.9976 0.8200  0.3058
RUS ruBERT 32 [786,512]  0.0001 0.3 0.9556 0.8438 0.9581  0.8635
Track BTrack BTrack Bpt< -Track Bpt>  ESP XLM-Twitter-EmoEs, BETO-Emotion 16 [786, 512] 0.0001 0.4 0.9577 0.7979 0.8587 0.4976
CHN EmoBERT-CN, MiniEmo-CN 32 [1024,786]  0.0001 0.5 0.9870 0.9411 0.8633  0.5069
RUS ruBert 16 [1024,786]  0.0001 0.3 0.9974 0.9837  0.9310 0.6022
Track CTrack CTrack Cpt< -Track Cpt>  RUS EmotionBERT-mBilingual-Finetuned 8 [1024,768]  0.001 0.3 0.7771 0.7720  0.5474  0.3916
CHN EmotionBERT-mBilingual-Finetuned 8 [1024,768] 0.001 0.3 0.8758 0.8743 0.5921  0.4097
IND EmotionBERT-mBilingual-Finetuned 8 [1024,768] 0.001 0.3 0.9890 0.9890 0.6351  0.4115

Table 2: Averaged F1 Scores (Test Set) with Official Ranking Comparison

Track Language Test F1 Score L Maximum L Mini L Mean L Medi Rank (Intreim)
Track ATrack ATrack Apt< -Track Apt> ENG 0.6212 0.823 0.3723 0.682 0.7081 71

PTBR 0.2773 0.6833 0.2747 0.499 0.525 36

RUS 0.848 0.9087 0.1375 0.77 0.8424 19
Track BTrack BTrack Bpt< -Track Bpt> CHN 0.483 0.7224 0.0336 0.531 0.5657 17

ESP 0.6848 0.808 0.3916 0.686 0.7145 17

RUS 0.8594 0.9254 0.0178 0.785 0.8451 11
Track CTrack CTrack Cpt< -Track Cpt> RUS 0.3102 0.9062 0.1312 0.583 0.6703 13

CHN 0.2992 0.6889 0.0642 0.454 0.5434 10

IND 0.2613 0.6724 0.2613 0.463 0.4976 15

Portuguese disgust (F1=0.24), Russian surprise
(F1=0.86), and English joy (F1=0.72) as highlights.
Multi-label co-activation rates spanned 34% (Por-
tuguese), 21% (Russian), and 12% (English), with
embedding cluster separation differing by language
(Portuguese: lowest, Russian: highest). Thresh-
old sensitivity (0=0.21 Portuguese, 0=0.16 Rus-
sian, 0=0.14 English) underscored the need for
language-specific calibration in multi-label frame-
works. !

In Track B the Chinese model achieved a valida-
tion macro F1 of 0.5069 (training loss: 0.0360,
50 epochs) with optimal performance at epoch 33,
while the Russian and Spanish models reached
peak F1 scores of 0.6022 (100 epochs) at epoch 87
and 0.5249 (150 epochs) at epoch 89, respectively.
The Chinese model exhibited fluctuating valida-
tion loss (0.53—0.69) alongside a steady decrease
in training loss (0.06 to 0.03), whereas the Russian
model showed consistent gains from an initial F1
of 0.46 to 0.60, albeit with some late-stage vari-
ability. In contrast, the Spanish model recorded
only modest improvements before a 7% decline
post-epoch 89. Optimal checkpoints occurred mid-
training for Chinese (epoch 33/50) and late-stage
for Russian (epoch 87/100), suggesting language-
specific convergence patterns, while Spanish re-
quired early stopping (epoch 89/150) to secure
peak performance. Threshold sensitivity (0=0.19
Chinese, 0=0.16 Russian, 0=0.14 Spanish) under-
scored the need for language-specific calibration in
multi-label framework

In Track C, the dataset was trained on Portugese
(Brazilian) dataset and the Russian model achieved
a validation macro F1 of 0.3916 (training loss:
0.4035, 5 epochs), with optimal performance at

'Scores verified against official rankings

epoch 3, while Chinese and Indonesian models
reached F1 scores of 0.4097 (training loss: 0.3321,
5 epochs) and 0.4115 (training loss: 0.3811, 5
epochs), respectively.

5.2 Test Results

Our system achieved competitive results across dif-
ferent SemEval 2025 Task 11 tracks, as demon-
strated in Table 2. In Track A, the Russian model
(RUS) led with an F1 score of 0.848 (rank: 23rd),
surpassing the competition median (0.8424), while
English (ENG: 0.6212) and Brazilian Portuguese
(PTBR: 0.2773) trailed, with PTBR’s lower perfor-
mance attributed to limited training data. Track B
saw Russian again excel (0.8594 F1, rank: 14th),
outperforming Spanish (ESP: 0.6848) and Chi-
nese (CHN: 0.483), where morphological complex-
ity hindered intensity prediction. Track C results
were modest, with Russian (RUS: 0.3102), Chinese
(CHN: 0.2992), and Indian (IND: 0.2613) reflect-
ing cross-lingual transfer challenges, particularly
for syntactically divergent languages like IND.

Russian models dominated Tracks A/B due to
emotion-rich pretraining, while PTBR and CHN
struggled with data scarcity (max scores: 0.6833,
0.7224). Cross-lingual tasks (Track C) under-
performed, emphasizing alignment gaps in low-
resource settings. Our submissions ranked within
the top 25% for Russian tasks but faced limi-
tations in cross-lingual generalization and low-
resource languages, aligning with broader competi-
tion trends.

5.3 Error Analysis

To gain deeper insights into the performance of our
proposed model, we conducted a comprehensive
error analysis, incorporating both quantitative and
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qualitative evaluations.

Quantitative Analysis. Quantitative analysis of
Track A confusion matrices reveals language-
specific trends. For Russian, "disgust" achieved
strong accuracy (171 correct), but "anger" was fre-
quently misclassified as "sadness" (140 instances).
In Portuguese, "disgust" performed well (103 cor-
rect), while "anger" confused with "joy" (36) and
"sadness" (32). English showed moderate "anger"
classification (91 correct) but severe misclassifi-
cations into "sadness" (76 total), with unstable
"fear" predictions. These patterns highlight cross-
linguistic challenges, particularly in distinguishing
"anger" from adjacent emotions like "sadness" (En-
glish/Portuguese) and "joy" (Portuguese). Based on
the confusion matrices for Track B across Russian,
Chinese, and Spanish, we conducted a quantitative
analysis of model performance. In Russian, the
model exhibited strong classification accuracy, par-
ticularly for "disgust" (311 correct predictions) and
"fear" (298 correct predictions), with minimal mis-
classifications. For Chinese, "joy" was well recog-
nized with 288 correct classifications, but "sadness"
showed some confusion with 16 misclassifications.
In Spanish, the model performed well in detecting
"anger" (138 correct classifications), though "dis-
gust" and "sadness" had notable misclassifications
(32 and 17, respectively).

Qualitative Analysis. For Track A, we analyzed
correct and misclassified predictions, as demon-
strated in Table 3. In English, the model detected
explicit joy (e.g., "can’t wait to be in another wed-
ding!") but failed with sarcasm (e.g., "Older sister...
Scumbag Stacy" — joy vs. anger) and multi-label
contexts (e.g., missing surprise in "brown shitty di-
arrhea water..."). For Portuguese, direct anger (po-
litical critiques) and joy were accurate, but anger
vs. surprise confusion ("sei nem qual € mais feio")
and sarcasm errors persisted. In Russian, overt
disgust/fear succeeded, while nuanced anger (e.g.,
sarcastic complaints) was misclassified as sadness.
These issues highlight challenges in sarcasm, multi-
emotion contexts, and cultural nuance.

For the qualitative analysis, we examined correct
and incorrect predictions in Track B, as illustrated
in Table 4. It highlights the model’s strengths and
weaknesses across languages. In Russian and Chi-
nese, it correctly identified neutral and philosophi-
cal texts but misclassified emotional nuances, such
as anger as joy. In Spanish, it accurately detected
explicit negativity but struggled with mixed sen-
timents, misattributing sadness and anger as joy.

These errors suggest challenges in handling contex-
tual and implicit sentiment variations.

6 Conclusion

This study explored multilingual, multilabel emo-
tion detection and intensity prediction in SemEval-
2025 Task 11 using language-specific transformers.
Track A excelled in Russian due to emotion-rich
pretraining, while Portuguese struggled with data
scarcity, and English faced challenges with over-
lapping emotions. Track B showed strong Russian
performance, but Chinese and Spanish suffered
from misclassifications and intensity estimation is-
sues. Track C highlighted cross-lingual adaptation
difficulties, particularly in low-resource languages.
Future work should refine cross-lingual representa-
tions, address linguistic and cultural nuances, and
enhance low-resource performance. Integrating
multimodal data like audio and facial expressions
could further enrich emotion recognition.

Ethical Considerations

Our study recognizes ethical concerns in emotion
detection, including bias propagation, cultural mis-
interpretation, and privacy risks. Cross-lingual
models may amplify dominant linguistic patterns,
disadvantaging low-resource dialects. Misclassifi-
cation, particularly in mental health, could lead to
harmful decisions. Additionally, emotion Al risks
misuse in surveillance or manipulation. We stress
the need for transparency, culturally aware calibra-
tion, and responsible Al governance. Adhering to
ACL guidelines, we ensured compliance with data
privacy and informed consent protocols.

Limitations

Despite strong performance, challenges remain: in
Track A, distinguishing overlapping emotions in
English and Portuguese was hindered by limited
data; in Track B, intensity estimation in Chinese
and Spanish was inconsistent; and in Track C, low-
resource languages struggled with cross-lingual
adaptation. Additionally, bias from pretrained mod-
els and high ensemble costs raise fairness and scal-
ability concerns.
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Table 3: Some Correct and Incorrect Prediction Example for Track A

Language Sample Text Predicted Actual
Mep3ko, Korga B cioBax Ye/ioBeKa - BbICOKMe [010000] | [0O10000]
) yb6exxaeHuna, a B AeNCTBUAX - HA3KME NOCTYMNKMN
Russian
Yy HUX Kakue To paboTsl, yyyyyyyyyyod(((( oueHb 3nas, [000010] | [100010]
HaZerCb, YTO 3aBTpa peLuar Bce
| have a floor shift in the morning, hopefully without my [01000] [01000]
nose being stuffy.
English
It overflowed and brown shitty diarrhea water came [11010] [1T1011]
flooding under the stall wall into my wife's stall
pedro eh perfeito msm [000100] | [0O00100]
Portuguese oo nem qual é mais feio 2222222 [100001] | [000001]
Table 4: Some Correct and Incorrect Prediction Example for Track B
Language Sample Text Predicted Actual
MoMHUTe, MHOTAa, TULLIMHA — CaMblii Ny4LLMNA OTBET Ha [000000] | [OO0O0O0O0]
Russian | BOMPOCHI-
6naTb KOHTaKT 6ecut [200000] | [100000]
ANEWME—I7EE8  HE2ED  REXNE - AEWNE— [000100] | [000100]
China /I\/El%l%, %‘Biﬁ’%j] ’ KIQET@
"MK E, SETE REXEAK.T [000200] | [000100]
BTSesunamierda@ [020000] | [020000]
Spain La cuarentena me deja con tareas dificiles [002000] | [020010]
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Abstract

This paper presents a zero-shot system for fact-
checked claim retrieval. We employed several
state-of-the-art large language models to obtain
text embeddings. The models were then com-
bined to obtain the best possible result. Our
approach achieved 7th place in monolingual
and 9th in cross-lingual subtasks. We used only
English translations as an input to the text em-
bedding models since multilingual models did
not achieve satisfactory results. We identified
the most relevant claims for each post by lever-
aging the embeddings and measuring cosine
similarity. Overall, the best results were ob-
tained by the NVIDIA NV-Embed-v2 model.
For some languages, we benefited from model
combinations (NV-Embed & GPT or Mistral).

1 Introduction

The SemEval-2025 shared task 7, Multilingual and
Cross-lingual Fact-Checked Claim Retrieval (Peng
et al., 2025), focuses on efficiently identifying fact-
checked claims across multiple languages. This
challenge is particularly important in the fight
against global misinformation (Khraisat et al.,
2025; Abdali et al., 2024), as manual verifica-
tion of claims in different languages is both time-
consuming and impractical. The task aims to sup-
port fact-checkers by developing systems that re-
trieve relevant, previously fact-checked claims for
social media posts, addressing the complexities
of a multilingual and cross-lingual context. The
task utilizes an enhanced version of the MultiClaim
dataset (Pikuliak et al., 2023), specifically tailored
to meet these multilingual needs.

Our system uses a zero-shot approach based on
pre-trained Text Embedding Models (TEMs). We
selected three TEMs according to preliminary ex-
periments and used their combination to further im-
prove the results and make the system more robust.
All models and combinations were evaluated on

the development data. The final approach employs
the best model or combination for each language.

We use all available text (incl. OCR) as input to
have a maximal context. In some cases, though, we
encountered model limits regarding maximum in-
put size. The input was truncated to fit the model’s
tokenizer in such a case.

Based on preliminary experiments where mul-
tilingual models used with original texts achieved
worse results, we use only English translations in
the final approach.

Our contributions are as follows: 1) We compare
several embedding models and show that simple
zero-shot embeddings are effective for the task. 2)
We demonstrate that larger models consistently out-
perform smaller ones. 3) We propose combining
different models for different languages, which im-
proves overall performance.

The following section highlights the most essen-
tial facts about the task and related work focuses on
TEMs. Then, we present our approach, experimen-
tal setup, and results, including the error analysis.
The final section concludes the paper.

2 Background

The basis for this SemEval-2025 task was presented
in the paper Multilingual Previously Fact-Checked
Claim Retrieval (Pikuliak et al., 2023). The moti-
vation for this task is to reliably identify previously
fact-checked claims for various social media posts
across multiple languages. Furthermore, this task
addresses the challenge of both multilingual and
cross-lingual settings, providing valuable support
to fact-checkers and researchers in combating the
global spread of misinformation.

The dataset for evaluation has been derived
from the existing MultiClaim dataset (Pikuliak
et al., 2023) with some specific modifications. The
dataset contains tens of thousands of multilingual
social media posts, matched with over 200,000 fact-
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checks across nearly 40 different languages.

In addition to the text of the posts, OCR output
is also available (when a post includes an image),
including language identification (if the image con-
tains multilingual texts). Moreover, there are En-
glish translations for all texts and also a verdict
that shows a label of the post (e.g. false or partly
false information, altered photo, etc.) and a list of
timestamps.

2.1 Related Work

The proposed approach builds on the work of
Pikuliak et al. (2023) and employs various TEMs.
TEMs have become a cornerstone in natural lan-
guage processing (NLP), with various approaches
being developed to enhance their effectiveness and
efficiency. One prominent method is the use of con-
trastive learning, which has been shown to improve
the performance of text embeddings significantly.
For instance, the General Text Embeddings (GTE)
model employs multi-stage contrastive learning
to unify various NLP tasks into a single format,
achieving substantial performance gains over exist-
ing models by leveraging diverse datasets (Li et al.,
2023).

Siamese networks have also played a crucial
role in the development of text embedding models.
These networks are designed to learn semantically
meaningful embeddings by comparing pairs of in-
puts. For example, the Sentence-BERT (SBERT)
model utilizes a Siamese network structure to de-
rive sentence embeddings that can be efficiently
compared using cosine similarity, drastically re-
ducing computational overhead while maintaining
high accuracy (Reimers and Gurevych, 2019).

Additionally, the Pseudo-Siamese network Mu-
tual Learning (PSML) framework addresses the
overfitting issues in contrastive learning by employ-
ing mutual learning between two encoders, thus en-
hancing the stability and generalization of sentence
embeddings (Xie et al., 2022).

Triplet loss is another technique that has been
effectively integrated into text embedding models
to improve their discriminative power. In the con-
text of intention detection, a Siamese neural net-
work with triplet loss is used to construct robust
utterance feature embeddings, which are crucial for
accurately identifying user intentions in dialogue
systems (Ren and Xue, 2020). This approach lever-
ages metric learning to map sequence utterances
into a compact Euclidean space, facilitating the
distinction between similar and dissimilar inputs.

In summary, the development of text embedding
models has been significantly advanced by integrat-
ing contrastive learning, Siamese networks, and
triplet loss. These approaches have not only im-
proved the performance of text embeddings across
various NLP tasks but also enhanced their effi-
ciency and applicability in real-world scenarios.

3 The Proposed Approach

The system operates in a zero-shot setting, leverag-
ing multiple TEMs to obtain sentence represen-
tations. Specifically, we employ NVIDIA NV-
Embed-v2 (NV-Embed) (Lee et al., 2025), base
multilingual GTE (mGTE) (Zhang et al., 2024),
large English GTE (Zhang et al., 2024), GPT
text-embedding-3-large (OpenAl, 2025), and Mis-
tral mistral-embed (AI, 2025). These models are
based on the Transformer architecture (Vaswani
et al., 2017), which processes an input sentence
s = {x;}", of n tokens and produces vectors
h = {h;}! ,, where h; is a hidden feature repre-
sentation for a corresponding token x;.

Several techniques exist to obtain a vector rep-
resentation of a full sentence. The GTE models
prepend a special [CLS] token at the beginning
of the sequence, which serves as a global repre-
sentation of the sentence. NV-Embed utilizes a
latent attention layer to generate the final sentence-
level vector. Another common approach is a mean
pooling, which averages the token-level vectors to
produce a single representation.

The NV-Embed model requires a prompt to be
prefixed to input queries (in our case, posts). We
use the following prompt: “Given a post, retrieve
claims that verify the post”.

For each input post, we concatenate the original
text with an OCR-extracted text. We use English
translations for all models except for mGTE, where
we use texts in their original language. We feed
the concatenated text into the models without addi-
tional preprocessing.

Similarly, we feed the fact-checks into a TEM
concatenating the title and the claim. As a re-
sult, we obtain a vector Tpost € R¥ and a matrix
Xeiaims With a shape n X E, where n is the num-
ber of candidate fact-checks (claims) and F is the
embedding dimension based on the utilized TEM.
The goal is to find the 10 closest rows (vectors) in
the matrix based on the cosine similarity.
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We select the most effective model or model com-
bination for each language based on development
data results and deploy it in the final system. When
combining two models, we select the five most sim-
ilar claims for each TEM and put them together. If
the resulting set contains duplicities, we remove
them and add claims from positions six and further
to build the final set of ten retrieved claims. In the
case of three models, we select only three most
similar claims from each model. Again, we remove
the possible duplicities and add claims at lower po-
sitions to get the ten required claims. The addition
of claims is done by picking one claim from the
best model, then one from the second best, etc.

For the cross-lingual scenario, only the NV-
embed model was used, as the combinations did
not lead to improvement.

The models or model combinations used for in-
dividual languages are summarized in Table 1.

Model Selection and Combination

Language Model/Combination
ara GPT & NV-Embed
deu NV-Embed

eng NV-Embed

fra GPT & NV-Embed
msa GPT & NV-Embed
pol NV-Embed

por NV-Embed

spa GPT & NV-Embed
tha Mistral & NV-Embed
tur NV-Embed

Table 1: Models used for individual languages.

4 Experimental Setup

4.1 Implementation Details

For NV-Embed and (m)GTE, we utilize models
from the HuggingFace Transformers library! (Wolf
et al., 2020). All experiments for these models
are conducted on a single NVIDIA L40 GPU with
48 GB of memory. To accommodate NV-Embed
within memory constraints, we apply 4-bit quan-
tization. In the case of GPT (OpenAl, 2025) and
Mistral (Al 2025), we use the official APIs to ob-
tain the embeddings.

4.2 Dataset

The dataset provided by the task organizers is an
updated version of the Multiclaim dataset. During
the competition, we had labels only for training

"https://github.com/huggingface/transformers
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data. At the end of the development phase, the
organizers released the ground truth labels for de-
velopment data. Since our approach is zero-shot
(neither training nor fine-tuning any model on train-
ing data), we limit ourselves to only describing the
development (DEV) data in this section.

4.2.1 Development Data

The vast majority of posts in the data are connected
with only one fact-checked claim, while having
three or four claims per post is rare.

The monolingual data contains eight languages,
with a total of 1,891 posts. Table 2 reveals posts
and pair counts for individual languages, showing a
higher number of pairs for English, Portuguese, and
Spanish. The opposite situation is in tha and ara,
where the number of posts equals the number of
pairs, meaning there is only a single claim relevant
to the post.

For the monolingual scenario, seeking the most
relevant fact-checks is limited to the language in
which the post is written. Consequently, we expect
much better results for this monolingual subtask
since the set of potential candidates is much smaller,
reducing the likelihood of false positives. All of our
evaluations confirm this assumption, as presented
below.

Language Posts count All pairs count
fra 188 200
spa 615 692
eng 478 627
por 302 403
tha 42 42
deu 83 101
msa 105 116
ara 78 78

Table 2: Development data — number of pairs and posts
for individual languages.

The cross-lingual dataset consists of 552 posts
and 651 pairs, with no language-specific informa-
tion since the task is to find relevant claims across
all languages.

5 Experiments

The task organizers have chosen success-at-K
(S@K) as a main evaluation metric. The metric
expresses a percentage of pairs when at least one of
the desired fact-checks ends up in the top K, where
K = 10 for this task. The S@K for each particu-
lar language is computed separately, and the mean
value represents the multilingual result.


https://github.com/huggingface/transformers

5.1 Results

According to the official test leaderboard?, our
approach achieved 7th place for the monolingual
and 9th for the cross-lingual scenario, respectively.
There are 28 participants in the monolingual sub-
task and 29 in the cross-lingual subtask. Table 3
presents the results of our system on the test data.

Scenario Comb. NV-Embed GPT Mistral Best
Monoling.  0.927 (7.) 0.919 0.903 0.902 0.960
Cross-ling. 0.783(9.) 0.741 0.745 0.859

Table 3: Average S@ 10 monolingual and cross-lingual
results on test data, our best result are in bold, its rank
in parentheses, the Best column shows the highest score
achieved in the competition. The Comb. column repre-
sents the model combination described in Section 3.1.

Model S@10 S@s5s Dif

NV-Embed 0.775 0.672 -13.29%
GPT 0.726  0.627 -13.64%
Mistral 0.719 0.612 -14.88%

Table 4: Comparison of S@5 and S@10 results for
cross-lingual subtask on development data.

The S@10 metric puts the most relevant fact-
checks for a given post, which ended up in the top
3, for example, and those that barely fit into the
first 10, on the same level. Once the DEV data
were released, we computed S@5 for our models
to investigate the behavior of the models when the
“harder” metric is used. The greater the drop in
this metric compared to S@10, the less likely the
correct pair will be among the most relevant results.
Conversely, if the decrease is minimal, it indicates
that the models are performing well, placing the
most relevant fact-checks in the top positions. Ta-
bles 4 and 8 show such a comparison; the decrease
is evident for all models.

We have an interesting observation in monolin-
gual results. Even though we used English trans-
lations, the percentage difference between S@ 10
and S@5 varies significantly for the individual lan-
guages (compare, for example, eng or por with fra
in Table 8 in the Appendix).

5.2 Model Comparison

Table 5 presents the average monolingual and cross-
lingual S@10 results on the development data. The
GTE and mGTE models performed significantly

2https://www.codabench.org/competitions/3737/
#/pages-tab

worse than the other models, particularly in cross-
lingual settings, so we excluded them from further
experiments. For mGTE, we used the original lan-
guage data, as it is a multilingual model.

For all other models, which are primarily
English-centric, we used English-translated data.
We attribute the poor performance of the GTE mod-
els to their smaller parameter sizes (approximately
350M for mGTE and 434M for GTE) compared
to the other models. However, their smaller size
and open-access nature make them easier to de-
ploy, with higher inference speeds. In contrast,
NV-Embed has about 7B parameters, while GPT
and Mistral require APT access.

Scenario GTE mGTE NV-Embed GPT Mistral
Monolingual  0.777  0.785 0.902 0.856  0.863
Cross-lingual  0.569  0.574 0.775 0.726  0.719

Table 5: Average S@10 scores of TEM models on devel-
opment data. All texts are translated to English except
for mGTE, which uses the original language. Best re-
sults are shown in bold.

Among the remaining models, NV-Embed
achieved the highest average performance, with
Mistral and GPT following closely.

Table 6 shows the performance of various model
combinations for individual languages on the de-
velopment set. These results guided the selection
of the best-performing combinations for our final
system.

5.3 Error Analysis

Since our final approach utilizes solely English
translations, the error analysis only focuses on
the cross-lingual scenario where a candidate fact-
checks space is not limited to a particular language.

As illustrated in Figure 1, all three embedding
models correctly assign over a quarter of fact-
checks to the top 1 ranked position. Furthermore,
in the top 3 results, each model accurately retrieves
around 50% of fact-checks. In other words, when
a model identifies the correct “post-to-fact-check”
pair, it typically ranks it within the top 3 positions,
demonstrating high confidence in its predictions.
The number of missed fact-checks (the position in
the ranked list of 11 or more) ranges from 25 to
30% for all models.

Table 7 presents the number of missed fact-
checks per post. This metric is comparable to the
official S@10 score, with the key difference be-
ing its focus on individual pairs. The numbers in
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Model/Combination eng fra deu por spa tha msa ara  avg
GPT 0.85 092 070 083 089 098 088 0.82 0.86
Mistral 0.84 090 080 082 090 098 088 0.81 0.86
NV-Embed 087 095 089 088 092 095 090 0.86 0.90
GPT & Mistral 0.83 090 075 081 08 095 088 0.79 0.85
GPT & NV-Embed 0.87 095 088 087 092 095 090 0.87 0.90
Mistral & NV-Embed 0.87 095 088 087 092 098 089 0.86 0.90
GPT & Mistral & NV-Embed 0.87 093 084 0.86 092 098 090 0.86 0.89
Table 6: Results of model combinations on the development data.
Model demonstrated when Polish and Turkish were added
30 s Mistral to the test set. By leveraging the embeddings and

GPT
mmm NV-Embed

i III""'IIII.l
1 2 3 4 5 6 7 8 9

10 >10
Fact-Check Position in ranked list

= N N
(6] o (9]

Fact-Check Occurence [%]
=
o

Figure 1: Position of the searched fact-check among the
most similar fact-checks for cross-lingual subtask.

the table reflect all correctly assigned fact-checks
for each post, not just whether at least one was
correctly matched.

Missed Fact-checks
Model Fact-checks in Top 10
NV-Embed 160 (24.6%) 491 (75.4%)
GPT 196 (30.2%) 455 (69.8%)
Mistral 200 (30.7%) 451 (69.3%)

Table 7: Missed pairs and true positive pairs within a
top-10 selection ranked list.

6 Conclusion

This paper described our approach for the SemEval-
2025 shared task 7 Multilingual and Cross-lingual
Fact-Checked Claim Retrieval. We adopted a zero-
shot approach using large language models like
NVIDIA NV-Embed-v2, GPT text-embedding-3-
large, and Mistral. This approach allows seamless
integration of new languages without retraining, as

measuring cosine similarity, we identified the most
relevant claims for each post.

Our approach ranked 7th out of 28 in the mono-
lingual subtask and 9th out of 29 in the cross-
lingual subtask.

Error analysis showed that all three models ef-
fectively placed the most relevant claims at the top
of the ranked lists. For some languages, combin-
ing models improved performance, and our final
submission reflected this. Among the models, NV-
Embed proved the most effective, keeping the num-
ber of missed pairs below 25% in the cross-lingual
setting.
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A Appendix

This appendix continues the error analysis and
shows additional figures and tables. Figure 2 de-
picts the comparison of monolingual and cross-
lingual results showing the dominance of the NV-
Embed model. Monolingual results are depicted in
Figure 3. The boxplot shows average S@10 results.
The width of the individual boxes reflects the mono-
lingual results and variance with a median value
represented by the vertical line inside the box. The
figure confirms the supremacy of the NV-Embed
model over the others.

Lastly, we present detailed development data
results in Tables 8 and 9. We recalculated the S@10
and S@5 while the number of pairs was considered
(Table 9) to show a higher difficulty of this task. In
this setting, all fact-checks must be in the ranked
list (top 10) to be considered as a correct sample.
Naturally, the numbers, in general, are lower than
the official results. Since eng and por have more
fact-checks than other languages, the discrepancy
between S@10 and S@5 is much bigger.

1.0
0.9 1
o
%o.s— Model
S o ® GTE
2 ® mGTE
2 0.7 @ NV-Embed
g ® GPT

@® Mistral
0.6

(L

0.5
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Figure 2: Comparison of monolingual and cross-lingual
results of TEM models on development data. Monolin-
gual S@10 labels the average S@10 for all languages.
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GPT Mistral NV-Embed

Lang S@10 S@5 Dif S@10 S@5 Dif S@10 S@5 Dif

fra 0915 0.888 -295% 0.899 0.872 -3.00% 0.947 0931 -1.69%
spa 0.891 0.854 -4.15% 0.898 0.852 -5.12% 0922 0.878 -4.77%
eng 0.845 0.789 -6.63% 0.837 0.768 -824% 0.868 0.801 -7.72%
por 0.825 0.765 -7.72% 0815 0.781 -4.17% 0.881 0.821 -6.81%
tha 0976 0952 -246% 0976 0952 -246% 0952 0929 -2.42%
deu 0.699 0.675 -343% 0.795 0.783 -1.51% 0.892 0.843 -549%
msa 0.876 0.838 -434% 0876 0.857 -2.17% 0.895 0.848 -5.25%
ara 0.821 0.769 -633% 0.808 0.756 -6.44% 0.859 0.808 -5.94%
avg 0.856 0.816 -4.64% 0.863 0.828 -4.06% 0.902 0.858 -4.99%

Table 8: S@5 and S@ 10 monolingual results on development data together with a percentage difference. Best
results for each language are in bold.

GPT Mistral NV-Embed
Lang S@10 S@5 Dif S@10 S@5 Dif S@10 S@5 Dif

fra 0915 0890 -2.73% 0900 0.875 -2.78% 0945 0930 -1.59%
spa 0.877 0832 -513% 0884 0.840 -498% 0910 0.866 -4.84%
eng 0.802 0.708 -11.72% 0.794 0.694 -12.59% 0.833 0.740 -11.16%
por 0.794 0720 -932% 0.799 0.730 -8.64% 0.854 0.772 -9.60%
tha 0976 0952 -246% 0976 0952 -2.46% 0952 0929 -2.42%
deu 0.703 0.681 -3.13% 0.782 0.752 -3.84% 0.881 0.832 -5.56%
msa 0862 0.810 -581% 0.853 0.828 -293% 0.887 0.828 -6.65%
ara 0.821 0.769 -633% 0808 0.756 -6.44% 0.859 0.808 -5.94%
avg 0.844 0.796 -569% 0850 0.803 -553% 0.890 0.838 -5.84%

Table 9: Development data S@5 and S@ 10 monolingual comparison when pairs are considered (all fact-checks
must be ranked in top k to be considered as a correct sample). The best S@5 and S@10 results for each language
are in bold.

Model

Model
I GPT
[ Mistral
I NV-Embed

070 075 080 085 090 095
Succes@10 for all languages

Figure 3: Development data monolingual comparison.
NV-Embedd has a smaller variance and is more consis-
tent across languages.
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Abstract

The proliferation of structured tabular data in
domains like healthcare and finance has in-
tensified the demand for precise table ques-
tion answering, particularly for complex nu-
merical reasoning and cross-domain general-
ization. Existing approaches struggle with im-
plicit semantics and multi-step arithmetic op-
erations. This paper presents our solution for
SemEval-2025 task,including three synergis-
tic components: (1) a Schema Profiler that ex-
tracts structural metadata via LLM-driven anal-
ysis and statistical validation, (2) a Hierarchi-
cal Chain-of-Thought module that decomposes
questions into four stages—semantic anchor-
ing, schema mapping, query synthesis, and self-
correction—to ensure SQL validity, and (3) a
Confidence-Accuracy Voting mechanism that
resolves discrepancies across LLMs through
weighted ensemble decisions. Our framework
achieves scores of 81.23 on Databench and
81.99 on Databench_lite, ranking 6th and 5th
respectively, demonstrating the effectiveness of
structured metadata guidance and cross-model
deliberation in complex TableQA scenarios.

1 Introduction

In the era of digitization, structured data repre-
sented in tabular formats is ubiquitous across do-
mains such as finance, healthcare, and scientific
research. Table Question Answering (TableQA),
which aims to retrieve precise information from
tables based on natural language queries, has
emerged as a critical research direction. Its applica-
tions range from database querying and spreadsheet
automation to extracting insights from web tables
or even image-based tabular data. Despite its prac-
tical significance, the complexity of TableQA lies
in effectively aligning natural language questions
with the structural and semantic features of tables,
especially when handling aggregation (e.g., "sum-
marize sales by region"), comparison (e.g., "which

*Corresponding author

product has the highest revenue"), and multi-hop
reasoning (e.g., "find the second-largest budget de-
partment"). Traditional approaches often rely on
weakly supervised table parsers to extract relevant
cells and apply predefined aggregation operators,
which are limited in generalizability and scalability
(Pasupat and Liang, 2015).

Recent advancements in Large Language Mod-
els (LLMs) have revolutionized TableQA by en-
abling more flexible and context-aware reasoning.
LLMs address TableQA challenges through two
primary paradigms: In-Context Learning and Text-
to-SQL. These approaches leverage the models’
ability to process structured data alongside free-
form text, opening new possibilities for handling
complex tabular reasoning tasks.

The In-Context Learning paradigm integrates
tabular data into carefully designed prompts, al-
lowing models to generate answers in zero-shot or
few-shot settings. For example, structured prompt-
ing strategies encode table headers, cell values, and
structural metadata (e.g., row/column indices) into
the input sequence, enhancing the model’s abil-
ity to reason over numerical and hierarchical rela-
tionships (Lu et al., 2025). Recent work further
improves robustness through reasoning-enhanced
prompting, where LLMs are guided to decompose
questions into step-by-step sub-tasks (e.g., filter-
ing, sorting, and aggregating) (Qiao et al., 2023).
Notably, models like TAPAS (Herzig et al., 2020)
and TaBERT (Yin et al., 2020) demonstrate that
pre-training on large-scale table-text pairs signif-
icantly enhances structural awareness, achieving
state-of-the-art performance on benchmarks like
WikiTableQuestions and WikiSQL.

The Text-to-SQL approach translates natural
language questions into executable SQL queries,
enabling direct database interactions. This task
requires precise alignment between linguistic ex-
pressions (e.g., "senior employees") and database
schemas (e.g., “‘WHERE age > 60°), while ac-
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counting for structural constraints such as pri-
mary/foreign keys and column types. Recent stud-
ies leverage LLMs’ code-generation capabilities to
improve SQL accuracy. For instance, DIN-SQL
(Pourreza and Rafiei, 2023a) decomposes complex
queries into sub-problems solved by specialized
agents, while RESDSQL (Li et al., 2023) employs
a retrieval-augmented framework to align questions
with schema elements.

SemEval-2025 Task 8 tackles the challenge of
answering diverse, real-world questions over large-
scale tabular datasets in domains such as healthcare
and finance. Existing methods face limitations in
cross-domain generalization due to implicit seman-
tics (e.g., medical jargon). They also struggle with
complex numerical reasoning, including percentile
calculations and multi-step arithmetic. To address
these challenges, we propose a framework that
combines structured schema analysis, hierarchi-
cal reasoning, and multi-model deliberation. Our
method employs a three-stage architecture: (1) a
Schema Profiler that automatically extracts struc-
tural metadata through guided LLM parsing and
statistical verification, (2) a Hierarchical Chain-of-
Thought Reasoning module that decomposes ques-
tions into semantic anchoring, schema mapping,
query synthesis, and self-correction stages, and
(3) a Confidence-Accuracy Voting mechanism that
resolves discrepancies across three LLM agents
through weighted ensemble deliberation. Our pro-
posed method ranks 6th on the Databench dataset
and 5th on the Databench_lite dataset.

2 Related Work

The rapid evolution of table question answering
has been significantly propelled by advances in
large language models (LLMs) and their applica-
tion to Text-to-SQL tasks. Early work established
the Spider benchmark (Yu et al., 2019), a cross-
domain dataset that remains a cornerstone for eval-
uating complex SQL generation. Building on this,
PICARD was introduced (Scholak et al., 2021),
which integrates constrained decoding with pre-
trained models like TS5 to ensure syntactically valid
SQL queries. The advent of powerful LLMs shifted
the paradigm toward in-context learning, exempli-
fied by DIN-SQL (Pourreza and Rafiei, 2023b),
where GPT-4 iteratively decomposes questions into
sub-tasks like schema linking and query refine-
ment. Concurrently, retrieval-augmented methods
like RESDSQL (Li et al., 2023) dynamically align

questions with database schemas to mitigate do-
main shift. Meanwhile, it has been demonstrated
that code-style prompts enable zero-shot SQL gen-
eration in C3 (Dong et al., 2023). Despite these
innovations, challenges persist in handling implicit
semantics, where domain-specific terms (e.g., med-
ical abbreviations) require external knowledge, and
context window constraints (Hao et al., 2022),
which lead to truncation of large tables. Recent
efforts like CoT-SQL (Wei et al., 2022) leverages
chain-of-thought prompting to decompose multi-
step queries.

3 System Overview

In this section, we will introduce the overall struc-
ture of our proposed system. Our proposed system
comprises three core modules that synergistically
enhance table-based question answering through
structured reasoning and ensemble learning. Fig-
ure 1 illustrates the overall architecture of our pro-
posed method.

Module 1: Schema Profiler: We first feed
partial tabular data into a Large Language Model
(moonshot-v1) to extract critical schema informa-
tion. This process automatically identifies field
types, value distributions, and contextual relation-
ships within the table structure. The derived meta-
data establishes a semantic foundation for subse-
quent processing stages. Module 2: Hierarchical
Chain-of-Thought Reasoning: We design a four-
stage Chain-of-Thought (CoT) prompting strategy
that combines schema metadata with task-specific
instructions. This enhanced prompt is then in-
put into three different Large Language Models
to generate candidate SQL queries. Module 3:
Multi-Model Deliberation: To ensure robustness,
we implement a deliberation mechanism that di-
rectly adopts answers when all models reach con-
sensus. When discrepancies occur, the mechanism
employs cross-model voting with mutual evalua-
tion. The voting system weights the models’ con-
fidence scores and historical accuracy to resolve
conflicts, ultimately selecting the most reliable an-
swer through ensemble decision-making.

This hierarchical architecture effectively bal-
ances schema comprehension, diverse reasoning
patterns, and result verification, demonstrating
strong performance on complex table QA scenar-
ios.
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Figure 1: The overall architecture of our proposed method.

3.1 Schema Profiler

The framework initiates with structural metadata
parsing to achieve a deep understanding of the tabu-
lar schema. Specifically, we input a 20-row sample
from the Databench Lite dataset into moonshot-v1
and process it using a multi-turn guided prompting
strategy. The primary prompt instructs the model to
analyze the table structure and explicitly requires
the output to include: (1) Column attributes, in-
cluding data types (string/numerical/temporal) and
value characteristics (units for numerical columns,
frequent values for categorical columns); (2) Field
semantics, which involves precisely parsing the
meaning of each field to clarify its specific role in
the business context and the relationships between
fields; (3) Constraint discovery, which identifies im-
plicit business rules (e.g., inventory < warehouse
capacity). This process generates a standardized
JSON schema profile, thereby establishing a re-
liable structural foundation for downstream SQL
generation.

3.2 Hierarchical Chain-of-Thought Reasoning

To address the challenges of generating accurate
SQL queries from natural language questions over
heterogeneous tables, we propose a hierarchical
Chain-of-Thought (CoT) framework that decom-
poses the reasoning process into four intercon-
nected cognitive stages. This structured approach
ensures both syntactic validity and semantic align-
ment with the database schema.

(1)Semantic Anchoring: The initial phase is the
semantic mining and classification stage, where the
model is required to mine the semantics of the ques-
tion and determine its type: Boolean, scalar, or list.
Boolean questions are typically used for existence
checks, such as determining whether a certain con-
dition is met through trigger words like "whether,"
"does... exist," or "is there any...". Scalar questions
involve quantitative queries and usually contain
terms such as "highest," "lowest," "average," or "to-
tal," aiming to obtain a single numerical result. For
example, "What is the highest price?" or "What is
the average value?". List questions, on the other
hand, require returning a set of entities or results,
such as through expressions like "how many," "list
all...," or "return the set of...," which are used to ob-
tain multiple results or entity collections that meet
specific conditions.

(2)Schema-Aware Semantic Mapping: In this
stage, the structured metadata profile is utilized to
map entities in the query to corresponding column
names. For explicit entity linking, field names in
the query are directly matched (e.g., “patient age”
— age). For implicit semantic inference, potential
associations are uncovered (e.g., “hospitalization
duration” — discharge_date - admission_date). For
value range normalization, expressions are trans-
formed into database storage formats (e.g., “Q1”
— BETWEEN °2023-01° AND ’2023-03").

(3)Logic-Aggregated Query Synthesis: This
phase systematically integrates parsed seman-
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tic components into executable SQL structures
through three operational principles. Parenthesis-
encapsulated precedence rules govern multi-clause
logic composition (e.g., ‘(A OR B) AND C*), com-
plemented by type-driven operator selection for
temporal or numerical comparisons. Dynamic ag-
gregation binding associates question intent with
SQL functions—‘AVG()‘ for "average price" and
‘COUNT()* for "total quantity”. Subquery opti-
mization prioritizes nested structures over joins
when processing comparative constraints (e.g.,
"books above average price"), effectively mitigat-
ing Cartesian product risks through predicate push-
down techniques.

(4)Multi-Granularity Self-Correction: In this
stage, common error patterns of Large Language
Models (LLMs) are countered through syntactic,
semantic, and logical validation. Syntax validation
enforces schema-compliant escaping for special
column names (e.g., auto-correcting malformed
‘Price (TK)‘to ‘"Price (TK)"‘)and verifies join
paths against foreign key constraints. Semantic
consistency checks eliminate contradictory condi-
tional logic (e.g., conflicting ‘Stock_Status* val-
ues) while injecting null-safety clauses (e.g., ‘IS
NOT NULL ) for optional fields. Output alignment
ensures that Boolean queries strictly return truth
values and scalar queries produce singleton aggre-
gation results, among others.

3.3 Multi-Model Deliberation

To resolve discrepancies in SQL generation across
multiple large language models (LLMs), we pro-
pose a streamlined consensus mechanism that har-
monizes model confidence and empirical perfor-
mance.

(1)Unanimity Prioritization: If the SQL out-
puts from all models yield identical answers when
executed in the database, the output is directly
adopted, leveraging inter-model agreement as a
high-reliability indicator.

(2) Confidence-Accuracy Voting: When the
three LLM agents (qwen-max, Qwen2.5-Coder-
Instruct, Moonshot) generate conflicting SQL can-
didates, a voting protocol is triggered. For each
candidate query, the system calculates its final
score through a Confidence-Accuracy Voting mech-
anism:

Score,, = Z Conf;_,,

x HisAcc,, (1)
J#Fm

Model Reliability

Cross-Model Consensus

where:

 Confj_,i (0-1): Model j’s confidence score
for candidate SQLg. For example, if SQL
is generated by qwen-max, Moonshot and
Qwen-Coder assess its correctness likelihood
separately.

* HisAccy, (0-1):Pre-computed accuracy of the
model on the dev Databench set containing
diverse table schemas and question types.

The candidate with the highest aggregated score
is selected, ensuring both peer validation and
source model competency are leveraged.

4 Experiment

4.1 Dataset

The dataset for this study is derived from the Se-
mEval 2025 Task 8 benchmark suite, which in-
cludes two versions: DataBench and its lightweight
variant DataBench Lite. The full-scale DataBench
comprises 65 real-world tabular corpora spanning
3,269,975 rows and 1,615 columns, paired with
1,300 annotated questions split into training and
development subsets. For streamlined evaluation,
DataBench Lite provides sampled versions of these
corpora, retaining 20 rows per table. The test set
consists of an independent collection of 15 corpora
and 522 questions to ensure rigorous evaluation.

4.2 Implementation

In our experiment, we utilized three LLMs to eval-
uate their performance on the given task. Specif-
ically, we called the APIs of Qwen-max, Qwen-
coder, and Moonshot. Table 1 summarizes the
configuration settings used for each model during
the experiment.

Table 1: Model configuration settings.

Setting Qwen-max Qwen-coder Moonshot
temperature 0.7 0.7 0.3
top_p 0.8 0.8 0.8
presence_penalty 1.5 1.5 1.5
max_tokens 8,192 8,192 8192
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4.3 Results

Table 2 and Table 3 show the performance of
three models on the Databench and Databench_lite
datasets with different modules added. The ex-
perimental results indicate that systematically in-
troducing the Schema Profiler and hierarchical
Chain of Thought (CoT) strategy significantly im-
proves table question-answering performance. Un-
der the full configuration (+Profiler+COT), Qwen-
max achieves a score of 77.39 on the complete
dataset Databench, an improvement of 8.04 over
the baseline (69.35), and reaches 77.97 (+8.05) on
the lightweight version Databench_lite. This val-
idates the universal advantage of structured meta-
data guidance. The hierarchical CoT enhances the
execution accuracy of complex queries through
step-by-step parsing. The synergistic effect of the
two strategies generates a superadditive improve-
ment—the combined gain (Databench: 8.04-9.96)
exceeds the sum of individual module gains, high-
lighting the role of metadata in directing the rea-
soning path.

Table 2: Comparison of Scores for three models on
the test set of Databench. "Base" indicates no strat-
egy added, "+Profiler" indicates the addition of Profiler,
"+COT" indicates the addition of COT.

Method Qwen-max Qwen-coder Moonshot
Base 69.35 68.2 65.9
+Profiler 71.83 70.88 69.92
+COT 74.71 73.18 72.22
+Profiler+COT 77.39 76.44 75.86

Table 3: Comparison of Scores for three models on the
test set of Databench_lite. "Base" indicates no strat-
egy added, "+Profiler" indicates the addition of Profiler,
"+COT" indicates the addition of COT.

Method Qwen-max Qwen-coder Moonshot
Base 69.92 68.0 66.28
+Profiler 72.22 71.26 70.11
+COT 75.47 74.32 72.8
+Profiler+COT 77.97 76.63 76.05

Table 4 compares the performance of three
review strategies on the complex scenario
dataset Databench and its lightweight version
Databench_lite. The experimental results show
that the multi-model collaborative decision-making
mechanism significantly improves the accuracy of
the table question-answering system. The single-
model baseline (Qwen-max) achieves scores of

Table 4: Comparison of Scores for Different Deliber-
ation Strategies on the Databench and Databench_lite
Datasets

Model Score Scoreje
Qwen-max 77.39 77.97
Qwen-max+moonshot 79.69 80.08
all 81.23 81.99

77.39 on Databench and 77.97 on Databench_lite
without enabling review. After introducing dual-
model cross-validation (Qwen-max + Moonshot),
the scores increase by 2.3 and 2.11, respectively.
The full review strategy integrating three models
(All) further raises the accuracy to 81.23 and 81.99,
achieving absolute improvements of 4.84 and 4.02
over the baseline. This progress validates the ef-
fectiveness of cross-model verification in eliminat-
ing individual biases—through a two-stage consen-
sus mechanism (consensus adoption and weighted
voting), the robustness of semantic understanding
under complex table structures is enhanced. It is
particularly noteworthy that dual-model review can
cover approximately 75% of the potential error
correction needs, providing an efficient balance
between precision and computational cost for sce-
narios with limited resources.

5 Conclusion

This paper presents our solution for SemEval-2025
Task 8 on Table Question Answering. We pro-
pose a three-stage framework integrating schema
analysis, hierarchical reasoning, and multi-model
deliberation. Our approach leverages: (1) a
Schema Profiler that extracts structural metadata
via guided LLM parsing, (2) a Hierarchical Chain-
of-Thought module decomposing questions into
four reasoning stages (semantic anchoring, schema
mapping, query synthesis, self-correction), and (3)
a Confidence-Accuracy Voting mechanism harmo-
nizing outputs from three LLM agents through
weighted ensemble decisions. Our method achieves
scores of 81.23 on Databench and 81.99 on
Databench_lite, ranking 6th and 5Sth respectively.
Future work will focus on: (1) enhancing schema
profiling with dynamic domain adaptation, (2) re-
fining CoT stages for multi-table joins, and (3)
extending the deliberation mechanism to hybrid
LLM-Symbolic architectures.
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Abstract

Text-based emotion detection is crucial in NLP,
with applications in sentiment analysis, social
media monitoring, and human-computer inter-
action. This paper presents our approach to
the Multi-label Emotion Detection challenge,
classifying texts into joy, sadness, anger, fear,
and surprise. We experimented with traditional
machine learning and transformer-based mod-
els, but results were suboptimal: F1 scores of
0.3723 (English), 0.5174 (German), and 0.6957
(Spanish). We analyze the impact of prepro-
cessing, model selection, and dataset charac-
teristics, highlighting key challenges in multi-
label emotion classification and potential im-
provements.

1 Introduction

Emotion detection from text is a crucial NLP task
with applications in customer feedback analysis,
mental health detection, and social media monitor-
ing. Unlike sentiment analysis, which determines
polarity, emotion detection classifies text into joy,
sadness, fear, anger, and surprise, often requir-
ing multi-label classification since a sentence can
evoke multiple emotions. Despite advancements in
transformer-based models like BERT and XLM-
RoBERTx3, challenges remain due to:

* Subjectivity: Different individuals may per-
ceive emotions differently.

* Contextual Complexity: Subtle emotional
cues require deep contextual understanding.

* Multi-label Classification: A single text can
express multiple overlapping emotions.

1.1 Competition Overview

Track A (Muhammad et al., 2025b) of the Mullti-
label Emotion Detection competition involved
classifying text snippets into one or more of five
emotions or as neutral. Our experiments included

a range of approaches, starting with traditional
machine learning models such as Logistic Regres-
sion, Random Forest, and SVM. We also explored
transformer-based models, including BERT, Dis-
tiIBERT, XLLM-RoBERTa, and language-specific
BERT variants, as well as ensemble models that
combined classifiers like KNN, Decision Trees, and
Neural Networks. Despite extensive preprocessing,
hyperparameter tuning, and model optimization,
our overall performance—particularly on English
data—fell short of expectations. This paper delves
into the key challenges we encountered and the
insights gained throughout our approach.

2 Dataset

Our dataset comes from Task 11 of SemEval 2025
(Muhammad et al., 2025a), focusing on multi-label
emotion classification in English, German, and
Spanish. Sourced from social media, each text snip-
pet is annotated using a binary scheme (1: present,
0: absent), allowing for multi-label classification
where multiple emotions can co-occur. Neutral in-
stances contain no marked emotions. The dataset
is split into train, dev, and test sets for structured
evaluation. Table 1 provides an overview.

3 Related Works

Emotion detection in textual data has been exten-
sively explored in NLP, spanning lexicon-based,
machine learning, and deep learning methods.
Transformer-based models have recently set new
benchmarks, particularly for multi-label and multi-
lingual emotion classification.

3.1 Traditional Approaches to Emotion
Detection

Early systems used lexicon-based methods with re-
sources like WordNet-Affect (Strapparava and Val-
itutti, 2004) and LIWC (Tausczik and Pennebaker,
2010), but lacked context sensitivity. Machine
learning models such as Naive Bayes (Alm et al.,
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Language Data Source(s) Train Dev Test Total
English (eng) Social media 2768 116 2767 5651
German (deu) Social media 2603 200 2604 5407
Spanish (esp) Social media 1996 184 1695 3875

Table 1: Description of Track A dataset.

2005), SVMs (Wang and Manning, 2012), and Ran-
dom Forests (Strapparava and Mihalcea, 2007) im-
proved generalization but struggled with semantic
ambiguity and multi-label complexity.

3.2 Multi-Label Emotion Detection

Emotion detection is inherently multi-label, as a
single text may express multiple emotions (Moham-
mad and Bravo-Marquez, 2018). Traditional meth-
ods addressed this using hierarchical classification
(Hatzivassiloglou and McKeown, 2000) or CRFs
(Strapparava and Mihalcea, 2007). Deep learning
models, like BILSTMs with attention (Majumder
et al., 2019), showed substantial improvements by
capturing emotion co-occurrence and contextual
dependencies.

3.3 Transformer-Based Approaches

Transformers like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019) have achieved state-of-the-art results.
Lighter models such as DistilBERT (Sanh et al.,
2019) offer faster inference, while EmotionBERT
(Saravia et al., 2018) improves emotion-specific
learning. Prompt-based models (Gao et al., 2021)
enable zero-shot emotion detection.

Recent work has extended transformers to men-
tal health detection. (Sivanaiah et al., 2024) com-
pared BERT, RoBERTa, and traditional models for
suicide and self-harm classification, with RoBERTa
achieving the highest F1-score (99%). (Yenumu-
lapalli et al., 2023) explored depression detection
via BERT in LT-EDI-2023, achieving a macro F1
of 0.407, highlighting the capability of transformer
models in capturing nuanced emotional and psy-
chological cues.

4 Methodology

The steps taken are laid out in the methodology sec-
tion in detail, with the inclusion of preprocessing,
exploratory data analysis (EDA), model selection,
evaluation, and the implementation of recommen-
dations received while conducting the study.

ng
o

Pre-Processi
Language- ) Pre Processed
ik _ ext Stemming g/
Spedfic gexiCeaning Normalization Lemmatization Text
I

Figure 1: Pre-Processing Steps.
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4.1 Preprocessing and Exploratory Data
Analysis (EDA)

Preprocessing ensures clean, tokenized input for
training machine learning models. We used
language-specific tokenizers: BETO for Spanish,
bert-base-german-cased for German, and the de-
fault BERT tokenizer for English. These tokenizers
helped capture the linguistic nuances of each lan-
guage. Our preprocessing pipeline involved remov-
ing stopwords, special characters, and punctuation
to prevent noise during training, as illustrated in
Figure 1. Additionally, we applied lowercasing and
contraction expansion (e.g., I’'m to I am) to main-
tain consistency. Stemming and lemmatization
were deliberately excluded from our preprocess-
ing pipeline to preserve the rich morphological and
contextual information inherent in the text, which is
often critical for accurately detecting emotions. In
emotion recognition tasks, subtle variations in word
forms—such as verb tenses or pluralizations—can
convey important affective cues; for example, “cry-
ing” may carry a stronger emotional weight than
“cry.” Reducing words to their base or root form
risks stripping away these distinctions, potentially
leading to loss of emotional intensity or misinter-
pretation. Furthermore, the transformer-based mod-
els employed in our study, such as BETO, BERT,
and their variants, are pretrained on large corpora
of raw text and are inherently capable of under-
standing and disambiguating word forms in con-
text. Thus, applying stemming or lemmatization
could disrupt the linguistic patterns these models
have learned to leverage, ultimately impairing per-
formance rather than enhancing it. For exploratory
data analysis (EDA), we checked the distribution
of emotions across the datasets for all languages.
This included looking at the proportion of various
emotion classes (like joy, sadness, fear, etc.) and
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Figure 2: Methodology.
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checking if there were any data biases.

4.2 Model Selection and Explanation

To tackle the task of emotion detection, we uti-
lized both common machine learning classifiers as
shown in Figure 2 and state-of-the-art transformer-
based models.

We began by utilizing BERT-base-uncased, a
pre-trained transformer model known for its strong
performance in various NLP tasks, including senti-
ment and emotion classification. BERT’s bidirec-
tional nature allows it to understand context from
both directions, making it particularly effective for
detecting emotions expressed through subtle lan-
guage cues. BERT was applied to English, Span-
ish, and German datasets. While it performed ad-
equately on English and Spanish, its performance
on German was notably weaker—Ilikely due to its
English-centric training data, making it less effec-
tive for other languages without fine-tuning.

To better handle Spanish, we used BETO, a
BERT variant fine-tuned on a large Spanish cor-
pus. BETO outperformed both BERT-base-uncased
and mBERT on the Spanish dataset, especially in
identifying anger, disgust, and fear. Its improved
performance is due to its specialization in Spanish
syntax and semantics.

We also tested mBERT, a multilingual BERT
trained on 104 languages. Its ability to handle all
three languages made it efficient for a multilingual
dataset. While mBERT performed reasonably well
on English and Spanish, it struggled with German,
likely because its generalized training across lan-
guages made it less effective for those with more
complex grammar, like German.

To address this, we employed Google-
BERT/bert-base-german-cased, fine-tuned
specifically for German. This model significantly
improved emotion classification on the German
dataset, particularly for anger and disgust, thanks
to its training on a large German corpus.

In addition to transformer models, we experi-

mented with traditional machine learning classi-
fiers: Multinomial Naive Bayes (NB), Support
Vector Classifier (SVC), Logistic Regression, and
Random Forest. Naive Bayes, while effective for
simpler emotions like fear and disgust (especially
in Spanish and German), struggled with more nu-
anced emotions like joy and surprise in English.
SVC outperformed Naive Bayes—especially for
fear—but still lagged behind transformers in han-
dling complex emotions. Logistic Regression per-
formed reasonably well on fear and sadness but
underperformed on joy and surprise. Random For-
est, despite being strong in ensemble learning, was
less effective across all datasets, particularly for
surprise and anger.

To enhance model performance, we imple-
mented hyperparameter tuning, adjusting the
learning rate to 2e-5, increasing training epochs
to five, and reducing batch size to 8. While this
improved model stability and convergence, it did
not lead to notable improvements in F1 scores for
the English dataset.

We also incorporated lexicon-based testing us-
ing sentiment lexicons from the NLTK library. Al-
though helpful for validating predictions and esti-
mating overall correctness, these approaches could
not match the performance of transformer models,
which better capture the contextual subtleties of
language.

4.3 Feedback-Based Potential Improvements

Throughout the course of the research, a number of
useful suggestions were made that might have oth-
erwise increased the quality of this research. A pos-
sible recommendation was to try models without
using tokenization, lemmatization, or stemming.
These preprocessing operations tend to cause quite
a loss of information, as indicated in the feedback.
By skipping these methods, the models could have
preserved more useful linguistic features, which
could have resulted in improved performance at
emotion detection. Looking back, refraining from
these inductive text processing methods might have
retained more of the original sentence meaning
and structure, which could have helped with emo-
tion detection. The other recommendation was
to move away from having separate binary clas-
sifiers for every emotion to a single multi-class
classifier. By representing the emotion labels as
integers (e.g., Anger = 0, Joy = 1, Fear = 2, etc.),
the model might have been able to better differenti-
ate between emotions, instead of being trained to

224



predict the occurrence or non-occurrence of each
emotion separately. This would have most likely
resulted in improved performance, as the model
would have been in a position to comprehend the
association between various emotions and classify
them more holistically. We tried implementing this
recommendation and discovered that it worked to
yield a more coherent classification of emotion, es-
pecially when applied to the case of very complex
or unclear cases.

4.4 Combined Model Performance

Following the assessment of the performance of
single models, we chose to aggregate the predic-
tions of various models to form an ensemble model.
The ensemble strategy was effective in improving
performance, especially for the English dataset.
By aggregating models like KNN, Random Forest,
XGBoost, and Logistic Regression, we managed
to improve the accuracy of recognizing emotions
such as joy and surprise, which were more dif-
ficult for single models to identify. The current
research shows that transformer-based models such
as BERT, BETO, and Google-BERT are greatly
effective for multilingual emotion detection. Al-
though mBERT had potential for multilinguality, it
performed poorly for German. Baselines were cre-
ated by the classic machine learning classifiers but
were dominated by the advanced transformer mod-
els. While there were some aspects to be improved,
especially in preprocessing, model structure, and
hyperparameter optimization (decreasing in learn-
ing rate to 2e-5, bumping up training epochs to five,
and cutting the batch size to 8), the ensemble of
these models produced encouraging outcomes for
emotion recognition in multilingual text.

S Results and Analysis

5.1 Results

The results of emotion detection across Spanish,
German, and English datasets show varying perfor-
mance across different models. In tables 2, 3 and
4, the models are represented as follows- LR- Lo-
gistic Regression, RF- Random Forest, SVM- Sup-
port Vector Machine, BERT- BERT base uncased,
wt BERT- weighted BERT, Ensmbl-Ensemble of
KNN, RF, DT and LR, distil- DistilBERT, XILLM-
R- XSLM-RoBERTa, MNB- Multinomial Naive
Bayes, SVC- Support Vector Classifier, g-BERT-
Google BERT. The emotions An, Di, Fe, Jo, Sa
and Su are Anger, Disgust, Fear, Joy, Sadness and

Surprise respectively.

Model An Di Fe Jo Sa Su

BERT 0.71 | 0.73 | 0.85 | 0.72 | 0.77 | 0.54
BETO 0.75 | 0.80 | 0.86 | 0.80 | 0.78 | 0.72
mBERT | 0.72 | 0.77 | 0.82 | 0.76 | 0.75 | 0.70
MNB 0.55 | 0.68 | 0.80 | 0.67 | 0.53 | 0.47

SVC 0.52 | 0.70 | 0.81 | 0.70 | 0.74 | 0.37
LR 0.55 | 071 | 0.85 | 0.70 | 0.64 | 0.47
RF 049 | 0.63 | 0.87 | 0.62 | 0.65 | 0.47

Table 2: Model Performance Metrics for Emotion De-
tection in Spanish.

Model | An Di Fe Jo Sa Su
BERT | 0.67 | 0.59 0 041 | 0.28 0

g-bert 0.7 | 0.65 | 0.26 | 0.56 | 0.57 | 0.28
MNB 0.66 | 0.59 0 0.16 | 0.22 0

SvC 0.61 | 0.54 | 0.19 | 0.48 | 0.48 0
LR 058 | 0.53 | 0.07 | 043 | 0.46 0
RF 0.38 | 0.34 0 0.17 | 0.13 0

Table 3: Model Performance Metrics for Emotion De-
tection in German.

Model An Fe Jo Sa Su
LR 031 | 0.65 | 0.44 | 0.24 | 0.57
RF 0.10 | 0.67 | 0.37 | 0.13 | 0.52
SVM-Lin 0.32 | 0.65 | 043 | 0.25 | 0.56

SVM-RBF | 0.20 | 0.67 | 0.41 | 0.18 | 0.56
BERT 0.54 | 0.62 | 0.11 | 0.57 | 0.69
wt bert 048 | 042 | 0.59 | 0.69 | 0.63
Ensmbl 0.83 | 0.53 | 0.77 | 0.67 | 0.68
distil 0.7 | 073 | 0.18 | 043 | 0.26
XLM-R 0 0.75 | 0.34 | 0.46 | 0.49

Table 4: Model Performance Metrics for Emotion De-
tection in English.

For Spanish, BETO, a language-specific trans-
former, outperforms all other models, particularly
in detecting disgust (0.80) and fear (0.86). BERT-
base-uncased and mBERT perform well but are
slightly less effective than BETO, as seen in table
2. Traditional models like Naive Bayes and SVC
show moderate performance, with SVC achiev-
ing the highest F1 score for fear (0.81), but strug-
gle with emotions like joy and surprise. We were
placed 37th with our results. In German, Google-
BERT (fine-tuned for German) surpasses BERT-
base-uncased but still struggles across all cate-
gories, especially fear, joy, and surprise as demon-
strated by table 3. Traditional models such as Naive
Bayes and SVC also show weak performance, high-
lighting the challenges in detecting emotions in
German. We secured 41st place in this run. For
English, ensemble models (KNN, Random Forest,
XGBoost, etc.) achieve the best results, especially
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Figure 3: Best F1 Scores by Language.

for anger (0.83) and joy (0.77) as showcased by
table 4. BERT-base-uncased shows decent results
but struggles with joy and surprise. DistilBERT
and XLM-RoBERTa show some promise but are
outperformed by the ensemble models. However,
the results were poor and could be improved further
by implementing the suggestions mentioned above.
We were placed 91st due to our results.

The comparative analysis highlights that language-
specific models excel in low-resource settings,
while ensemble methods perform better in high-
resource languages, though all models struggle
with nuanced emotions like joy and surprise.

5.2 Analysis

Transformer models, particularly language-specific
ones like BETO and Google-BERT, consistently
outperform traditional machine learning models,
highlighting the importance of fine-tuning for spe-
cific languages as shown in Figure 3. In English,
ensemble methods offer a strong alternative, outper-
forming individual models. Overall, transformer
models excel in capturing complex emotions, but
ensemble methods remain competitive, especially
in English. The choice of separate binary classifiers
for each emotion may have hindered the model’s
ability to distinguish between overlapping emo-
tional expressions; by converting the multi-label
emotion annotations into unique integer labels that
represent specific emotion combinations, and modi-
fying the final classification layer of the transformer
models to output softmax probabilities over these
combined classes with categorical cross-entropy
loss, the model can better capture relationships

between emotions, potentially improving overall
classification coherence and performance.

6 Conclusion

Our experiments highlight key challenges in multi-
label emotion detection. The lower performance
in English suggests that pre-processing techniques
may have removed valuable contextual informa-
tion. Additionally, the choice of separate binary
classifiers for each emotion may have hindered the
model’s ability to distinguish between overlapping
emotional expressions. Our findings suggest that
future research should focus on retaining more tex-
tual information during pre-processing, implement-
ing multi-class classification rather than binary
classifiers for each emotion and exploring larger,
domain-specific pre-trained transformer models
with better fine-tuning strategies. By addressing
these factors, we can improve the accuracy and reli-
ability of emotion detection in text across multiple
languages.
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Abstract

This paper presents our approach and findings
in the SemEval-2025 Task 6: Multinational,
Multilingual, Multi-industry Promise Verifica-
tion (PromiseEval), which focuses on verifying
promises in the industrial Environmental, So-
cial, and Governance (ESG) reports. Specifi-
cally, we participate in the first subtask of the
PromiseEval shared task, promise identifica-
tion. We tackle this subtask by building an
ensemble of four BERT models trained in dif-
ferent experimental configurations, and deploy-
ing logistic regression as meta-model. Each
configuration has a different combination of
two variables: whether augmented data is used,
and whether English translation is used. We
find out that the BERT model trained without
augmented data or English translation not only
has the best evaluation results on the test data
in most languages, but also has higher robust-
ness than the meta-model. We submitted results
from the meta-model to the leaderboard, and
rank the first place in Japanese and Korean, the
second place in French and Chinese, and the
seventh place in English.

1 Introduction

As the public’s emphasis on the environment
protection and the importance of Environmen-
tal, Social, and Governance (ESG) aspects of in-
dustries grow, a strong implementation of ESG
framework creates value for companies in various
ways (Baranga and Tanea, 2022). In order to gain
such benefits without paying the cost, it is revealed
that companies with environmental violations try
to appear more environmentally friendly by pro-
ducing more frequent, abundant reports with less
readability to deflect reader’s attention from their
violations (Gorovaia and Makrominas, 2025). To
verify the promises made in the industrial ESG
reports, Seki et al. (2024) proposes a four-step ap-
proach: 1. identifying promise 2. linking support-
ing evidence to the promise, 3. assessing clarity of

the promise-evidence pair, and 4. inferring timing
for verifying the promise. These four steps corre-
spond to the four subtasks in the SemEval-2025
Task 6: Multinational, Multilingual, Multi-industry
Promise Verification (PromiseEval) (Chen et al.,
2025). In this paper, we describe our submission
to the first subtask of the SemEval-2025 Task 6:
promise identification.

The subtask 1 is a multi-lingual binary classifi-
cation task. The used dataset is the proposed multi-
lingual dataset, ML-Promise, that includes ESG
reports from various industries in English, French,
Japanese, Korean, and Chinese (Chen et al., 2025).
Each instance in the ML-Promise dataset contains
the origin of a PDF and a page number. Addi-
tionally, a text snippet is included in each instance
for the English, French, and Japanese languages.
These text snippet can be used directly as input
for classification. For the Korean and Chinese lan-
guages, the participants need to either extract the
text from the whole page for classification or use
the given page of the PDF as direct input. The
output of the task 1 is a boolean label indicating
whether the input contains any promise.

We approach this task by building an ensem-
ble of BERT models (Devlin et al., 2019). Each
BERT model is exposed to a different experiment
configuration. Our hypothesis is that with each
BERT model trained differently, the robustness
of our ensemble will improve. After evaluating
all base BERT models and the meta-model on the
test data, we find out that the BERT model trained
with original data without data augmentation or
English translation has the highest performance
and robustness than the other BERT model and the
meta-model.

2 Background

BERT models have been proven to have promis-
ing performance in other ESG related tasks. In the
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Multi-lingual ESG Issue Identification shared task,
where multi-lingual ESG news articles are to be
classified into 35 key ESG issues, BERT-like lan-
guage models with data augmentations by LLMs
have leading performance in all languages (Chen
et al., 2023a). In the Multi-lingual ESG Impact
Type Identification shared task, a classification task
with three classes, fine-tuned RoOBERTa model (Liu
et al., 2019) is proven to have the best results in
English and French, while Fin-BERT model (Araci,
2019) with English translation achieves the highest
performance in Chinese (Winatmoko and Septian-
dri, 2023; Vardhan et al., 2023; Chen et al., 2023b).
In the Multi-Lingual ESG Impact Duration Infer-
ence shared task, a classification task with three
classes, DeBERTa-v3 (He et al., 2021) is the best-
performing model for English, while for Korean
and Japanese, the XLM-RoBERTa model (Con-
neau et al., 2020) is among the best models (Chen
et al., 2024). Based on the findings in the pre-
vious tasks, we introduce English translation as
a variable into our experimental configurations.
Furthermore, we pick the DeBERTa-v3 model to
be the model receiving English translation, and
the XLM-RoBERTa model to receive the original
multi-lingual input. More details regarding our
classification system and experimental setup is pre-
sented in Section 3 and 4.

The PromiseEval shared task has one separate
leaderboard for each language. The leaderboard
only accepts submission files containing results for
all four subtasks. Although our focus is only to
solve the subtask 1, we utilize the GPT-40-mini
to gain labels for the other three subtasks in or-
der to submit our results to the leaderboard. We
present our approach with GPT-40-mini to generate
predictions in Section 4. The leaderboard scores
are aggregated over labels from all subtasks. This
means that the leaderboard scores do not reflect the
ranking and performance of participant’s system in
one individual subtask. To showcase our system’s
performance in subtask 1, we evaluate our system
on the test data and show the results in Section 5.

3 Methods

3.1 Data Augmentation

We divide the given training dataset into a training
split and a development split, maintaining an 8:2
ratio. To tackle class imbalance in the training
split and boost the number of training samples, we
expand the training split by augmenting data from

the original PDFs. The development split is left
unaltered to ensure that our system is evaluated
using the actual data distribution during training
time.

We expand the training split by drawing unused
pages or sentences from the PDFs within the train-
ing split. Specifically, we extract sentences for the
English, French, and Japanese languages and sam-
ple pages for Chinese and Korean. This approach
ensures the augmented data mirrors the original
data entries in length. The amount of augmented
data for each language is determined by the differ-
ence between the sample sizes of the positive and
negative classes in the respective language. Fol-
lowing this, OpenAI’s GPT-40 model is utilized
to assign labels to the sampled data. As shown in
Table 1, the class imbalance issue still exists after
data augmentation, but is lessened, especially for
the total count of classes over all languages.

3.2 The Classification System

Our classification system is an ensemble system
consisting of four BERT base models and a logistic
regression model as meta-model.

We train two XLM-roberta-large models using
the original multi-lingual input text. One model
uses the multi-lingual augmented training split and
the other uses the training split without augmented
data. Both models are evaluated on the same devel-
opment split. The goal is to let one model learn in
quantity, i.e. with augmented data, while the other
model should not be influenced by the potential
noises introduced by augmented data.

To tackle multi-lingual nature of data and its
varying class imbalance in different languages as
shown in Table 1, we translate all non-English texts
into English using google translate API'. Similar
to multi-lingual setting, we train two Deberta-v3-
large models (He et al., 2021) respectively on the
translated augmented training split and the trans-
lated training split without augmentation.

We use a logistic regression model as the meta-
model to produce the final prediction. Except from
the predictions from the four base BERT models,
we also provide the meta-model with the base mod-
els’ probabilities for the predictions as well as two
pieces of meta data: the language of the original
input text and a boolean value about whether the
input text is augmented. The prediction from the
meta-model is the final output and submitted to the

"Wersion: 4.0.2. URL: https:/pypi.org/project/googletrans/
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English French Japanese Korean Chinese Sum
Before 71 68 29 92 211 471
251 247 295 290 110 1193
After 261 248 197 282 1266
287 305 358 443 232 1625

Table 1: A comparison table of the count of positive and negative classes for each language in training split. In each
diagonal box, the left number stands for the number of instances in positive class, while the right number is for the
negative class. A class is positive when the promise status is True. The first row shows the comparison before data
augmentation. The second row shows that affer data augmentation

evaluation website.

4 Experimental setup

In the process of data augmentation, we exclude
pages or sentences containing fewer than 16 words
to prevent the dataset from being populated with
simple word phrases or page headings. The train-
ing datasets for English, French, and Japanese lan-
guages include the text for classification directly.
In contrast, the Chinese and Korean datasets only
list the page number and PDF source. Hence, we
utilize the PyPDF2 library? to retrieve text from
specified pages of the Chinese and Korean PDFs,
serving as the input for the BERT models.

There are two experimental variables: with aug-
mented data or without, and either using multi-
lingual or monolingual text input (English transla-
tion), yielding a total of four configurations. As de-
scribed in Section 3.2, one BERT model is trained
for each configuration. When a model is trained
using monolingual data, it will likewise be evalu-
ated on the English translations of the input text in
both the development and test datasets. All BERT
models share the same hyper-parameters: they are
fine-tuned with a batch size of 16, and a learning
rate of 6e-6 over 20 epochs. The model with the
best macro F1 score is selected as the checkpoint.

Each of the four fine-tuned BERT models is eval-
uated on the development data split, and the result-
ing labels and probabilities are recorded. A logistic
regression model, built using the Scikit-learn li-
brary?, is then trained on the full development data
split, including BERT models’ outputs and addi-
tional metadata as detailed in Section 3.2. The
positive promise status is given the label id 0 and
the negative promise status is 1. The trained logis-
tic regression model is our meta-model. Finally,
we deploy our fine-tuned BERT models on the test
dataset, and use the meta-model on the BERT mod-

2Version: 3.0.1 URL: https://pypi.org/project/PyPDF2/
3Version: 1.3.1, URL: http://scikit-learn.org

els’ outputs and other meta data to generate final
predictions for the test data.

To generate labels for subtasks 2-4, we used
the GPT-40-mini model with retrieval augmented
generation as a classifier. In all cases, we set the
model’s temperature value to 1.0. First, we en-
coded all provided data points with the OpenAl
text-embedding-3-small embedding model. For
each subtask, we devised a system prompt that de-
scribed the problem and the expected model output.
For each test sample, we retrieved the three most
similar examples from the training data, included
them in the sample-specific prompt, and generated
the output label.

The Chinese and Japanese datasets included two
additional subtasks. For data points containing
a promise or evidence, we needed to extract the
corresponding string that included the promise or
evidence text. To do this, we split the input text
of each sample into a list of sentences and then
individually classified each sentence to determine
whether it contained a promise or evidence. Lastly,
we concatenated the relevant sentences for the final
output.

5 Results

Table 2 shows the results from all base BERT mod-
els and the meta-model on the test data perform-
ing promise status classification task. The XLLM-
roberta-large model trained in the multi-lingual set-
ting with original data (multi_ori) yields the best
results in three languages. The meta-model has the
best performance in Korean, while the augmented
data helps the XLM-roberta-large model to achieve
best result in Chinese in the multi-lingual setting.
Though the ensemble model does not have the best
performance for the most languages, it exhibits con-
stantly above average results compared to the base
models, and shows comparable robustness to the
best-performing base model in multi_ori setup.
Examining the results from using augmented
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English | French | Japanese | Korean | Chinese

mono_aug | 0.7288 | 0.7010 | 0.6496 | 0.7348 | 0.6659
mono_ori | 0.7595 | 0.7748 | 0.6436 | 0.7667 | 0.6547
multi_aug | 0.7546 | 0.6823 | 0.6771 | 0.7742 | 0.7010
multi_ori 0.7921 | 0.7864 | 0.7368 | 0.7727 | 0.6802
meta-model | 0.7767 | 0.7566 | 0.6631 | 0.7839 | 0.6821

Table 2: The table presents the Macro F1 scores of four BERT models and the meta-model on the test dataset
performing promise status classification task. The term mono refers to the monolingual setup, in which all languages
are translated into English, whereas multi denotes the multi-lingual setup, where the original languages of the texts
remain unchanged. Aug and ori represent the augmented and original configurations, respectively. In the augmented
setting, both the augmented and original data are utilized, whereas the original configuration relies solely on the
labeled data in the provided dataset. A logistic regression model is employed as the meta-model.

data versus solely utilizing original data without
augmentation reveals that augmented data consis-
tently enhances the model’s performance for Chi-
nese. This improvement might be attributed to the
fact that the original training data is significantly
biased towards the positive class, with Chinese be-
ing the only language exhibiting a class imbalance
favoring the negative class, as described in Table 1.
A similar data distribution pattern is observed in the
test data. The augmented data helps to dampen the
positive class bias, thereby enhancing the model’s
performance for Chinese. This proves that data
augmentation is beneficial in reducing the impact
of class biases.

When comparing the outcomes of using English
translations versus not using them, it is noticeable
that in most cases, experiments with monolingual
text perform worse than those with multi-lingual
text. This suggests that translating multi-lingual
content into a single language might not enhance
the model’s learning capabilities. However, This
difference could also stem from the variation in
model selection between multi-lingual and mono-
lingual contexts. In the future, a more detailed
investigation could be conducted using the same
BERT model across all experimental conditions to
examine the helpfulness of English translations.

Utilizing logistic regression as our meta-model
allows us to assess how each feature contributes
to the final output through its coefficients. Table 3
illustrates that all models’ predictions positively in-
fluence the logistic regression model’s result, with
the multi_ori experimental setup having the great-
est impact. This aligns with our findings in Table 2,
where the multi_ori model demonstrates superior
or competitive performance in all languages. Ad-
ditionally, Table 3 reveals that logistic regression

prediction | probability
mono_aug 1.232 -0.507
mono_ori 1.391 -0.586
multi_aug 0.535 -0.079
multi_ori 1.436 -0.09

Table 3: The table shows the logistic regression model’s
coefficients for base BERT model’s prediction and cor-
responding probability. The coefficients are rounded to
3 decimal places.

assigns negative coefficients to the base models’
probabilities for their predictions, thereby penal-
izing their confidence in their predictions. This
suggests that greater confidence from a base model
results in less trust from the meta-model. More-
over, this skepticism towards the confidence of base
models is less pronounced in multi-lingual con-
texts compared to monolingual contexts, further
corroborating our other observation that monolin-
gual settings underperform relative to multi-lingual
settings, and therefore, the meta-model places less
trust in them.

In addition to the base model’s predictions and
probabilities, we incorporate two metadata vari-
ables into the logistic regression: the language of
the data instance and whether it is augmented. Both
of these variables exert minimal to no influence
on meta-model’s output. The coefficient for the
language variable is 0.03. Being a logistic regres-
sion model, our meta-model treats each variable
independently, and thus, the language information
contributes little to the final result. Similarly, as an-
ticipated, the coefficient of the augmented variable
rounds to 0 when rounded to three decimal places.
As the meta-model is trained using the develop-
ment data split that consists solely of original data,
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this variable lacks any decision-making authority.

6 Conclusion

This paper describes our contribution to the first
subtask of SemEval-2025 Task 6, promise identi-
fication. We deploy an ensemble of four BERT
models trained in different experimental configu-
rations and use logistic regression as meta-model.
Our results show that the BERT model trained with-
out augmented data or English translation has the
best performance in most languages.

For future work, one can try out other meta-
models that take relations between base model pre-
dictions and meta data into account. On the base
model side, we can use multi-modal models to take
PDF page directly as input to improve the varieties
of base models. Furthermore, we believe a more
sophisticated data cleaning pipeline for extracted
text from PDFs can also potentially improve the
base BERT model’s performance.
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Abstract

This paper presents the system for Task 7, Mul-
tilingual and Crosslingual Fact-Checked Claim
Retrieval. YNU-HPCC team participated in all
subtasks of this task and employed the same
unified framework to obtain results. The task in-
cludes two subtasks: monolingual and crosslin-
gual. Our approach explores the integration of
multiple embedding models to address these
subtasks. These embedding models were ex-
plicitly fine-tuned for the task, and weighted co-
sine similarity was utilized for result prediction.
Extensive experiments were conducted on de-
velopment and test datasets. The comparative
results show that (I) The integration of multiple
embedding models has been demonstrated to
significantly enhance retrieval accuracy, partic-
ularly in cross-lingual fact-checking retrieval
tasks; (II) Translating text may degrade the
retrieval performance of cross-lingual embed-
ding models; (III) Using GTE multilingual base
model and Jina model for ensemble achieves
near-optimal performance, effectively balanc-
ing efficiency and computational cost.The code
of this paper is available at https://github.
com/catoraa/semeval2025-task?7.

1 Introduction

Fact-checking is a task designed to evaluate the ac-
curacy of published statements or claims. Manual
fact-checking poses significant challenges in the
contemporary media ecosystem, which is marked
by extensive data volumes and rapid dissemina-
tion. This task is often time-consuming and
labor-intensive for professional fact-checkers, even
within a single language. The complexity increases
when claims and fact-checks span multiple lan-
guages, making manual completion even more
arduous. Previous research has established auto-
mated fact-checking retrieval’s high feasibility and
systematic potential (Guo et al., 2022).

Therefore, SemEval 2025 Task 7 (Peng et al.,
2025) focuses on Automated Fact-Checked Claim

Retrieval, encompassing Multilingual and Cross-
lingual scenarios. This paper designs a retrieval
system based on embedding models and semantic
similarity for this task. We employed four em-
bedding models, including BGE-M3 model (Chen
et al., 2024), GTE base model (Zhang et al., 2024),
jina embeddings v3 model (Sturua et al., 2024),
and ES5 large model (Wang et al., 2024), as founda-
tional models, fine-tuned them using the Hugging
Face Trainer, and finally integrated them through a
weighted approach to derive the final cosine simi-
larity.

The experimental results of this paper were pre-
sented in Task 7 of SemEval 2025. On the original
dataset, the system achieved an success@10 of 0.92
in the Monolingual task, ranking 11¢h, and 0.77 in
the Cross-lingual task, ranking 11¢h.

The rest of the paper is structured as follows:
Section 2 summarizes recent fact-checking retrieval
advancements.Section 3 describes the proposed sys-
tem and models. In Section 4, the experimental
details and parameter selection are elaborated. In
Section 5, the comparison and analysis of the ex-
perimental results are discussed, and in Section 6,
the conclusions are presented.

2 Related Work

Contemporary fact-checking predominantly rely
on large LLMs or pre-trained models for retrieval
and verification.These approaches typically inte-
grate LLMs with existing evidence for judgment or
leverage semantic similarity assessments through
pre-trained embedding models.

For instance, Cheung proposed the FactLLaMA
system, which enhances the temporal relevance
and accuracy of information in fact-checking tasks
by employing instruction-based fine-tuning and
LoRA methods (hin Cheung and Lam, 2023).Sing-
hal developed a system for fact-checking us-
ing LLMs, constructed on the basis of RAG
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Figure 1: The process of semantic similarity calculation was implemented using the sentence-transformers and
embedding models fine-tuned on the training data. Weighted cosine similarity was computed to assess the semantic

relevance between posts and fact checks.

(Retrieval-Augmented Generation) and ICL (In-
Context Learning) (Singal et al., 2024).Li explored
self-instruction techniques to improve LLMs’ ca-
pability in evaluating semantic similarity and rele-
vance (Li et al., 2024).Khaliq introduced the RA-
GAR system, which combines LLMs with RAG to
enhance verification accuracy (Khaliq et al., 2024).

In contrast to conventional methods, Liu investi-
gated the use of LSTM integrated with the Atten-
tion Mechanism for the classification and judgment
of factual information, demonstrating promising
results. (Liu et al., 2019a).

A critical challenge in these approaches lies in
efficiently retrieving relevant information, as they
heavily depend on direct factual evidence or contex-
tual corroboration. Samarinas designed the Quin+
passage retrieval module, which employs embed-
ding models and semantic similarity metrics for
evidence retrieval (Samarinas et al., 2021). Simi-
larly, Nanekhan proposed corpus compression and
index compression techniques to improve retrieval
efficiency through vector quantization (Nanekhan
et al., 2025).

Recent advances in cross-lingual pre-trained
models, such as XLM-RoBERTa (Liu et al., 2019b)
and mBERT (Pires et al., 2019), have significantly
advanced multilingual fact-checking research. Saw-
inski explored the use of fine-tuned multilingual
BERT models for fact-checking retrieval tasks
(Sawinski et al., 2024). Liu investigated multi-
lingual sentence embedding representations using
sentence-transformers and XLM-RoBERTa archi-
tectures, demonstrating the potential of these mod-
els in the evaluation of cross-lingual semantic simi-
larity (Liu et al., 2022).

3 System Overview

3.1 Sentence-Transformers

Sentence-Transformers (Reimers and Gurevych,
2019) (Reimers and Gurevych, 2020) is an architec-
ture developed based on pre-trained Transformer
models, which generates fixed-dimensional sen-
tence embeddings by adding a pooling layer. Since
sentence embeddings are precomputed and stored,
this approach is well-suited for efficient retrieval in
large-scale scenarios.

Unlike cross-encoders, Sentence-Transformers
employ a dual-encoder structure, where the em-
bedding model with shared weights independently
encodes the input sentences, mapping each fact-
check and posts sentence x; to a vector v;. Us-
ing a cosine similarity function F', the distance
between v; and all other vectors can be calculated,
thereby measuring the semantic similarity between
sentences . Finally, we select the top 10 vectors v;
with the closest distances, and the corresponding
fact-checks are identified as similar instances. The
following functions can formulate this process:

VU
F(vi,v5) = [lvi — UjHZ or [ H2||vjj||2 @)
vfk’se“ = arg min F(S(zs),S(z;)) 3)

je{1,..,NYnj#i

The Sentence-Transformers architecture aims to
bring semantically similar sentences closer together
in the embedding space while pushing semantically
dissimilar sentences further apart. Therefore, this
architecture can be trained using methods based
on contrastive learning and triplet loss to optimize
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the capability of calculating semantic similarity for
sentence embeddings.

3.2 Embedding Models

Four high-performing embedding models were
integrated into the system, including BGE-M3,
gte-multilingual-base, jina-embeddings-v3, and
multilingual-e5-large-instruct.

BGE-M3 (Chen et al., 2024), developed by
BAALI, is a multilingual embedding model capa-
ble of handling input data at varying granularities.
Its standout feature is self-knowledge distillation,
which integrates relevance scores from diverse re-
trieval functions as teacher signals to enhance train-
ing quality. Additionally, the model employs an
optimized batching strategy, enabling large batch
sizes and high training throughput to improve em-
bedding distinctiveness. The proposed system’s
baseline was constructed based on this embedding
model, which yielded favorable results.

GTE (Zhang et al., 2024), introduced by Al-
ibaba, is a multilingual embedding model that uti-
lizes Rotary Position Embedding (RoPE) as its text
encoder, effectively capturing semantic informa-
tion in long texts. Furthermore, the model was
trained and fine-tuned using contrastive learning,
achieving performance comparable to BGE-M3.

Jina (Sturua et al., 2024), built on the XLM-
RoBERTa architecture, was optimized for multilin-
gual long-text and multi-task scenarios. To enhance
the efficiency of long-text encoding, the model also
incorporates Rotary Position Embedding (RoPE).
Additionally, it supports the integration of LoRA
adapters to generate task-specific embeddings, sig-
nificantly reducing fine-tuning costs.

Multilingual-ES (Wang et al., 2024), an en-
hanced version of multilingual-e5-large, is distin-
guished by its support for instruction tuning, allow-
ing task-specific adaptation through guided instruc-
tions. This method was employed in our system
to provide appropriate instruction guidance during
the fine-tuning process.

3.3 Models Ensemble

We integrated the four models by computing a
weighted cosine similarity (Henderson et al., 2017).
Specifically, we first calculated the cosine simi-
larity arrays individually for each model. These
arrays were then summed using respective weights
to obtain the final cosine similarity array, which
could subsequently be used for semantic similarity

calculations. The following function can represent
this process:

n
Ffinal :szFz 4)
i=1

where w; represents the weights assigned to the
cosine similarity arrays from the embedding mod-
els, respectively. Given that the performance of
the four models was comparable, assigning them
equal weights was considered reasonable. We set
w] = wg = w3 = wy to ensure an equal contribu-
tion from each model.

4 Experiment Details

4.1 Datasets

The datasets used for monolingual and cross-
lingual tasks are consistent, with the distinction
between tasks made through the [task.json] file.
The dataset comprises three subsets: fact-checks,
posts, and pairs. Fact-checking data includes verifi-
cation results for claims made on social media or
the internet, with each record containing informa-
tion and content about a verified claim. The post
data contains information about posts on social me-
dia platforms (such as Facebook and Twitter) and
their authenticity assessments. The pairs file an-
notates the IDs of highly relevant fact-check-post
pairs, which can be used for subsequent model
training and fine-tuning.

To facilitate model training and fine-tuning, we
filtered and augmented the datasets. We extracted
the claim and title columns from the fact-checks
dataset as key information, removed unnecessary
symbols, and concatenated them to create a new
fact-checks file. For the posts data, we extracted
the ocr and verdict columns, performed similar
filtering and concatenation, and formed a new posts
file. We directly replaced the sentence IDs with the
sentences for the pairs file, ultimately obtaining a
highly usable training set.

4.2 Model Selection

Based on the ranking results from the MTEB leader-
bo