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Abstract

As large language models (LLMs) are con-
sumed by more users and deployed in increas-
ingly autonomous capacities, their ability to
self-monitor and ask for human intervention is
of vital importance. Underlying this capability
are fundamental skills like self-reflection and
expression of uncertainty. In this work, we pro-
vide a formal analysis of LLM self-reflection
for uncertainty estimation, using domain adap-
tation theory to model the shift between base
predictions and reflective judgments. We use
this to motivate a temperature scaling algo-
rithm that calibrates uncertainty using com-
parisons between base predictions and LLM
self-reflections. We evaluate our approach on
challenging question-answering tasks requiring
reasoning, demonstrating that our methods can
improve calibration of uncertainty estimates
and also offer improvements in human inter-
pretation. More broadly, this use case shows
how domain adaptation presents a promising
analytical tool for understanding the underlying
statistical properties of LLM self-reflections.

1 Introduction

As LLMs are deployed to more users and given
greater autonomy, their ability to self-monitor gains
increasing importance. Models need to recognize
when they might be wrong and externalize this un-
certainty in interpretable ways, reducing users’ cog-
nitive loads to enable reliable LLM use (Tankele-
vitch et al., 2024). For example, this is especially
true in safety-critical settings like healthcare (Guo
et al., 2017). Despite this, we still lack a clear un-
derstanding of how LLM self-monitoring works,
how to interpret it, and how to use it for reliable
uncertainty estimation. Existing methods primarily
treat model reflections and uncertainty estimates as
static, isolated outputs, overlooking the dynamic

0Sicilia partially completed this work at Northeastern.
1Code: https://github.com/anthonysicilia/adaptive-platt

nature of LLM inference, where models can it-
eratively reassess answers to potentially improve
accuracy (Pan et al., 2024).

Our work addresses this gap by introducing a
theoretically-grounded method, which recognizes
LLM self-reflections as a source of dynamic, in-
terpretable uncertainty. Specifically, we propose
a new calibration algorithm that leverages self-
reflective outputs to improve the accuracy of un-
certainty estimates, comparing these to base pre-
dictions during Platt Scaling (Platt et al., 1999).
By formalizing self-reflection through the lens of
domain adaptation (Ben-David et al., 2010), we
explicitly account for changes between initial pre-
dictions and reflective judgments, framing LLM
self-reflections as a form of distribution shift.

Our method is a practical, lightweight instan-
tiation of our theoretical inquiry that can be im-
plemented via a single additional regression layer,
incurring negligible computational costs to typical
self-reflection workflows. Interestingly, we also
demonstrate how this technique can offer improved
human interpretation, framing the technique as a
causal analysis for when LLMs may be more likely
to make errors. We apply our methods to a range of
question-answering tasks with a focus on reason-
ing, challenging LLM self-reflections to recognize
when reasoning may be uncertain or incomplete.
Domains include logical tasks; difficult problems
in topics like Science, Business, or History (Suzgun
et al., 2023; Wang et al., 2024); and tasks requiring
reasoning about the future (Sicilia et al., 2024).

To summarize, our contributions include:
1. we introduce a domain adaptation framework

for analyzing LLM self-reflections;
2. we use our analytical tool to propose an uncer-

tainty estimation method that improves cali-
bration by using reflective outputs;

3. we suggest an associated method for interpre-
tation, drawing connection to causal analysis;

and, we publish code to enable future applications.1
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2 Background

Problem Setup We focus on expressing uncer-
tainty as a basic form of self-monitoring capability.
In this setting, a language model is presented with
a random query Q and generates an answer A, with
the goal of estimating the probability that A is cor-
rect. We follow typical evaluations (Guo et al.,
2017; Kadavath et al., 2022; Sicilia et al., 2024),
which treat the model’s estimate as a probabilis-
tic classification, measuring quality using proper
scores like the Brier Score (Bröcker, 2009):

BSQA = (P̂QA − CQA)
2 (1)

where P̂ is the language model’s confidence esti-
mate and C is a binary indicator of correctness. A
skill score is used to interpret this squared error:

BSS = 1− E[BSQA]

E[(E[CQA]− CQA)2]
(2)

which communicates the percent of variance in
the model correctness that is accounted for by the
uncertainty estimates (i.e., higher skill scores are
preferred). Following other works, we use this as
our primary evaluation metric.

Basic Approach Uncertainty estimation methods
for language models typically involve extracting a
model-derived signal correlated with correctness,
then calibrating this signal to output a probability
(Kadavath et al., 2022). We focus on Direct Fore-
casts, where the model is prompted to directly ex-
press confidence via tokens in its generated output
(e.g., a number 1–10). This signal ZQA is parsed
and calibrated by Platt Scaling (Platt et al., 1999):

log
P̂QA

1− P̂QA

= αẐQA + β (3)

fitting parameters α, β via maximum likelihood
on a small labeled dataset. Calibrated estimates
P̂QA derived in this way are easy to interpret and
frequently more effective than other alternatives
(Lin et al., 2022; Mielke et al., 2022; Tian et al.,
2023; Sicilia et al., 2024), especially when chain-of-
thought reasoning is involved (Sicilia and Alikhani,
2024). We focus on this strategy and refer to the sur-
vey by Fadeeva et al. (2023) for other approaches.

3 Proposed Methods

Self-Reflection We use self-reflection to broadly
describe any prompting technique that asks lan-
guage models to re-consider, reflect on, correct,

revise, etc. their own previously generated answer
(Shinn et al., 2023; Madaan et al., 2023; Ji et al.,
2023; Gou et al., 2024). For example, this strat-
egy would fall under post-hoc self-feedback in the
survey by Pan et al. (2024) and is distinct from
strategies that use reflection to improve de-coding
(Yang et al., 2022; Weng et al., 2023) or fine-tune a
model (Huang et al., 2023; Xu et al., 2024). Under
this broad umbrella, with a focus on uncertainty
estimation, we will assume the re-prompted lan-
guage model generates a new string R conditional
to the pre-existing dialogue QA, and then a new
uncertainty signal ẐQAR is formed. A simplified
example is given below:

Q : What is 42 plus 111?
A : ...so it’s 156, I’m 70% sure.

user : Re-analyze & report confidence.
R : ...due to this, I’m only 40% sure.

Here, ẐQA = 70% and ẐQAR = 40%. We report
our precise prompt for reflection, examples, and
other prompts for our experiments in the Appendix.

Theory Our key insight is to recognize the shift
in modeling problem that self-reflection entails. In
conditioning our uncertainty signal Ẑqar on the
reflection r,1 we intend to model the distribution

Pqar = P(CQA = 1 | QA = qa,R = r) (4)

which is in contrast to our initial signal Ẑqa that
can only hope to effectively model

Pqa = P(CQA = 1 | QA = qa) (5)

since this initial signal does not vary with r. By
Bayes Rule, these probabilities are distinct, but
related as follows:

Pqar = Pqa ×
P(R = r | CQA = 1)

P(R = r | QA = qa)

= Pqa × f(q, a, r)

(6)

where we use f to denote the dependency of this
change in distribution on q, a, and r. In effect, this
distribution shift introduces a bias: if we use P̂qa

to model Pqar, then by triangle inequality, we have

|P̂qa − Pqar| ≤ ϵ+ |Pqa − Pqar|
= ϵ+ Pqa|1− f(q, a, r)|.

(7)

with ϵ = |P̂qa − Pqa|. This form of inequality is
referred to as an adaptation bound (Redko et al.,

1Lowercase r denotes a realization of random variable R.
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2019). It communicates how errors change when
distributions shift. In the current context, it tells
us that even if we minimize ϵ perfectly by learn-
ing an effective calibration function (Eq. 3), our
error |P̂qa − Pqar| can still be large because of the
unaccounted for term involving f(q, a, r).

Reflective Calibration To remedy this problem,
we aim to account for the missing information in
our Platt Scaling algorithm. The obvious solution
is to use Ẑqar in the Platt Scaling algorithm, since
this is implicitly conditioned on all of q, a, and
r via the language model. This baseline solution
rewrites the right-hand side of Eq. (3) as below

αẐqar + β, (8)

hoping the language model will control for all miss-
ing information in its estimate Ẑqar on its own. On
the other hand, we can also use our theoretical re-
sults to inform an algorithm. Specifically, Atwell
et al. (2022) show that the slack2 in domain adap-
tation bounds can be fairly accurately modeled by
using (a) simple binary features to describe the data
as well as (b) linear interactions between terms in
the bound. We utilize this insight to suggest reflec-
tive calibration in the following rewrite of Eq. (3):

α1Ẑqar+α2ẐqarẐqa+α3Ẑqa+

k∑

i=1

βidi+β0 (9)

where d is a length k vector of binary data features,
such as data meta-labels,3 accounting for (a). Be-
cause we do not have access to Pqar and Pqa, we
use interaction between Ẑqar and Ẑqa as a course
approximation to account for (b). The goal of this
formulation is to account for missing information,
highlighted by the adaptation bound, as well as the
slack in this bound, via the added features. By uti-
lizing our theoretical analysis, we account for the
dynamic nature of self-reflective LLM inference.

Causal Interpretation Under appropriate as-
sumptions, the theory and estimation procedures
discussed allow us to identify interpretable causes
of LLM errors. The basic idea is that uncertainty
signals derived from LLMs can accurately reflect
true uncertainties in language data due to LLMs
large-scale training exposure, making them useful
in estimating missing information for purpose of

2This is the difference between left- and right-hand sides.
3di = 1 for meta-label i. Labels come from benchmark

meta-data, such as problem type descriptions (see § 4).

Zqa Zqar d

Cqa

Figure 1: Causal structural model assumed for analy-
sis. All the uncertainty in LLM correctness CQA can
be predicted from ẐQA, ẐQAR, and d. It also assumes
independence between d and Ẑ∗ based on the premise
that uncertainty estimates and reflections are biased, fail-
ing to account for the data meta-properties encoded by
d. This latter hypothesis explains the slack in adapta-
tion bounds observed and quantified by Atwell et al.
(2022). We also highlight a noted distribution shift from
conditioning LLM uncertainty on self-reflections – the
structural model changes according to the dotted edges.

causal analysis (Lin et al., 2023). Applied to our
setting, we adapt this idea to the signals Ẑ∗ and
their interactions. So far, we’ve used our theory,
and results from Atwell et al. (2022), to hypothe-
size the signals Ẑ∗ are accurate enough to capture
all information pertinent to predicting Cqa – except
for other slack in our bound, which is accounted
for by using data-labels d. Translated to the causal
setting, we can think of Ẑ∗ as co-variates and d as
treatments of interest (Figure 1). Causal analysis
allows us to use the model in Eq. (9) to estimate
“treatment effects,” which in our case, correspond
to the causal effects of data properties encoded in
d. To do this, define the causal (log) odds ratio

CLOd′ = log
P(CQA = 1 | do(d = d′))
P(CQA = 0 | do(d = d′))

(10)

where d′ is 1 only for meta-label i and the do
operator represents an intervention on the struc-
tural model in Figure 1, fixing variable d = d′.
CLO quantifies changes in likelihood of LLM error
caused by data interventions (i.e., a counterfactual).
Assuming Eq. (9) is well-specified,4 we can esti-
mate changes in odds caused by any counterfactual
data intervention (Pearl, 2010):5

CLOd′ − CLO0 = βi (11)

where 0 is a vector of zeros, indicating lack of
any data meta-labels. The coefficient βi quantifies

4Assume there exist coefficients such that P̂qar = Pqar .
5Specifically, due to our assumptions, the derivation

closely follows the example given by Pearl in § 3.2.2.
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MMLU BBH FD avg min max
Eq (3) 2.8 5.0 2.0 3.2 -0.3 9.0
Eq (8) 2.0 3.3 2.2 2.5 -0.2 9.1
Eq (9) 2.9 9.5 2.7 5.0∗ -1.9 14.0

Table 1: Percent variation in correctness explained by model
uncertainty (BSS). Higher is better. Scores are averaged
across models for each dataset. Overall metrics are also re-
ported (right). Highest score is bold in each column. ∗ denotes
significance at 95%, according to Hoeffding’s Inequality for
bounded variables; i.e., we clip BSS to [-25%, 25%] a priori.

changes in LLM correctness caused by the data fea-
ture encoded with label i. If βi is negative and large,
it is more likely the LLM will make an error – in-
dependent of the LLMs uncertainty estimate (Zqa)
or self-reflection (Zqar). This gives insight into
the types of data that cause LLMs to make errors,
focusing on cases that LLMs fail to communicate
through uncertainty estimates or self-reflections.

4 Experiments

Models We use Meta’s Llama 3.1 with 8B param-
eters and Llama 4 Scout (Touvron et al., 2023). We
also use Google’s Gemma 2 with 9B parameters
(Team et al., 2024) and Mistral Small 3. We access
models via Together AI and set temperature = 0.7.

Datasets We use three reasoning benchmarks:
1. BBH, short for Big Bench Hard, is a com-

monly used suite of logical tasks proposed by
Suzgun et al. (2023) to test models’ reasoning
capabilities. The data meta-labels (d) are the
different problem subtypes within the data.

2. MMLU-Pro, is a question-answering suite
proposed by Wang et al. (2024). It is based
on the MMLU benchmark (Hendrycks et al.,
2020), but increases difficulty to stress-test
reasoning. Meta-labels are problem domains;
e.g., Business, History, Physics, etc.

3. FD, short for FortUneDial, is a suite of tasks
proposed by Sicilia et al. (2024) to test reason-
ing about future events during conversation;
e.g., predicting if a deal will occur at the end
of a negotiation. Meta-labels are conversation
domains; e.g., negotiation, online forum, etc.

Optimization We estimate coefficients for Platt
Scaling using default Logit hyper-parameters in the
statsmodels package. We use a consistent 60/40
train/test split of 1200 points from each dataset.

Validation of Platt Scaling Technique Our re-
sults in Table 1 show consistent improvements
in Brier Skill Score. On average, across mod-

α2,3 β1:k avg BSS high -βi low -βi

✗ ✗ 0.8% law 2.0 psych. 0.3
✓ ✗ 3.2% cs 1.9 health 0.8
✗ ✓ 2.0% engn. 1.9 physcs 0.9
✓ ✓ 3.9% phil. 1.9 hist. 1.0

Table 2: Case study using Llama 3.1. Left shows ablation
study for Eq. (9). ✗ indicates if a coefficient is removed during
optimization. Right shows causal effects for different problem
domains in MMLU-Pro. Highest/lowest effect sizes are shown,
indicating hardest/easiest categories for Llama.

els and datasets, our approach (Eq. 9) is consis-
tently better and this result is statistically signif-
icant. Worst-case performance is slightly worse
with our method; e.g., Mistral Small scored fairly
low (-1.9%) on FortUneDial. We expect this is due
to increased parameters, which can increase vari-
ance or sample-complexity of learning algorithms.

Validation of Theory Table 2 also shows abla-
tion study of Eq. (9) using Llama 3.1. All model
coefficients contribute to observed improvements
in BSS. In conjunction with overall improvements
in Table 1, this result helps to validate our theo-
retical approach, which was used to derive all the
coefficients present in Eq. (9). It shows that the
statistical dependencies predicted by our theory –
e.g., between Zqa and Zqar or between Cqa and d
– are indeed observed in practice.

Example of Causal Analysis In Table 2, we also
show a brief example of the causal interpretability
our method allows. We are able to rank the 4 most
difficult and 4 easiest problem domains for Llama
3.1 in MMLU-Pro by sorting coefficients. Domains
with multi-step logical reasoning (e.g., computer
science) are more difficult them domains that rely
more on pre-existing knowledge (e.g., history). For
example, the causal change in log odds ratio for
computer science is -2.0. Using Eq. (10), this corre-
sponds to a decrease of almost 40% raw probability
of correctness if Pqa starts at 50%. On the other
hand, the raw decrease in probability for history is
closer to 25%. While these insights agree with our
intuition, they show how our method can be used
to highlight model shortcomings in an interpretable
way; e.g., ranking domain difficulty. Besides the
application shown here, causal effects estimation is
used for myriad other interpretations in scientific
domains (Pearl, 2010). Notably, by their definition,
the causal effects we study are not accounted for
during LLM self-reflection, allowing practitioners
added information about potential model failures.
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5 Discussion

Our experiments across BBH, MMLU-Pro, and
FortUneDial show that reflective calibration (Eq. 9)
consistently improves Brier Skill Score, with gains
that are statistically significant in several cases.
While improvements are sometimes modest in mag-
nitude, they are robust across domains, and, impor-
tantly, come from an extremely lightweight and
simple methodolgical choice: an added regression
layer with (at most) tens of parameters. While
beneficial in most cases, increasing the number
of learned parameters inherently impacts the vari-
ance of performance (i.e., there is no free lunch,
Wolpert and Macready, 2002). This is evidenced
by increased dispersion between the min and max
model performance in Table 1.

Practical Considerations Generally speaking,
the method is easy to implement in real-world
pipelines. It requires only two ingredients that prac-
titioners already have access to:
1. model confidence signals, which can be either

direct forecasts verbalized by the LLM (e.g., I’m
70% sure) or logit-based scores for the model
responses – we study the former in § 4, but other
works have succesfully used logit-based scores
during calibration (Sicilia et al., 2024);

2. a single regression model, which requires fit-
ting a logistic model with interaction terms by
numerical MLE, using hundreds of data points.

With these in hand, inference requires one addi-
tional reflection prompt, doubling the number of
forward passes for the LLM, which is the clear
computational bottleneck. Thus, the total overhead
is small compared to common LLM costs and neg-
ligible if added to an existing reflection workflow.

The Impact of Scale While we evaluated
medium-scale LLMs on relatively small data
sources, we expect scaling either of these dimen-
sions would preserve our findings. In past work,
larger models maintain consistent performance
gains during both self-reflection (Madaan et al.,
2023) and uncertainty calibration (Sicilia et al.,
2024), so we do not expect our combination of
these methodologies to present significantly differ-
ent findings. The fact that the calibrating regres-
sion layer is independent of model size strengthens
this hypothesis. With respect to data, we observe
the (internal) diversity of the datasets we consider,
whose subsets span law, engineering, health, his-
tory, social dialogues, task-oriented dialogues, etc.

Our statistically significant results on these varied
data provide evidence that our method should re-
main applicable to other data and tasks.

Interpretation Gains Beyond raw calibration
improvements, our causal framing provides inter-
pretability not offered by other methods. For ex-
ample, in MMLU-Pro we were able to identify that
computer science and law questions pose larger
systematic challenges to LLMs than history or psy-
chology. On average, a model will do worse on
these domains, speaking to the contexts where a
practitioner can trust their model outputs. This
intuition is also precisely quantified through the
regression layer’s coefficients, which allowed us to
rank domain difficulty in our case study. Other po-
tential applications could utilize these coefficients
in LLM interfaces to dynamically warn users about
potential errors, use them in training pipelines to re-
fine data (e.g., as a form of active learning), or use
them in myriad model diagnostics, such as longitu-
dinal studies of performance across model versions.
Compared to raw performance metrics split by data,
our regression coefficients attempt to control for
potential confounders – these would typically be
commonalities across data domains (e.g., the pres-
ence of equations in both computer science and
physics problems) that can bias interpretation of
traditional performance metrics. Lastly, we note
that even when performance drops slightly (e.g., on
FortUneDial with Mistral Small), the interpretive
benefits remain. A practitioner can always revert
to simpler calibration strategies if performance de-
creases, but retain our method for interpretability.

6 Conclusion

This work provides theory and conclusive empirical
evidence to motivate a new reflective calibration
algorithm that improves LLM uncertainty estimates
and enables causal explanation of model errors.
Both come at negligible computational cost.

However, beyond lightweight diagnostic tooling,
our contributions might be viewed as an entryway
into rethinking how LLMs engage with their own
understanding. The very act of asking a model to
reconsider is not a simple a calibration trick, but
a way to alter reasoning. Indeed, our experiments
suggest that reflection alters the model’s reasoning
distribution itself, uncovering uncertainty signals
that static inference obscures. This suggests reflec-
tive uncertainty may function as a core element,
and design lever, for multi-step LLM reasoning.
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Limitations

Despite promising empirical results and a backing
theory, it is important to recognize the assumptions
of our theory may not hold for all models/datasets.
As observed in our results, an inherent pitfall of our
approach is the possibility of poor generalization –
induced by the increased sample-complexity of our
calibration approach – which can actually lead to
worse performance in certain circumstances. For-
tunately, we observe these problematic situations
are rare empirically and our formal framing does
makes all assumptions explicit, enabling future re-
searchers to improve upon these and build methods
that cover broader application settings.

On a related note, it should be observed that
self-reflection and expression of LLM uncertainty
still has a significant room for improvements. In
general, our results are on par with other LLM un-
certainty estimation literature (Sicilia et al., 2024),
but comparison of our best uncertainty estimation
results (BBH) and the most similar benchmark
(MMLU) shows a gap of about 6.5% explained
variance. Further research is needed to design meth-
ods which can improve across difficult application
domains, and we hope our theory can provide a
principled backbone for this work.

Ethics Statement

While the methods we propose are designed to
alert practitioners of potential pitfalls in LLM pre-
dictions, these techniques should not be treated
as a catchall AI safety mechanism. The models
and methods we study have known (and unknown)
biases that can cause direct and indirect harm to
individuals if their outputs are incorporated in au-
tomatic processes, decisions, or content generation
without careful human supervision. The models
and methods presented here should be treated as
research artifacts that are not yet intended for de-
ployment in real-world applications. Instead, any
real-world deployment should be assessed for po-
tential negative impacts and paired with holistic
safety mechanisms to mitigate harm. For example,
these mechanisms should incorporate rigorous sta-
tistical study, as in the current paper, but also utilize
careful, human-centered co-design, incorporating
direct and indirect stakeholders to ensure systems
that benefit the public good.
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A Prompts

A.1 Question-Answering System Prompt

You will be provided a question. You should pro-
vide the best possible answer to the question. Think
step by step, but keep your response concise (less
than 200 tokens). After thinking, report your final
answer at the end. Use the opening tag "<AN-
SWER>" and closing tag "</ANSWER>" to report
your final answer only. Specifically, tags should
only encompass a single letter, word, or number
to indicate your answer. Your chain of thought
should be outside the tags. For example, you could
report an answer like "<ANSWER> (A) </AN-
SWER>" or "<ANSWER> Yes </ANSWER>" or
"<ANSWER> 7 </ANSWER>", depending on the
question. In addition to answering, state your un-
certainty about the answer on a scale from 1 to 10
with with 1 indicating "not likely at all" and 10
indicating "almost certainly". Use the opening tag
"<CONFIDENCE>" and the closing tag "</CON-
FIDENCE>" to report your confidence. For ex-
ample, "<CONFIDENCE> 7 </CONFIDENCE>"
would mean you think the answer is fairly likely to
be correct.

A.2 Self-Reflection System Prompt

You will be provided a question paired with a model
answer. The model answer may be correct or in-
correct and you should determine which is true.
Analyze the model behaviors and question prop-
erties that caused the model’s correct or incorrect
answer. After this, report your uncertainty about
the answer on a scale from 1 to 10 with 1 indicating
"not likely at all" and 10 indicating "almost cer-
tainly". Use the opening tag "<CONFIDENCE>"
and the closing tag "</CONFIDENCE>" to report
your confidence. For example, "<CONFIDENCE>
7 </CONFIDENCE>" would mean you think the
answer is fairly likely to be correct. Keep your
response concise (less than 200 tokens).

A.3 Example Full Completion
(Self-Reflection, MMLU-Pro, Llama 3.1)

QA: You will be provided a question paired
with a model answer. The model answer may be
correct or incorrect and you should determine
which is true. Analyze the model behaviors
and question properties that caused the model’s
correct or incorrect answer. After this, report
your uncertainty about the answer on a scale
from 1 to 10 with 1 indicating n̈ot likely at
alländ 10 indicating älmost certainly.̈ Use the
opening tag <̈CONFIDENCE>änd the closing
tag <̈/CONFIDENCE>ẗo report your confidence.
For example, <̈CONFIDENCE> 7 </CONFI-
DENCE>ẅould mean you think the answer is
fairly likely to be correct. Keep your response
concise (less than 200 tokens).

The question was:
Elements with partially filled 4f or 5f orbitals
include all of the following EXCEPT
(A) Eu
(B) Gd
(C) Am
(D) Cu

The model answer was:
To determine which element does not have partially
filled 4f or 5f orbitals, we need to consider the
electronic configurations of the given elements:

(Cu) Copper, its electronic configuration is
[Ar] 3d1̂0 4s1̂, which generally means no partially
filled f-orbitals.

- Eu (Europium) is a lanthanide with a par-
tially filled 4f orbital.
- Gd (Gadolinium) is a lanthanide with a partially
filled 4f orbital.
- Am (Americium) is an actinide with a partially
filled 5f orbital.

Therefore, the correct answer should be
<ANSWER> Cu </ANSWER> with a <CONFI-
DENCE> 9 </CONFIDENCE> confidence.

Report your confidence.

R: The model’s answer is correct. The question
asks for the element that does not have partially
filled 4f or 5f orbitals. Copper (Cu) has the
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electronic configuration [Ar] 3d1̂0 4s1̂, which
means it does not have partially filled f-orbitals.
The other elements (Eu, Gd, Am) do have partially
filled 4f or 5f orbitals. The model correctly
identified this.

<CONFIDENCE> 9 </CONFIDENCE>"
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