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Abstract

Multilingual large language models have
emerged as a promising solution for resource-
constrained settings, with significant efforts
aimed towards improving multilingual capa-
bilities of English-centric pretrained models.
However, the broader cross-lingual implica-
tions of fine-tuning interventions remain under-
studied. This work examines instruction tuning
(IT) over the BLOOMZ model for Question
Answering (QA) in low-resource settings, with
special emphasis on transfer dynamics across
several languages. Our findings reveal two crit-
ical insights: first, IT on the target language
can negatively impact its own performance in
constrained short-span generation tasks due to
overgeneration tendencies; second, in QA tasks,
IT appears to suppress performance in some
interfering languages, thereby enhancing capa-
bilities in some target Indic languages by more
than doubling QA performance. These results
highlight important trade-offs in multilingual
LLM adaptation and enhance our understand-
ing of cross-lingual transfer mechanisms.

1 Introduction

Large language models (LLMs) excel in tasks like
classification, text generation, and information ex-
traction. Recently, cross-lingual alignment has
been widely studied to enhance the multilingual
capabilities of LLMs (Zhu et al., 2024; Zhang et al.,
2024; Hu et al., 2021). Since most of the world’s
languages can be deemed low-resource owing to
the limited amounts of high-quality data (Asai et al.,
2024; Razumovskaia et al., 2024), cross-lingual
alignment is an important problem to tackle.

Prior work on multilinguality has largely focused
on cross-lingual dynamics within English-centric
models and pretrained decoder-only models (Zhao
et al., 2024; Xu et al., 2023; Wendler et al., 2024).
In this work, we study the cross-lingual abilities of

BLOOMZ, a multilingual, multi-task instruction-
tuned model (Muennighoff et al., 2023; Scao et al.,
2022). We focus on a constrained generation task,
closed question answering (QA), that can be ob-
jectively evaluated (unlike open-ended generation
tasks like machine translation) while still being
vulnerable to generation-related artefacts (unlike
classification tasks). We examine the impact of
instruction tuning (IT) on QA on several Indic
and non-Indic languages. Surprisingly, we find
significant performance improvements using lan-
guages that transcend language family relatedness
and surface-level script similarities, indicating that
BLOOMZ exhibits cross-lingual generalization be-
yond typological proximity (Ifergan et al., 2024).
We also present a new multilingual logit lens-based
analysis to provide more insights into cross-lingual
dynamics that result in performance improvements
or degradations. Our analysis reveals two key phe-
nomena: 1) Suppression of the target language
and 2) a tendency to over-generate in the target
language, both of which significantly affect the
model’s output as illustrated in Figure 1.

Alignment with prior work. A growing consen-
sus from recent work (Zhao et al., 2024; Wendler
et al., 2024) is that English-centric models like
Llama (Touvron et al., 2023) and Mistral (Jiang
et al., 2023) process multilingual prompts by in-
ternally mapping to an English “thinking space”
in intermediate layers, while the initial and final
layers are multilingual in nature. Concurrent work
explores language-specific neurons in the multi-
lingual LLMs and reveals their significant roles
in the outer layers (Tang et al., 2024; Zhu et al.,
2024). Kargaran et al. (2024) argues that stronger
alignment between English and non-English mid-
dle layer embeddings correlate with better cross-
lingual transfer.

While current LLMs and adaptation methods
demonstrate promising surface-level cross-lingual
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େଟସ୍ଲା ତାଙ୍କ କୃତିତ୍ଓ ଏବଂ େଶାେମନସିପ ପାଇଁ ପ୍ରସିଦ୍ଧ ଥିେଲ, ପରିେଶଷେର ଏହା ତାଙ୍କୁ ଏକ ଆର୍କିଟାଇପାଲ "ପାଗଳ େବୖଜ୍ଞାନିକ" …
Q: ତାଙ୍କର େବୖଜ୍ଞାନିକ ସଫଳତା ବ୍ୟତୀତ େଟସ୍ଲା କ’ଣ ପାଇଁ ପ୍ରସିଦ୍ଧ ଥିେଲ?
[(Odia Sample) Translation: Apart from his scientific achievements, what was Tesla famous for?]

শେ◌ାମে◌নিসপ
(Contains bengali 

characters)

େଶାେମନସିପ
(Showmanship)

ਦੱਖਣੀ ਕੈਲੀਫ਼ੋਰਨੀਆ ਿਵੱਚ ਇੱਕ ਸੰਯੁਕਤ ਅੰਕਿੜਆਂ ਸੰਬੰਧੀ ਖੇਤਰ, ਅੱਠ ਮਹਾਂਨਗਰੀ ਅੰਕਿੜਆਂ ਸੰਬੰਧੀ ਖੇਤਰ, ਇੱਕ …
Q: ਅਲ ਸੈਂਟਰੋ ਮਹਾਨਗਰੀ ਖੇਤਰ ਅਤੇ ਸੈਨ ਦੀਏਗੋ-ਕਾਰਲਸਬੈਡ-ਸੈਨ ਮਾਰਕੋਸ ਮਹਾਨਗਰੀ ਖੇਤਰ ਕੀ ਬਣਾਉਂਦੇ ਹਨ?
[(Punjabi Sample) Translation: What makes up the El Centro metropolitan area and the San Diego-Carlsbad-San 
Marcos metropolitan area?]

द�क्षिणी ਸਰਹੱਦੀ 
ਇਲਾਕਾ

(Contains hindi 
characters)

ਦੱਖਣੀ ਸਰਹੱਦੀ ਇਲਾਕਾ
(Southern Border 

Region)

Einige moderne Gelehrte, wie Fielding H. Garrison, sind der Meinung, dass die Ursprünge der …
Q: Fielding H. Garrison glaubt, wohin lässt sich die Wissenschaft der Geologie zurückverfolgen?
[(German Sample) Translation: Fielding H. Garrison believes that the science of geology can be traced to where?]

Persien
(Persia)

Persien, nach Ende 
der muslimischen 

Eroberung
(Persia, after the end 
of muslim conquest)

BASE de-MT-IT

❌

❌

❌

✔ 

✔ 

✔ 

Figure 1: Examples demostrating that Instruction tuning on a small German-QA train set (generated via NLLB-MT)
improves Odia and Punjabi performance by suppressing interference from Bengali and Hindi, respectively, but leads
to overgeneration on German. Complete passages omitted for brevity.

abilities (on tasks like style transfer), they struggle
with deeper cross-lingual reasoning and knowledge
transfer. This limitation suggests the presence of a
cross-lingual knowledge barrier, as noted by Chua
et al. (2024). Towards addressing this gap, it has
been observed that fine-tuning on certain languages
can improve the performance of others, indicat-
ing the presence of cross-lingual bridging mecha-
nisms (Singh et al., 2024b; Bai et al., 2024; Ifergan
et al., 2024; Wang et al., 2024; Bai et al., 2023).
Our experiments also support this possibility of
cross-lingual bridging mechanisms. Our findings
align with Ifergan et al. (2024) who documented
BLOOM’s unique ability to facilitate factual recall
across languages with different scripts.

2 Methodology

2.1 Logit Lens

Understanding how knowledge propagates through
the layers of a model is critical for gaining insights
into the internal workings of multilingual LLMs.
One such interpretive tool is the Logit Lens, in-
troduced by nostalgebraist (2020). This technique
provides a mechanism to probe the latent repre-
sentations in intermediate layers by mapping them
directly to vocabulary probabilities using the last
layer’s linear language modeling head. In prior
work, Zhao et al. (2024) used logit lens to inves-
tigate the multilingual alignment of intermediate
representations in Vicuna-13B-v1.5 (Chiang et al.,
2023) and BLOOMZ-7B1 (Muennighoff et al.,
2023). Similarly, Wendler et al. (2024) utilized
logit lens to analyze intermediate representations
in Llama models (Touvron et al., 2023) to measure

the token probabilities for English and Chinese
words across different layers.

2.2 Probing for Language Identification

In our work, we adopt the logit lens framework to
examine the flow of linguistic knowledge across
the layers of BLOOMZ-7B1 for a diverse set of
languages1. Our analysis leverages Cook and Lui’s
(2012) langid.py script, which assigns a probabil-
ity distribution over languages for each token in the
model’s vocabulary. Tokens composed solely of
punctuation or numeric digits (0–9) are excluded,
as they do not belong to a specific language and
add noise to the analysis. The langid.py tool
supports 96 languages, covering all languages in
our experiments. We compute per-layer language
probabilities by multiplying the per-token language
probabilities with the token probabilities obtained
from layer embeddings transformed via the lan-
guage modeling head. To ensure statistical robust-
ness, this process is repeated across multiple test
set samples, and the final latent probabilities are
derived by averaging the language distributions
across all samples. Equation 1 estimates probabil-
ity of language L at a layer j, given a dataset of
task-specific examples D and a vocabulary V .

Pj(L) =
1

|D|
∑

Di∈D

∑

t∈V
Pj(t|Di)P (L|t) (1)

Further details about formatting of the question and
context in each task-specific example is given in
Appendix A.

1Code and dataset is available at https://github.com/
Sachi-27/Multilingual-NLP.
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Figure 2: Comparison of logit lens plots for the BLOOMZ base model before and after German IT (de-IT
i.e.,instruction tuning on the German train set), evaluated on Odia (or), Punjabi (pa) and German (de) xquad test
sets. For or-xquad and pa-xquad, the plots consider samples corrected after de-IT. In contrast, for de-xquad, the
plots consider samples degraded after de-IT. Whether the response is corrected or degraded is decided based on the
Exact Match Metric.

Unlike naive token frequency analyses, this
method gives a probabilistic measure of language
dominance, allowing us to capture subtle shifts in
multilingual representation.

2.3 Experimental Setup

We conduct our experiments using the BLOOMZ-
7B12 model and the multilingually parallel dataset,
IndicGenBench’s XQuAD-IN (Singh et al., 2024a),
which comprises data in 12 Indic languages and
English. From this dataset, we utilize 103 context-
question-answer triplets for training for 10 epochs.
To construct a parallel training set for non-Indic
languages, we leverage translations from NLLB
(Costa-jussà et al., 2022) and Opus-MT (or Mar-
ianMT) (Tiedemann et al., 2023). Non-Indic
test sets are sourced from the XQuAD dataset
in the TensorFlow dataset library (Artetxe et al.,
2019). Additionally, for robustness, we incorpo-
rate IndicQA (Doddapaneni et al., 2023), an out-
of-domain question-answering dataset in Indic lan-
guages3. All experiments are evaluated in a zero-
shot setting. The metrics are reported using Token-
F1 and Exact Match scores (Rajpurkar et al., 2016).

2Choice is constrained by the model’s multilingual nature
and QA-specific instruction tuning.

3Other datasets like TyDiQA and MLQA are leaked into
BLOOMZ and thus unsuitable for evaluation.

More details are in Appendix B.

3 Results and Discussion

Suppression for Performance Improvements.
We highlight Token-F1 scores for 5 Indic lan-
guages: Gujarati (gu), Kannada (kn), Malayalam
(ml), Odia (or), and Punjabi (pa) as these showed
significant improvements in performance. Metrics
are presented in Table 1, with the detailed results
for all languages is available in Appendix D. No-
tably, with just 103 Russian-translated samples, we
observe significant improvements, particularly a
doubling of performance for the low-resource lan-
guage Odia.

Through analysis of the multilingual logit lens
plots (Figure 2), we identify distinct “hill-like" pat-
terns in the middle-layer latents of languages such
as German (de), Estonian (et), Swedish (sv), Xhosa
(xh), Finnish (fi), Indonesian (id), and Malay (ms).
We verify that, to some extent, these languages can
facilitate cross-lingual transfer, in accordance with
the findings of Zhao et al. (2024). We compare the
logit lens plots for or-xquad and pa-xquad test sets
between the base model and the de-IT model (i.e.,
the base model finetuned on German train set). We
focus on samples where the base model answers
wrongly, but the de-IT model provided correct pre-
dictions, shown in Figure 2. These plots highlight
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Method gu kn ml or pa
Base 60.81 48.52 49.07 25.90 55.80
en-IT 56.05 50.96 49.26 31.65 63.56
gu-IT 43.68 48.06 44.73 43.30 53.47
kn-IT 58.76 48.87 50.03 51.68 66.01
ml-IT 58.88 53.74 43.21 52.56 68.88
or-IT 50.32 48.12 45.49 48.11 61.67
pa-IT 53.78 50.06 48.03 48.34 58.63

de-MT-IT 63.90 57.83 52.66 49.86 70.99
et-MT-IT 66.18 56.17 53.06 38.29 68.41
fi-MT-IT 64.48 57.10 55.35 43.78 70.42
ru-MT-IT 59.75 55.66 51.16 56.38 68.32
sv-MT-IT 65.06 58.27 53.72 50.96 70.28
th-MT-IT 65.15 58.92 55.09 51.22 71.80
tr-MT-IT 65.91 56.89 54.20 48.38 71.57
xh-MT-IT 62.93 57.94 54.90 49.27 71.34

Table 1: Token-F1 scores of Instruction Tuned (IT)
models evaluated on XQuAD-IN test set. Languages
denoted with "MT" indicate training data generated
via NLLB machine translation from the English train
set. Performance rankings are visually indicated with
green (highest) and blue (second highest).

Model or (XQuAD-IN) or (IndicQA)
Base 25.90, 17.05 26.82, 13.68
or-IT 48.41, 30.08 35.64, 18.37
de-MT-IT 49.86, 32.94 46.14, 27.91
sv-MT-IT 50.96, 33.52 43.61, 26.11

Table 2: Performance metrics (Token-F1 score, Exact
Match Score) of Instruction-Tuned models evaluated on
Odia test sets from XQuAD-IN and IndicQA.

token suppression in related languages, such as the
reduction in Bengali and Assamese latent proba-
bilities in the final layers for Odia, and the simi-
lar suppression of Hindi, Marathi, and Nepali for
Punjabi. This in turn results in an increase in the
last-layer probabilities for the target languages –
Odia and Punjabi, in this case – that correlates with
performance improvements. Similar trends are also
observed across other languages, as detailed in Ap-
pendix C.

We also conduct out-of-domain evaluations us-
ing the IndicQA Odia datasets, comparing perfor-
mance on or-xquad with different languages for
instruction tuning. Our findings reveal similar per-
formance gains, as shown in Table 2.

High-Resource Fine-Tuning is Not Universally
Beneficial. Contrary to prior work, our find-
ings challenge the notion that fine-tuning on high-
resource languages universally improves perfor-

mance across the multilingual spectrum. The per-
formance metrics of en-IT model on gu-xquad test
set serves as a clear example of this. Surprisingly,
certain medium to low-resource languages, such as
Kannada, Malayalam, Thai and Turkish contribute
significantly to overall model improvement. This
suggests that the effectiveness of fine-tuning lan-
guages in enhancing alignment and generalization
is not solely dependent on data availability.

Self-performance trade-off. Self-IT (i.e., IT us-
ing language X evaluated on test samples of lan-
guage X) appears to negatively impact perfor-
mance on QA-style tasks that require concise, span-
based answers. This is likely due to the model’s
tendency to generate verbose (and sometimes hal-
lucinatory) responses, that negatively affects task
accuracy. Logit lens plots in Figure 2 illustrate
this tendency for de-IT on de-xquad, with rising
latent probabilities in the final layers indicative of
over-generation.

Better Translation Quality Leads to Improved
Cross-Lingual Transfer. Results in Tables 3 and
11 are consistent. For example, in Indonesian,
NLLB generated translations are of better quality,
correlating with better performance on IT. Logit
lens visualizations (Figure 8) shows that IT with
MarianMT translations struggles with Bengali sup-
pression, while IT with NLLB translations enables
Odia to surpass Bengali, aligning with id-IT gains.
More details are in Appendix D.

IT Lang MT Model BLEU gu kn ml or pa
Base - - 60.81 48.52 49.07 25.90 55.80

id
MarianMT 19.99 51.13 44.46 34.40 21.96 55.57

NLLB 46.97 54.52 48.52 37.52 32.95 61.00

xh
MarianMT 8.42 59.36 55.22 53.34 46.18 68.88

NLLB 23.88 62.93 57.94 54.90 49.27 71.34

Table 3: Comparison of IT models trained on machine
translated training data using MarianMT vs NLLB and
evaluated on XQuAD-IN test set. Here, green high-

lights the higher Token-F1 scores and blue highlights
MT with higher BLEU scores.

4 Conclusion

This work highlights the intricate nature of multilin-
gual task specific fine-tuning and its diverse effects
across languages. We demonstrate that instruction
tuning with a very small set of samples is unlikely
to acquire substantial new knowledge, but can in-
duce shifts in linguistic structures, particularly in
the later layers, leading to suppression of inter-
fering language latents, contributing to improved

50



performance. However, these improvements are
neither uniform nor guaranteed, as high-resource
fine-tuning does not always yield positive effects,
and self-IT performance trade-offs often emerge.
Moreover, the quality of training data significantly
influences outcomes, with better translation qual-
ity directly correlating with improved multilingual
alignment.

5 Limitations

Our study highlights the significance of latent struc-
tures in the intermediate layers of multilingual mod-
els, emphasizing their role in cross-lingual transfer-
ability. We also demonstrate that instruction tuning
impacts performance across languages differently,
influenced by their intrinsic characteristics and re-
source levels. However, our analysis is subject to
several limitations. Our experiments focus only
on the task of span-based question answering and
one specific multilingual model, BLOOMZ. Other
multilingual models such as Gemma-7B (Team
et al., 2024) and Aya-13B (Üstün et al., 2024) ex-
hibit very irregular and unstructured logit lens plots.
Their plots deviate from the multilingual hypothe-
sis (Zhao et al., 2024), which posits that multilin-
gual models predominantly "think" in English or
Latin-centric representations. Instead, these mod-
els exhibit a significant mix-up in thinking across
languages and deviate from "hill" type latent rep-
resentations, indicating a different latent structure
than what is typically observed in conventional
Latin-centric multilingual models. This restricts
the generalizability of our findings to other mod-
els and task types. Finally, although we observe
that languages like German (de) and Swedish (sv)
trigger suppression to improve performance, the
underlying mechanism behind this phenomenon
remains unclear, warranting further investigation.
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A Multilingual Logit Lens
Implementation Details

The language confidences scores for each token are
obtained from langid.py and stored in a token-
language probability table, T , where Tij represents
the probability of token ti belonging to language j.
Mathematically, this can be represented as:

Ttl = σ
(
clangid(t, l)

)
(2)

where clangid(t, l) denotes the confidence score out-
put by langid.py for token t belonging to each
language l, and σ is the softmax function, ensuring
that the probabilities across all languages sum to
1 for every token. We exlude tokens consisting of
only numbers and punctuation marks, by zeroing
all entries in the table corresponding to such a to-
ken t. For BLOOMZ-7B1, there are 6,269 such
tokens out of 250,680 in its vocabulary.

For each input sample, the logit lens is applied to
the embeddings h(j)n at every layer j of the model
for the last input token xn. The logits obtained
from these embeddings are then transformed into
language probabilities by mapping them with the
token-language probability table T . This mapping
is expressed as:

P (lang = l | h(j)n ) =
∑

t

Ttl · σ(logit(h(j)n ))[t]

(3)

where σ(logit(h(j)n )) represents the logits of the em-
bedding h

(j)
n obtained after passing the embedding

through the linear modelling head. This operation
provides a distribution over languages for the em-
beddings at every layer j. Additionally, to address
a specific model behavior, we implement proba-
bility zeroing for tokens corresponding to "A:" in
the initial layers. This post-processing step is nec-
essary because the model exhibits a tendency to
overly weight "A:" tokens, due to their presence as
the final token in the input prompt (Table 4).

[Context in Target Language]

Q: [Question in Target Language]
A:

Table 4: Standardized prompt template for Question
Answering, aligned with the format used in IndicGen-
Bench.

B Experimental Setup Details

B.1 Datasets
The dataset splits used in our experiments are re-
ported in Table 5. IndicGenBench’s XQuAD-IN
consists of English (en) and 12 Indic languages:
Assamese (as), Bengali (bn), Gujarati (gu), Hindi
(hi), Kannada (kn), Malayalam (ml), Marathi (mr),
Odia (or), Punjabi (pa), Tamil (ta), Telugu (te), and
Urdu (ur). The test set comprises 1,190 examples
and is fully parallel with the XQuAD dataset from
the TensorFlow Datasets (TFDS) library. For train-
ing, XQuAD-IN includes a subset of 103 examples
from the English training set of TFDS-XQuAD. To
ensure parallelism and maintain consistency across
instruction tuning (IT) experiments, we use this
103-example subset and translate it into other lan-
guages for fine tuning.

While the TensorFlow Datasets (TFDS) version
of XQuAD contains training data for German (de),
Russian (ru), Thai (th), Turkish (tr), Greek (el),
Spanish (es), and Vietnamese (vi), our goal was
to ensure a small parallel dataset across languages
to fairly investigate cross-lingual effects. There
are two key reasons why we opted for additional
translations: 1, Avoiding bias from dataset discrep-
ancies and 2, Consistency in machine translation
sources.

To evaluate generalization, we also incorporate
IndicQA, an out-of-domain question-answering
test dataset covering the same 11 Indic languages as
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Dataset Train Val Test

XQuAD-IN 103 111 1190
TFDS-XQuAD ~80K ~10K 1190
IndicQA - - ~1K

Table 5: Dataset Splits

XQuAD-IN, excluding Urdu. Unlike XQuAD-IN,
IndicQA is not parallel across languages.

B.2 Instruction Tuning Details

We utilized prompts tailored to the QA task as in
Singh et al. (2024a). The causal language model
(LM) is fine-tuned for 10 epochs using the PEFT
LoRA framework (Mangrulkar et al., 2022), with
updates restricted to the query-key-value layers of
BLOOMZ. The fine-tuning follows a causal LM ob-
jective, maximizing the likelihood of generating the
next token given the previous tokens. The process
optimizes the generative probability of the com-
plete prompt, which includes the context, question,
and the correct response as shown in 4. Key hyper-
parameters for fine-tuning include a learning rate
of 2× 10−4, LoRA rank r = 64, and α = 16. All
experiments were conducted on a single NVIDIA
A100-SXM4-80GB GPU, with a max runtime of 3
minutes for 103 samples over 10 epochs.

argmin
ϕ

∑

P={C,Q,R}∈D
− log pϕ(P) (4)

B.3 Evaluation

We conducted evaluations on the XQuAD-IN and
TFDS test sets in a zero-shot setting. The outputs
generated by the LLM are compared with the ref-
erence answers using the widely adopted SQuAD
evaluation metrics (Rajpurkar et al., 2016). This
reports the Token-level F1 score, which measures
the overlap between predicted and ground-truth
tokens, considering partial matches and the exact
match (EM) score, which measures the strict match
between the predicted answer and the reference.
We used evaluations on the base BLOOMZ-7B1
model as the baseline. Our results are based on
a single run, which is reproducible by setting ran-
dom seeds. The generation process follows con-
trolled decoding with top-k sampling (k = 50),
nucleus sampling (top-p= 0.95), and generating a
single output sequence (num_return_sequences=1)
at temperature= 0.1.

C Logit Lens Plots

Figures 3 and 4 display the logit lens plots for
Odia and Punjabi samples where both the base and
de-IT models make the same correct predictions.
Similar, albeit less pronounced, suppressions are
observed for Gujarati, Malayalam, and Kannada
in XQuAD-IN, leading to minimal performance
gains (Figure 5). Comparable trends are observed
for other IT languages, as detailed in Appendix
Figures 6 and 7.

ISO Code Language ISO Code Language
as Assamese bn Bengali
de German el Greek
en English es Spanish
et Estonian fi Finnish
fr French hi Hindi
id Indonesian kn Kannada
ml Malayalam mr Marathi
ms Malay or Odia
pa Punjabi ru Russian
sv Swedish ta Tamil
te Telugu th Thai
tr Turkish vi Vietnamese
xh Xhosa

Table 6: ISO Code to Language Mapping

D Complete Metrics

We report the complete performance metrics on the
XQuAD-IN test set for its 12 Indic languages in
Tables 7 and 8. Additionally, we present scores
on the TFDS XQuAD test sets for 7 languages in
Table 9. Malay (ms) is excluded from our analysis
because NLLB doesn’t support it. We report the
IndicQA test performance for 6 languages across
several selected IT languages in Table 10. Further-
more, we present complete performance metrics
of IT models trained on 6 middle-layer hill lan-
guages (de, et, fi, id, sv, and xh). The training data
are machine translated from English. Performance
comparisons of MarianMT and NLLB generated
train data are provided in Tables 11 and 12. To
measure translation quality, we use BLEU scores
for the training contexts, comparing MT-generated
outputs against Google Translate generations (used
as ground truth).
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Figure 3: Logit lens analysis of the BLOOMZ model before and after German IT (de-IT) on Odia test data (or-xquad).
The plots illustrate three scenarios considering: all samples, samples with correct predictions across both models,
and newly corrected samples—those misclassified by the base model but correctly predicted after de-IT. Samples
with correct predictions on base model have low interference. Correction of predictions occur where Bengali (bn)
and other interference (Assamese (as) and Arabic (ar)) is suppressed and replaced by stronger Odia (or) signals.
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Figure 4: Logit lens analysis of the BLOOMZ model before and after German IT (de-IT) on Punjabi test data
(pa-xquad). The plots illustrate three scenarios considering: all samples, samples with correct predictions across
both models, and newly corrected samples—those misclassified by the base model but correctly predicted after
de-IT. Samples with correct predictions on base model have low interference. Correction of predictions occur when
interfering latents of Hindi (hi), Marathi (mr) and Nepali (ne) are suppressed and replaced by stronger Punjabi (pa)
signals.
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Figure 5: Comparison of logit lens plots for the BLOOMZ model before and after German IT (de-IT), evaluated
on test data from Malayalam (ml), Gujarati (gu) and Kannada (kn) xquad test sets. The plots consider samples
misclassified by the base model but correctly predicted after de-IT. There is a rise in test language probability in the
last layers after de-IT indicating stronger signals correlating with improved performance.
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Figure 6: Comparison of logit lens plots for the BLOOMZ model before and after Swedish IT (sv-IT), evaluated on
test data from Odia (or), Punjabi (pa) and Kannada (kn) xquad test sets. The plots consider samples misclassified by
the base model but correctly predicted after sv-IT. There is a rise in Kannada latent in the last layers after sv-IT
indicating stronger signals correlating with improved performance. Suppression of interfering languages in Odia
and Punjabi after sv-IT correlates with improved performance.
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Figure 7: Comparison of logit lens plots for the BLOOMZ model before and after Thai IT (th-IT), evaluated on test
data from Malayalam (ml), Punjabi (pa) and Kannada (kn) xquad test sets. The plots consider samples misclassified
by the base model but correctly predicted after th-IT. Suppression of interfering last layer latents in Punjabi and
rising last layer signals in Malayalam and Kannada correlate with improved performance.
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Figure 8: Logit lens comparison of the BLOOMZ model before and after Indonesian IT (id-IT), utilizing training
data derived from the English parallel subset of IndicGenBench with machine translations from MarianMT (Helsinki-
Opus) and NLLB. The analysis is conducted on all test samples from Odia (or) and Punjabi (pa) xquad test sets.
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Token F1, EM gu kn ml or pa ur
Base 60.81, 43.94 48.52, 32.35 49.07, 33.44 25.90, 17.05 55.80, 38.73 67.75, 49.07
as-IT 55.41, 35.96 53.20, 34.95 46.77, 31.09 46.28, 28.82 67.10, 46.80 65.30, 46.80
bn-IT 49.60, 30.08 43.47, 27.56 43.52, 27.64 23.55, 14.53 58.35, 34.28 59.13, 37.64
en-IT 56.05, 37.14 50.96, 33.19 49.26, 31.93 31.65, 20.08 63.56, 43.10 62.71, 41.42
gu-IT 43.68, 24.20 48.06, 30.33 44.73, 27.89 43.30, 25.71 53.47, 28.82 62.74, 42.26
hi-IT 48.14, 28.06 47.83, 31.34 45.19, 29.32 31.86, 19.07 58.09, 33.44 58.44, 34.78
kn-IT 58.76, 41.17 48.87, 30.36 50.03, 34.28 51.68, 34.28 66.01, 46.80 65.56, 46.47
ml-IT 58.88, 40.00 53.74, 35.37 43.21, 25.71 52.56, 35.88 68.88, 49.66 65.97, 46.97
mr-IT 55.11, 37.31 51.36, 34.11 48.16, 32.35 49.42, 32.68 63.49, 44.53 64.44, 45.79
or-IT 50.32, 31.68 48.12, 31.59 45.49, 30.25 48.11, 30.25 61.67, 40.08 64.00, 44.87
pa-IT 53.78, 36.05 50.06, 33.19 48.03, 32.77 48.34, 32.43 58.63, 37.56 61.83, 40.00
ta-IT 50.09, 30.25 49.02, 30.33 47.11, 30.92 45.02, 26.80 63.36, 38.99 63.86, 43.19
te-IT 51.30, 31.93 48.34, 31.09 44.89, 29.24 40.19, 24.78 63.73, 41.17 64.15, 45.12
ur-IT 51.71, 33.44 47.55, 30.75 43.94, 27.73 34.37, 21.93 57.88, 35.79 56.70, 33.10

de-MT-IT 63.90, 45.96 57.83, 40.00 52.66, 36.47 49.86, 32.94 70.99, 52.10 66.92, 47.14
el-MT-IT 64.05, 45.54 58.35, 39.66 55.37, 37.89 51.22, 34.20 70.44, 50.08 66.96, 47.73
es-MT-IT 47.87, 29.41 45.70, 28.99 40.85, 25.46 27.60, 17.05 54.73, 32.18 53.29, 30.92
et-MT-IT 66.18, 48.73 56.17, 38.57 53.06, 37.39 38.29, 25.54 68.41, 49.66 67.04, 47.56
fi-MT-IT 64.48, 47.22 57.10, 39.24 55.35, 39.41 43.78, 28.9 70.42, 51.84 66.98, 47.47
fr-MT-IT 48.87, 30.16 46.50, 27.98 39.51, 24.70 36.42, 22.01 52.47, 27.64 51.09, 28.90
id-MT-IT 54.52, 33.94 48.52, 31.51 37.52, 23.94 32.95, 21.42 61.00, 39.83 59.64, 38.57
ru-MT-IT 59.75, 40.75 55.66, 35.63 51.16, 33.94 56.38, 38.40 68.32, 46.97 65.88, 45.71
sv-MT-IT 65.06, 47.39 58.27, 40.58 53.72, 37.14 50.96, 33.52 70.28, 51.59 67.83, 47.98
th-MT-IT 65.15, 46.63 58.92, 40.84 55.09, 39.57 51.22, 33.94 71.80, 52.77 68.01, 48.40
tr-MT-IT 65.91, 48.73 56.89, 39.07 54.20, 37.98 48.38, 32.35 71.57, 32.35 67.68, 48.57
vi-MT-IT 50.41, 31.59 45.16, 28.40 38.10, 25.54 28.50, 18.15 55.50, 31.68 56.66, 35.12
xh-MT-IT 62.93, 43.27 57.94, 40.16 54.90, 38.31 49.27, 31.59 71.34, 51.93 67.97, 48.31

Table 7: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the
XQuAD-IN test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with "MT"
indicate training data generated via NLLB machine translation from the English subset. Performance rankings are
visually indicated with green (highest) and blue (second highest) based on Token F1 scores. The results are
shown for languages gu (Gujarati), kn (Kannada), ml (Malayalam), or (Odia) and ur (Urdu).
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Method bn te hi mr as ta
Base 64.20, 44.53 58.22, 39.74 73.02, 48.82 65.96, 50.00 51.33, 32.43 63.37, 45.88
as-IT 60.19, 38.31 55.86, 36.89 72.09, 47.31 58.76, 40.50 45.26, 24.03 58.61, 40.75
bn-IT 54.93, 32.85 52.26, 33.94 67.23, 38.15 52.54, 34.03 40.80, 22.18 52.67, 33.27
en-IT 60.58, 39.15 55.11, 35.96 69.79, 42.43 60.61, 43.86 49.42, 28.90 53.04, 34.62
gu-IT 60.91, 39.41 51.55, 32.94 70.38, 44.70 51.79, 33.36 46.60, 27.31 56.48, 38.82
hi-IT 56.86, 33.19 52.32, 34.45 61.60, 31.42 52.83, 31.68 46.50, 27.14 54.12, 35.21
kn-IT 63.33, 42.35 54.98, 37.05 70.84, 46.80 61.72, 44.36 51.19, 31.93 59.53, 41.76
ml-IT 63.32, 41.84 56.18, 38.31 72.31, 47.73 62.36, 46.05 51.01, 31.59 57.91, 41.34
mr-IT 61.75, 40.67 53.32, 35.56 69.95, 45.04 52.19, 34.20 46.75, 28.31 59.51, 42.52
or-IT 58.76, 39.24 50.86, 32.52 70.07, 46.13 55.58, 38.90 22.11, 11.34 59.73, 40.76
pa-IT 61.05, 39.83 54.06, 36.30 69.45, 44.20 56.51, 39.74 47.75, 28.15 57.64, 40.75
ta-IT 60.71, 38.23 49.48, 29.83 70.92, 45.37 56.18, 37.98 49.46, 29.83 46.76, 26.38
te-IT 62.31, 41.76 45.84, 28.23 70.41, 45.79 59.06, 42.10 47.56, 27.98 52.01, 33.86
ur-IT 58.65, 37.22 52.46, 34.45 68.56, 42.01 56.52, 37.14 46.19, 26.97 53.77, 35.63

de-MT-IT 65.30, 44.28 57.80, 39.57 73.29, 47.64 64.47, 47.89 52.80, 32.26 61.20, 43.86
el-MT-IT 65.59, 44.28 57.67, 38.82 73.67, 48.48 65.80, 48.57 53.02, 32.52 60.93, 43.78
es-MT-IT 53.47, 31.68 51.18, 31.76 62.66, 34.36 49.76, 33.69 43.15, 22.94 47.89, 27.39
et-MT-IT 65.55, 45.29 58.88, 41.26 73.55, 48.82 66.77, 50.16 53.50, 33.78 62.73, 46.38
fi-MT-IT 65.49, 44.87 58.86, 40.84 73.65, 48.15 66.20, 49.32 53.64, 33.69 62.21, 45.04
fr-MT-IT 54.60, 32.52 51.06, 32.60 58.73, 29.57 49.76, 30.67 44.92, 26.38 49.62, 31.17
id-MT-IT 56.83, 34.53 54.26, 34.28 67.32, 39.66 55.39, 38.31 47.32, 27.81 52.46, 33.27
ru-MT-IT 64.84, 42.60 58.70, 39.24 73.06, 46.89 64.08, 45.96 53.19, 32.26 58.10, 40.50
sv-MT-IT 64.90, 44.36 57.98, 39.49 73.64, 48.15 66.02, 49.91 53.54, 32.94 62.70, 46.30
th-MT-IT 65.42, 45.21 58.07, 39.91 73.44, 48.73 66.38, 49.83 54.08, 33.36 61.46, 44.95
tr-MT-IT 65.52, 45.21 58.67, 40.67 73.62, 48.90 65.62, 49.66 54.31, 33.44 62.29, 45.71
vi-MT-IT 55.44, 34.11 52.14, 34.20 66.03, 36.80 52.17, 35.71 44.93, 26.55 52.39, 32.52
xh-MT-IT 65.72, 45.21 58.54, 39.91 73.52, 49.15 64.31, 47.73 53.57, 32.43 62.06, 45.21

Table 8: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the
XQuAD-IN test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with "MT"
indicate training data generated via NLLB machine translation from the English subset. Performance rankings are
visually indicated with green (highest) and blue (second highest) based on Token-F1 scores. The results are
shown for languages bn (Bengali), te (Telugu), hi (Hindi), mr (Marathi), as (Assamese) and ta (Tamil).
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METHOD ru el es de vi th tr
Base 61.95, 45.21 38.31, 28.31 89.15, 75.88 71.93, 57.05 88.07, 76.21 21.04, 16.21 34.47, 24.70
as-IT 57.25, 41.59 34.12, 23.44 88.00, 72.60 67.38, 53.02 86.89, 73.44 19.95, 13.69 29.90, 20.16
bn-IT 55.40, 39.91 35.42, 23.52 85.18, 67.22 64.19, 48.99 84.32, 68.06 19.13, 13.94 21.75, 14.78
en-IT 57.30, 40.92 34.64, 22.26 72.04, 51.59 66.06, 49.49 78.28, 61.00 21.97, 15.63 29.33, 17.81
gu-IT 56.25, 39.07 33.23, 22.43 87.24, 71.68 66.80, 51.59 87.62, 74.53 19.60, 14.36 27.66, 19.15
hi-IT 57.58, 41.09 31.59, 19.66 83.90, 64.78 64.90, 50.42 85.07, 68.48 18.13, 12.43 23.42, 14.53
kn-IT 59.30, 42.60 35.30, 23.94 88.15, 73.69 68.34, 52.85 87.53, 74.28 23.05, 16.55 30.75, 22.26
ml-IT 56.54, 41.68 34.96, 23.60 88.50, 73.44 68.91, 55.21 87.35, 73.94 20.55, 15.29 29.30, 20.33
mr-IT 57.49, 41.68 34.21, 23.27 87.76, 71.68 66.98, 52.43 87.30, 74.20 20.93, 15.96 28.16, 18.82
or-IT 57.53, 41.84 32.95, 21.34 87.40, 72.01 67.46, 52.43 86.25, 72.52 18.77, 13.86 25.05, 17.89
pa-IT 56.79, 41.00 34.13, 22.26 86.75, 72.01 66.83, 51.68 86.22, 72.68 19.91, 13.69 27.08, 19.32
ta-IT 58.90, 42.18 37.33, 25.63 87.29, 73.02 69.08, 54.28 86.75, 73.02 24.05, 17.56 29.55, 18.65
te-IT 56.13, 40.58 35.73, 25.04 88.68, 74.53 66.79, 52.43 86.61, 73.36 21.06, 15.63 30.48, 21.00
ur-IT 53.19, 37.98 32.51, 21.34 86.35, 70.16 66.12, 51.09 85.39, 69.74 15.52, 11.59 23.77, 16.63

de-MT-IT 53.46, 36.80 31.29, 20.33 87.21, 72.18 44.27, 30.33 87.12, 74.11 16.33, 12.60 19.57, 13.61
el-MT-IT 55.06, 38.48 15.01, 3.86 88.28, 74.28 68.16, 51.68 88.15, 75.88 16.87, 11.17 29.29, 17.56
es-MT-IT 51.38, 35.79 27.28, 16.80 50.84, 28.40 56.55, 40.75 68.11, 46.97 15.12, 10.58 18.68, 11.09
et-MT-IT 57.85, 42.35 35.99, 24.45 88.67, 74.53 68.41, 53.27 87.54, 75.04 21.49, 15.71 19.83, 8.31
fi-MT-IT 59.13, 43.52 36.41, 25.12 88.61, 74.45 67.99, 52.35 87.83, 75.46 21.83, 15.12 24.57, 12.68
fr-MT-IT 50.89, 34.45 28.03, 17.14 61.69, 38.90 54.88, 38.15 65.28, 43.69 15.58, 11.34 17.81, 9.91
id-MT-IT 55.06, 37.89 35.02, 22.35 73.75, 51.00 63.90, 47.89 71.68, 48.40 20.23, 14.11 24.91, 15.54
ru-MT-IT 28.94, 12.10 20.71, 12.77 87.37, 71.68 64.80, 48.40 86.76, 73.02 7.67, 4.53 22.16, 15.04
sv-MT-IT 56.89, 41.26 36.57, 24.62 87.64, 72.68 63.10, 48.06 87.09, 73.94 19.67, 14.36 22.98, 14.36
th-MT-IT 60.92, 45.37 34.17, 21.93 89.03, 74.95 71.79, 55.71 87.98, 75.71 8.13, 1.42 32.24, 22.52
tr-MT-IT 58.71, 43.19 35.63, 23.78 89.34, 75.46 68.10, 52.94 87.87, 75.46 21.36, 15.29 16.20, 6.89
vi-MT-IT 51.83, 35.46 29.52, 19.15 74.54, 51.93 62.49, 46.89 67.23, 42.43 14.72, 10.75 20.49, 12.18
xh-MT-IT 59.90, 44.03 35.08, 24.20 88.24, 73.61 68.23, 52.85 87.67, 74.53 19.75, 13.94 22.37, 13.36

Table 9: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the
TFDS-XQuAD test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with "MT"
indicate training data generated via NLLB machine translation from the English subset. Performance rankings are
visually indicated with green (highest) and blue (second highest) based on Token-F1 scores. The results are
shown for languages ru (Russian), el (Greek), es (Spanish), de (German), vi (Vietnamese), th (Thai) and tr (Turkish).

Model gu hi kn ml or pa
Base 56.88, 41.25 79.56, 64.54 44.65, 28.14 48.48, 31.66 26.82, 13.68 62.84,40. 47
ml-IT 54.19, 35.74 78.15, 63.02 42.84, 25.32 38.88, 22.11 42.53, 25.09 60.87, 37.51

de-MT-IT 58.94, 42.49 79.47, 63.87 45.72, 27.96 48.32, 31.21 46.14, 27.91 63.2, 40.13
ru-MT-IT 58.02, 40.76 78.69, 62.35 47.39, 29.11 49.65, 32.21 46.8, 28.61 62.4, 39.11
sv-MT-IT 56.48, 39.51 79.21, 63.59 43.97, 26.56 48.32, 31.21 43.61, 26.11 62.22, 39.2

Table 10: Performance metrics (Token-F1 score, Exact Match score) of Instruction Tuned (IT) models on the out-
of-domain IndicQA test set. Training data sourced from the XQuAD-IN parallel corpus. Languages denoted with
"MT" indicate training data generated via NLLB machine translation from the English subset. Highest Performance
ranking based on Token-F1 scores are visually indicated with green . The results are shown for languages gu
(Gujarati), hi (Hindi), kn (Kannada), ml (Malayalam), or (Odia) and pa (Punjabi) over models instrution tuned on
ml (Malayalam), de (German), ru (Russian) and sv (Swedish).
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IT Lang MT Model BLEU gu kn ml or pa
Base - - 60.81, 43.94 48.52, 32.35 49.07, 33.44 25.90, 17.05 55.80, 38.73

de
MarianMT 40.57 64.46, 45.54 57.83, 39.41 54.18, 37.98 52.03, 34.78 71.14, 51.00

NLLB 34.13 63.90, 45.96 57.83, 40.00 52.66, 36.47 49.86, 32.94 70.99, 52.10

et
MarianMT 28.27 65.85, 48.65 58.26, 39.91 53.18, 37.31 36.64, 24.03 67.58, 49.41

NLLB 24.33 66.18, 48.73 56.17, 38.57 53.06, 37.39 38.29, 25.54 68.41, 49.66

fi
MarianMT 23.96 65.15, 47.64 58.03, 39.24 54.83, 39.07 46.88, 31.09 69.94, 51.00

NLLB 22.80 64.48, 47.22 57.10, 39.24 55.35, 39.41 43.78, 28.90 70.42, 51.84

id
MarianMT 19.99 51.13, 32.77 44.46, 27.98 34.40, 22.26 21.96, 14.21 55.57, 32.60

NLLB 46.97 54.52, 33.94 48.52, 31.51 37.52, 23.94 32.95, 21.42 61.00, 39.83

sv
MarianMT 56.65 64.88, 46.38 58.14, 40.25 54.15, 37.22 49.50, 32.43 70.86, 51.51

NLLB 41.35 65.06, 47.39 58.27, 40.58 53.72, 37.14 50.96, 33.52 70.28, 51.59

xh
MarianMT 8.42 59.36, 39.15 55.22, 36.72 53.34, 36.97 46.18, 30.33 68.88, 48.48

NLLB 23.88 62.93, 43.27 57.94, 40.16 54.90, 38.31 49.27, 31.59 71.34, 51.93

Table 11: Comparison of MT models trained on machine translated training data using MarianMT (Helsinki-opus)
vs NLLB for different IT languages and evaluated on selected test languages – gu (Gujarati), kn (Kannada), ml
(Malayalam), or (Odia) and pa (Punjabi). Here, green is decided based on higher token-F1 scores and blue
highlights the MT with higher BLEU score.

IT Lang MT Model en bn te hi mr as ta ur
Base - 93.32, 85.79 64.20, 44.53 58.22, 39.74 73.02, 48.82 65.96, 50.00 51.33, 32.43 63.37, 45.88 67.75, 49.07

de
MarianMT 91.81, 83.69 65.47, 44.70 58.28, 39.66 73.71, 48.40 65.06, 48.57 54.63, 34.11 61.81, 45.29 67.30, 47.64

NLLB 91.76, 83.36 65.30, 44.28 57.80, 39.57 73.29, 47.64 64.47, 47.89 52.80, 32.26 61.20, 43.86 66.92, 47.14

et
MarianMT 93.45, 85.88 65.92, 45.71 58.20, 40.42 72.97, 48.40 65.29, 48.31 54.52, 33.69 62.60, 45.71 67.21, 45.76

NLLB 92.93, 85.21 65.55, 45.29 58.88, 41.26 73.55, 48.82 66.77, 50.16 53.50, 33.78 62.73, 46.38 67.04, 47.56

fi
MarianMT 93.03, 85.63 65.10, 44.53 58.77, 40.75 73.46, 48.48 65.83, 50.33 52.54, 33.36 61.66, 44.70 66.75, 47.47

NLLB 93.01, 85.63 65.49, 44.87 58.86, 40.84 73.65, 48.15 66.20, 49.32 53.64, 33.69 62.21, 45.04 66.98, 47.47

id
MarianMT 81.92, 66.38 54.50, 31.17 52.95, 33.52 63.95, 33.69 51.51, 32.85 43.40, 23.44 51.89, 30.58 58.66, 36.47

NLLB 80.08, 65.96 56.83, 34.53 54.26, 34.28 67.32, 39.66 55.39, 38.31 47.32, 27.81 52.46, 33.27 59.64, 38.57

sv
MarianMT 92.43, 84.62 64.46, 43.61 58.04, 39.74 72.98, 47.64 65.48, 48.82 53.49, 32.60 61.35, 45.54 67.14, 47.89

NLLB 92.16, 84.20 64.90, 44.36 57.98, 39.49 73.64, 48.15 66.02, 49.91 53.54, 32.94 62.70, 46.30 67.83, 47.98

xh
MarianMT 92.97, 85.12 65.14, 44.11 57.13, 38.90 73.06, 48.31 62.54, 44.87 50.61, 30.00 59.20, 42.10 66.23, 46.21

NLLB 92.43, 84.78 65.72, 45.21 58.54, 39.91 73.52, 49.15 64.31, 47.73 53.57, 32.43 62.06, 45.21 67.97, 48.31

IT Lang MT Model ru el es de vi th tr
Base - 61.95, 45.21 38.31, 28.31 89.15, 75.88 71.93, 57.05 88.07, 76.21 21.04, 16.21 34.47, 24.70

de
MarianMT 55.36, 38.48 34.48, 23.69 87.60, 72.35 49.14, 33.52 87.54, 74.28 20.38, 15.21 27.25, 18.82

NLLB 53.46, 36.80 31.29, 20.33 87.21, 72.18 44.27, 30.33 87.12, 74.11 16.33, 12.60 19.57, 13.61

et
MarianMT 58.59, 43.27 36.77, 25.46 88.66, 74.78 68.10, 53.86 87.84, 75.12 22.15, 16.30 27.14, 14.70

NLLB 57.85, 42.35 35.99, 24.45 88.67, 74.53 68.41, 53.27 87.54, 75.04 21.49, 15.71 19.83, 8.31

fi
MarianMT 58.00, 41.68 35.52, 24.03 88.68, 74.78 66.77, 50.75 87.43, 75.04 20.90, 14.70 23.07, 11.34

NLLB 59.13, 43.52 36.41, 25.12 88.61, 74.45 67.99, 52.35 87.83, 75.46 21.83, 15.12 24.57, 12.68

id
MarianMT 51.24, 33.69 32.09, 19.83 67.66, 43.78 57.87, 41.17 68.75, 45.37 17.25, 12.43 19.62, 11.00

NLLB 55.06, 37.89 35.02, 22.35 73.75, 51.00 63.90, 47.89 71.68, 48.40 20.23, 14.11 24.91, 15.54

sv
MarianMT 58.30, 41.84 36.01, 24.03 87.78, 73.10 62.59, 46.63 87.63, 74.53 15.90, 11.34 19.19, 12.43

NLLB 56.89, 41.26 36.57, 24.62 87.64, 72.68 63.10, 48.06 87.09, 73.94 19.67, 14.36 22.98, 14.36

xh
MarianMT 56.38, 40.42 30.50, 20.84 87.98, 73.86 65.89, 51.42 87.55, 74.11 16.91, 12.43 20.40, 14.28

NLLB 59.90, 44.03 35.08, 24.20 88.24, 73.61 68.23, 52.85 87.67, 74.53 19.75, 13.94 22.37, 13.36

Table 12: Comparison of MT models trained on machine translated training data using MarianMT (Helsinki-opus)
vs NLLB for different IT languages and evaluated on test languages.

61


