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Abstract

In-context learning (ICL) effectively condi-
tions large language models (LLMs) for molec-
ular tasks, such as property prediction and
molecule captioning, by embedding carefully
selected demonstration examples into the in-
put prompt. This approach eliminates the com-
putational overhead of extensive pre-training
and fine-tuning. However, current prompt re-
trieval methods for molecular tasks rely on
molecule feature similarity, such as Morgan
fingerprints, which do not adequately capture
the global molecular and atom-binding rela-
tionships. As a result, these methods fail
to represent the full complexity of molecu-
lar structures during inference. Moreover,
medium-sized LLMs, which offer simpler de-
ployment requirements in specialized systems,
have remained largely unexplored in the molec-
ular ICL literature. To address these gaps,
we propose a self-supervised learning tech-
nique, GAMIC (Graph-Aligned Molecular In-
Context learning), which aligns global molec-
ular structures, represented by graph neural
networks (GNNs), with textual captions (de-
scriptions) while leveraging local feature sim-
ilarity through Morgan fingerprints. In addi-
tion, we introduce a Maximum Marginal Rele-
vance (MMR) based diversity heuristic during
retrieval to optimize input prompt demonstra-
tion samples. Our experimental findings using
diverse benchmark datasets show GAMIC out-
performs simple Morgan-based ICL retrieval
methods across all tasks by up to 45%."

1 Introduction

Molecular representation and analysis field has sig-
nificantly advanced towards specialized pre-trained
language models like ChemBERTa (Chithrananda
et al., 2020), and MolT5 (Edwards et al., 2022).
Through targeted pre-training and task-specific

'Our code is available at:
aliwister/mol-icl

https://github.com/

fine-tuning, researchers have achieved state-of-the-
art (SOTA) results in molecular property predic-
tion (Tong et al., 2022; Liu et al., 2023a), molecule
captioning (He et al., 2024; Jiang et al., 2024), and
yield prediction (Guo et al., 2023; Shi et al., 2024).

Nonetheless, recent developments in large lan-
guage models (LLMs) have demonstrated remark-
able capabilities in prediction tasks through in-
context learning (ICL) (Brown et al., 2020), po-
tentially offering a more efficient alternative to
the computationally expensive pre-train and fine-
tune paradigm. Generally, in molecule captioning
or property prediction tasks using LLMs, ICL re-
trieves molecules with similar captions or proper-
ties for a given molecule and uses these retrieved
examples as in-context demonstrations (Guo et al.,
2023; Li et al., 2024a). These demonstrations pro-
vide crucial guidance to help the LLM make more
accurate predictions. While this approach can im-
prove prediction accuracy, its effectiveness largely
depends on the relevance and diversity of the se-
lected examples (Ye et al., 2023). However, the ef-
fectiveness of ICL remains underexplored in molec-
ular tasks, particularly for medium-sized LLMs
(< 10B) (Wang et al., 2024a), such as Mistral-
7B (Jiang et al., 2023).

Recently, researchers have introduced Morgan
fingerprint-based methods, such as Scaffold (Lim
et al.,, 2020), for ICL demonstration selection,
which utilizes the similarity of the Morgan finger-
print between the test sample and the demonstration
pool (Guo et al., 2023). Although Scaffold outper-
forms random selection, its reliance on Morgan
fingerprints only constrains its ability to retrieve
structurally similar samples for ICL, as Morgan fin-
gerprints cannot fully encode the complex binding
relationships that are better represented by molec-
ular graphs (Jin et al., 2018). Thus, capturing the
graph structure is crucial for molecular analysis be-
cause it preserves atoms’ spatial and connectivity
information. This detailed representation is partic-
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ularly important for molecular similarity retrieval,
where subtle structural variations can significantly
impact chemical behavior. This raises a natural
question: Can we combine the graph representa-
tion of the molecule with the Morgan fingerprint
to further enhance ICL effectiveness by captur-
ing both local properties (captured in the Mor-
gan fingerprint) and global molecular structures
(represented by a graph)?

To explore this possibility, a leading ap-
proach is to leverage Graph Neural Networks
(GNNs) (Scarselli et al., 2008), which are the SOTA
method for processing molecular graphs (Wang
et al., 2022b). However, applying GNNs in molec-
ular similarity retrieval presents several challenges.
In particular, (i) GNN encoding struggles to convert
complex discrete molecular structures into contin-
uous latent spaces while preserving chemical va-
lidity (Edwards et al., 2021), i.e. complexity chal-
lenge; (i1) GNN learning on multimodal datasets,
such as PubChem (Kim et al., 2019), is susceptible
to information loss due to the significant gap be-
tween graph and text representations (Song et al.,
2024), i.e., modality gap; (iii) public datasets de-
scribe molecules in various ways, ranging from con-
cise single-sentence descriptions to detailed multi-
sentence explanations that capture very specific
details (Liu et al., 2023b), i.e., dataset limitations,
which further exacerbates the modality gap.

To address these challenges, we propose GAMIC
(Graph-Aligned Molecular In-Context learning),
a novel ICL method that leverages the inherent
graph structure of molecules and their local molec-
ular features for multimodal graph-language train-
ing. In particular, GAMIC processes the molecu-
lar representation using a hierarchical graph en-
coder and aligns the latent representation with their
scientifically-aware (e.g., SCiBERT (Beltagy et al.,
2019)) embedded textual descriptions using a sam-
pling method based on Morgan fingerprint simi-
larity. Incorporating Morgan fingerprints as a pre-
liminary step in selecting alignment pairs helps
narrow the modality gap by providing a robust and
interpretable measure of local molecular similarity
during multimodal alignment training. In addi-
tion, using scientifically-aware textual embedding
enriches the latent space representation of the en-
coded graph post-alignment, mitigating the com-
plexity challenge. Finally, having multiple poten-
tial textual representations for a molecule provides
a more robust solution to address dataset limita-
tions and mitigate inherent differences in the way

captions describe molecules (for example, some
molecules are described in multiple sentences and
others in a few words).

Moreover, to further enhance ICL retrieval, we
introduce a novel diversity-aware sample selec-
tion method using Maximum Marginal Relevance
(MMR) to optimize the information provided in the
input prompt.

Our main contributions are: (i) we propose
a novel multimodal ICL framework for molecu-
lar tasks using graph molecular features grounded
on Morgan fingerprint-based sampling; (ii) we
propose an MMR-based demonstration selection
heuristic to enhance sample diversity; and (iii) we
conduct comprehensive experimental evaluations
that demonstrates the effectiveness of our frame-
work.

2 Related Work

2.1 Molecular Representation Learning

Traditional molecular modeling approaches have
predominantly relied on specialized architectures
that directly operate on molecular structures for
tasks such as property prediction (Guo et al., 2021;
Stéark et al., 2022), molecule generation (Gong
et al., 2024; Kim et al., 2024), and reaction pre-
diction (Liu et al., 2024). With the advent of
the transformer architecture (Vaswani, 2017), the
field has witnessed a shift towards representa-
tion learning through pre-training and fine-tuning
paradigms. Early transformer-based approaches
focused on learning from SMILES (Weininger,
1988) string representations. For example, Mol-
BERT (Li and Jiang, 2021) adapted the BERT (De-
vlin et al., 2019) architecture to recognize differ-
ent SMILES string representations of compounds,
while ChemBERTa (Chithrananda et al., 2020) em-
ployed masked language modeling (MLM) on text-
SMILES datasets. More recent approaches have
explored richer molecular representations and trans-
fer learning. MolT5 (Edwards et al., 2022) fine-
tuned a pre-trained TS language model for molec-
ular translation. MolCA (Liu et al., 2023b) intro-
duced a cross-model projector to effectively fine-
tune LLMs on downstream tasks, while 3D-MolM
(Li et al., 2024b) enhanced existing datasets by
incorporating 3D conformational information gen-
erated using GPT-3.5.

Despite their effectiveness in molecular repre-
sentation learning and analysis, these pre-train/fine-
tune approaches encounter the following limita-
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Figure 1: Overview of GAMIC Graph Projector

tions: (a) requiring significant computational re-
sources during pre-training, (b) necessitating task-
specific fine-tuning for each task, and (c) limited
flexibility in adapting to new molecular tasks.

2.2 In-Context Learning for Molecular Tasks

ICL has emerged as a promising alternative to the
traditional pre-train/fine-tune paradigm, enabling
general-purpose language models to perform a va-
riety of tasks through demonstration-based prompt-
ing. Rather than updating model weights, ICL con-
ditions the model on task-specific demonstrations
provided in the prompt, which guides it to generate
more accurate responses. Despite the effective-
ness of ICL in various applications (Dong et al.,
2022; Al Lawati et al., 2025), its usage in molec-
ular tasks is still in its early stage and there are
few works (Guo et al., 2023; Li et al., 2024a) ex-
ploring this direction. Guo et al. (2023) establish
a benchmark across eight molecular tasks, eval-
uating various LLMs using random and scaffold-
based sample selection. MoleReGPT (Li et al.,
2024a) similarly utilized scaffold-based retrieval
for molecule captioning, but proposed fine-tuning
for other tasks. Despite their effectiveness, existing
ICL approaches for molecular tasks have several
limitations: (a) insufficient capture of bond con-
nectivity and atomic features present in molecular
graphs, (b) limited consideration of the semantic
richness enabled by text-informed graph model-
ing, and (c) overemphasis on large and commercial
models, such as GPT-4.

While GNNs have shown promise in capturing
molecular structure in fine-tuned model such as

MolCA (Liu et al., 2023b), their potential for en-
hancing ICL demonstration selection remains un-
derexplored. Our work addresses this gap by in-
troducing GAMIC, the first approach to leverage
Morgan-based graph alignment for ICL, which
achieves SOTA performance on benchmark molec-
ular ICL tasks. This novel direction addresses the
limitations of existing methods while exploiting
the computational efficiency central to the ICL
paradigm.

3 Methodology

In this section, we first present the problem defi-
nition, then provide an overview of the proposed
GAMIC, followed by a detailed description of its
components.

3.1 Problem Setup

Given a training set 7 = (x;, ;) of molecule-
value pairs with x; as a SMILES string and y; as
the corresponding value, we aim to learn a GAMIC
retriever, R, such that given a test molecule x,
R can retrieve relevant and diverse demonstration
P, = R(z¢,T) from a demonstration pool. P; is
concatenated with x; to construct an LLM prompt
for molecular analysis. The objective of the GAMIC
retriever is to select P, such that M(P;; z;) will
yield y;, that maximizes D(y;,y;), where D is a
similarity metric (e.g., BLEU score (Papineni et al.,
2002)), ‘;* represents concatenation, and M repre-
sents the inference LLM.
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3.2 Overview of Model Architecture

Our proposed framework, GAMIC, is composed of
two parts, i.e., (i) Graph Projection (see Figure 1),
which aims to learn graph representation of a text-
informed molecular graph that captures both bond
connectivity and atomic features for demonstration
retrieval; and (ii) MMR-based sample selection
(see Figure 2), which aims to select similar and
diverse demonstrations to improve the performance
of an LLM.

Specifically, the graph projection adopts a
Graph Encoder to learn the representation
of molecular graphs constructed from SMILES
strings. To train the graph encoder, we adopt con-
trastive learning and utilize a Morgan Sampler
to find positive and negative candidates for align-
ment. The encoder is trained to learn the graph
representation that aligns with positive textual cap-
tions encoded using the SCciBERT Encoder using
Contrastive Learning, as depicted in Figure 1

During the ICL demonstration retrieval process,
a MMR-based Sample Selector retrieves informa-
tive and diverse examples. Next, we describe each
component of GAMIC in more detail.

3.3 Graph Projection

Graph projection captures the underlying molecu-
lar structure by effectively aligning the molecular
representation with the textual representation as
detailed below.

3.3.1 Graph Encoder

To sufficiently capture the bond connectivity and
atomic features present in molecular graphs, given
a training set of (z,y) pairs, where z is the
SMILES string, and y is the natural language de-
scription, i.e. caption, we construct a molecular
graph for each SMILES string (z): G = (V,E)
with atoms as nodes V = {vy, ..., vy} and bonds
as edges E. With the molecular graph, we apply a

Graph Attention Network (GAT) (Velickovi€ et al.,
2017), which effectively captures the heterophily
inherent in molecular graphs (Gao et al., 2023)
through attention-based neighborhood aggregation
(e.g., by appropriately weighting dissimilar neigh-
bors). We adopt a two-layer GAT, a standard con-
figuration that offers sufficient learning flexibility
while avoiding over-smoothing. The node repre-
sentations are learned as:

H = GAT(X, A,E; 0gar), 1)

where A, X, and E are the adjacency matrix, node
features, and edge features, respectively. Next, we
apply a pooling of node representations followed
by an MLP to obtain the final graph embedding, z,
as follows:

z = MLP(MeanPool (H) ,w(®),  (2)

where W(O), is a learnable weight, and o is the
ReL.U activation.

3.3.2 Morgan Sampler

In order to train the graph projector to align the fi-
nal graph embedding with the captions, we propose
adopting contrastive learning. Our preliminary
testing showed that multimodal contrastive learn-
ing significantly outperforms other graph-based ap-
proaches such as graph autoencoder, or traditional
graph-based contrastive methods. Hence, for each
graph, we treat the corresponding caption as posi-
tive, and randomly sample negative pairs from the
dataset. However, this may cause information loss
due to the modality gap, as discussed above. In ad-
dition, dataset limitations, characterized by varying
number of sentences in the captions or the level of
details provided in the dataset, may hinder a robust
alignment.

To address these issues, we propose Morgan
fingerprint-based sampling (R,,) to expand pos-
itive caption pairs according to high Morgan finger-
print similarity, while negative pairs are sampled
based on low similarity. For each training sample,
Zi, Rm(x;) returns yj , a set of positive samples
and )", a set of negative samples, according to
Morgan fingerprint similarity between x; and the
training set at each epoch.

3.3.3 SciBERT Encoder

To align the graph embeddings with texts, we need
to encode the textual captions first. We adopt SciB-
ERT (Beltagy et al., 2019) as the text encoder.
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Task Task Class Dataset Test Size ICL Pool Size Ev. Metrics
Molecule captioning  Molecular explainin ChEBI-20 3300 26407 BLEU, ROUGE,
uie captioning Harexpimng  pyhChem 2000 12000  METEOR
. - . Suzuki-Miyaura 576 4608
Yield prediction Molecular reasoning Buchwald-Hartwig 396 3163 F1-score/StDev
BBBP 204 1631
BACE 152 1209
Property prediction =~ Molecular understanding HIV 4113 32901  F1-score/StDev
Tox21 784 1184
ClinTox 148 6264

Table 1: Overview of tasks, datasets, and evaluation metrics (Ev. Metrics)

SciBERT is a domain-specific model trained on
a large corpus of scientific texts, providing better
coverage of scientific terminology in molecular cap-
tions compared to general-purpose models (Li et al.,
2024b), such as BERT. In our setting, we use SciB-
ERT directly, without any task-specific fine-tuning.
Specifically, for each caption y € {Y*, Y™}, we
obtain a fixed-size embedding using SciBERT as:
Yemb = SCIBERT(y).

3.3.4 Contrastive Learning

Existing work on ICL has been limited by a lack
of focus on graph-aware contrastive learning. To
address this limitation, we propose utilizing a con-
trastive loss (Oord et al., 2018) that aligns the graph
embeddings with their corresponding textual em-
beddings. The contrastive loss is formulated as:

L= NCE(Z’ y:mb’ ye_mb)

3)

The Noise Contrastive Estimation (NCE) function
is defined as:

NCE(z, V) =~ T og (e et e )

exp(zi-y; /7)+3 1, exp(ziy;; /7)

“4)
where 7 is a temperature parameter that controls
the sharpness of the similarity distribution. The
subscript (em,p) is omitted for all y in Equation (4)
for readability.

3.4 MMR-based Sample Selector

During retrieval, we ensure both relevance and di-
versity in demonstration selection by employing a
Maximal Marginal Relevance (MMR)-based selec-
tion strategy. For a given test sample (x¢, y¢), we
select k demonstrations (z1,41), ..., (g, yx) by
iteratively optimizing:

miansz,,;fth+/\E;;11n1ax||z,;fsz for i€1,...,k

(&)

where P is the set of possible demonstrations, z is
the latent representation of =, and A is a hyperpa-
rameter that balances relevance to the test sample
(minimizing ||z; — z||) with diversity among the
selected demonstrations (maximizing ||z; — z;||).
This approach ensures that selected demonstrations
are both closely related to the test sample and di-
verse enough to improve the model’s robustness.
The selected demonstrations are appended in the
prompt in reverse order, which improves prediction
compared to other permutations (Lu et al., 2022).

4 Experiments

In this section, we conduct experiments to verify
the effectiveness of our proposed framework. In
particular, our aim is to answer the following re-
search questions: (RQ1) Molecular Performance
Analysis: How does the performance of ICL with
GAMIC compare to other ICL methods on molecular
analysis tasks? (RQ2) Sensitivity Analysis: How
sensitive is GAMIC w.r.t to the number of demon-
strations? (RQ3) Ablation Study: How does each
GAMIC component contribute to the framework?

4.1 Experiment Setup

We evaluate our approach on three representative
molecular tasks: molecule captioning, molecule
property prediction, and molecule yield predic-
tion, which represent three different molecular task
classes, as summarized in Table 1.

4.1.1 Datasets

For each task, we utilize two or more datasets as
follows:

* Molecule captioning: We evaluate molecule
captioning using ChEBI-20 (Edwards et al.,
2021) and PubChem (Kim et al., 2019) datasets.
ChEBI-20 provides a focused assessment of bidi-
rectional translation between molecular struc-
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tures and natural language descriptions. We also
utilize the training set of this dataset to train
GAMIC. For PubChem, we utilize the test split
proposed by Liu et al. (Liu et al., 2022).

* Property prediction: Datasets BBBP, BACE,
HIV, Tox21, and ClinTox (Wu et al., 2018)
are binary classification benchmarks containing
SMILES strings and associated molecular prop-
erty labels, which we use to evaluate prediction
accuracy.

* Yield prediction: We utilize Suzuki-
Miyaura (Reizman et al., 2016), and Buchwald-
Hartwig (Ahneman et al., 2018) datasets
which include molecule reactions and their
corresponding yields, which can be classified as
high or low.

For datasets without a predefined test split, we cre-
ate three random train-validation-test splits using
an 8:1:1 ratio, following standard practice (Wang
et al., 2022a) using predefined random seeds. We
conduct experiments on each split and report the
average results across the three runs. Table 1 sum-
marizes the key statistics of each dataset.

4.1.2 Baselines Molecular ICL Methods

As our framework focuses on ICL, we compare
GAMIC with representative and state-of-the-art ICL
methods for molecular analysis, including: (1)
Random, which selects samples for the demonstra-
tion pool at random without replacement; (2) Scaf-
fold (Guo et al., 2023), which utilizes Tanimoto
similarity (Bajusz et al., 2015) between the Morgan
fingerprints of the test sample and the demonstra-
tion pool to return the top k£ demonstrations, and (3)
GAE, which utilizes a graph autoencoder (Kipf and
Welling, 2016) to learn molecular graph representa-
tions and guide the selection of demonstration sam-
ples. Specifically, GAE adopts a two-layer GAT
followed by a pooling layer to obtain a molecular
graph embedding, then reconstructs the adjacency
matrix with an MLP. The model is trained with
MSE loss between the original and reconstructed
adjacency matrices. Post training, the encoder uti-
lizes latent structure to retrieve similar molecules.

4.1.3 LLM Models

To show that our GAMIC is flexible to facilitate
various LLM backbones, we conduct comprehen-
sive evaluations using three representative medium-
sized LLMs, selected for their diversity in archi-
tecture and training approaches, which include

(1) Mistral-7B (Jiang et al., 2023): a state-of-
the-art model with 7 billion parameters, show-
casing cutting-edge performance; (2) OpenChat-
8B (Wang et al., 2024b): an open-source conversa-
tional model trained using high-quality dialogues
to achieve performance on par with larger propri-
etary models; (3) Zephyr-7B (Tunstall et al., 2024):
a fine-tuned variant of the Mistral architecture, op-
timized for specialized tasks.

Since this domain is highly specialized, our
preliminary testing has shown that certain popu-
lar mediums-sized LLMs perform poorly on ICL
molecular inference tasks, irrespective of the re-
trieval strategy. Consequently, we have tested
multiple LLMs and prioritized the above men-
tioned models that have demonstrated more ro-
bust and consistent performance. Additional results
for Qwen-2.5-7B (Qwen et al., 2025) and Meta-
Llama-3-8B (Grattafiori et al., 2024) are reported
in Appendix C.

4.1.4 Evaluation Metrics

For property prediction and yield prediction, we
report the F1-score and the standard deviation. For
molecule captioning, we utilize a comprehensive
set of text generation metrics used in the litera-
ture (Guo et al., 2023; Li et al., 2024a) to evaluate
molecular description quality: BLEU (BLEU-2,
and BLEU-4), ROUGE (ROUGE-1, ROUGE-2,
ROUGE-L), and METEOR. All metrics range from
0 to 1, with higher scores indicating better align-
ment between generated and reference molecular
descriptions.

4.1.5 Evaluation Setup

For each task, we follow the benchmark’s standard
evaluation protocol by evaluating the test set, and
utilizing the training set as a demonstration pool
from which samples can be retrieved, as described
in Table 1.

To account for the stochastic nature of LLM
outputs, we perform five repeated evaluations for
each experiment and report the mean of the results.
We evaluate our proposed method on the 9 different
benchmark datasets across three molecular tasks.

For molecule captioning, we use k£ = 2 to con-
trol the prompt length as the labels for this task
are long textual descriptions. For other tasks, we
use k = 3. In addition, for all experiments, we set
A = 0.3 (in Equation (5)).
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Results
Dataset | Model Method | o) oi> BLEU4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Random | 0229  0.125 0.325 0.152 0.273 0.287
Misral | Scaffold | 0380 0281 0.447 0.288 0.391 0.396
GAE 0492 0386 0.574 0.414 0515 0.536
GAMIC 0542 0.439 0.617 0.466 0.561 0.585
Random | 0218  0.119 0331 0.158 0276 0.263
CREBI20 | o | Scaffold | 0363 0.269 0.446 0.286 0391 0381
penthat | GAE 0477 0375 0.569 0.410 0511 0.522
GAMIC 0527 0427 0.612 0.462 0.558 0.571
Random | 0177  0.093 0.304 0.139 0.258 0.252
Zeonye | Scaffold | 0369 0271 0.446 0.283 0.390 0.397
phy GAE 0477 0372 0.561 0.401 0.503 0.521
GAMIC 0526 0422 0.605 0.451 0.548 0.570
Random | 0.155  0.084 0.251 0.122 0215 0210
Mistral | Scaffold | 0261 0.182 0371 0.229 0.323 0.343
GAE 0318 0242 0.437 0.299 0.390 0.403
GAMIC 0340  0.262 0.455 0.317 0.407 0.421
Random | 0.128  0.067 0251 0.119 0212 0215
PubChem Scaffold | 0203 0.140 0360 0.221 0313 0336
OpenChat | -, 0302 0226 0.428 0.289 0381 0.395
GAMIC 0311 0236 0.443 0.305 0.396 0.413
Random | 0.149  0.080 0.250 0.121 0214 0.206
Zeopve | Scaffold | 0262 0.180 0.367 0.220 0316 0326
ephy GAE 0310 0235 0.427 0.291 0.382 0.392
GAMIC 0323 0.246 0.441 0.304 0.394 0.406

Table 2: Molecule captioning results using different ICL retrieval methods

4.2 RQI1. Molecular Performance Analysis

Molecule Explaining. Table 2 presents the re-
sults of GAMIC compared to benchmark methods on
ChEBI-20 and PubChem datasets. GAMIC signif-
icantly outperforms other models across all eval-
vation metrics. This validates that graph repre-
sentations capture the complex relationships of
molecules more accurately. Furthermore, this
demonstrated the effectiveness of GAMIC in mit-
igating the modality gap and dataset limitations
present in both datasets.

Buchwald-Hartwig

Suzuki-coupling

0.7

044

0
Mistral OpenChat Zephyr Mistral OpenChat Zephyr

M Random M Scaffold M GAE [ GAMIC

Figure 3: Yield prediction F1-score

Molecular Reasoning. As Figure 3 shows, GAMIC
significantly improves the accuracy of yield pre-
diction across all dataset and LLM combinations,
which demonstrates it’s ability to address the GNN
complexity challenge. Hence, chemical validity

is preserved in yield prediction more effectively
than other baseline methods. Moreover, Random
performs extremely poorly on both datasets on this
task. On the other hand, GAE outperforms Scaf-
fold, which validates the importance of graphs in
accurately representing molecules.

Molecular Understanding. Table 4 shows the re-
sults for molecular understanding. GAMIC provides
the best overall results on average, while Scaffold
outperforms Random. On the HIV dataset using
Random, Mistral reports an F1-score of 0, indicat-
ing its failure to identify any true positives. Over-
all, GAMIC outperforms the baselines on all property
prediction benchmarks. The effectiveness of GAMIC
on this task further corroborates its capacity to pre-
serve chemical validity in cross-modal training.

Results

Method BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Random 0.229 0.125 0.325 0.152 0.273 0.287
Scaffold 0.380 0.281 0.447 0.288 0.391 0.396
GAE 0.492 0.386 0.574 0.414 0.515 0.536
GAMIC 0.542 0.439 0.617 0.466 0.561 0.585

Table 3: Molecule captioning results of Qwen-2.5-
32B (Qwen et al., 2025) on ChEBI-20 dataset using
GAMIC and baseline ICL retrieval methods

Applicability to Larger LLMs. While our focus
has been on medium-sized LLMs that are asso-
ciated with lower computational costs and easier
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Model Method BBBP BACE HIV Tox21 ClinTox | All Data Mean
Random | 0.694 +0.032  0.372 +0.062 0 0.037+£0.025 0.011 £ 0.043 0.223
Mistral Scaffold | 0.850 + 0.494 0.710 +0.093 0.392 +£0.216 0.203 + 0.099 0.100 + 0.087 0.451
GAE 0.858 +£0.012 0.701 £ 0.053 0.289 +£0.012 0.216 +0.068 0.103 £+ 0.178 0.433
GAMIC 0.905 + 0.031 0.726 = 0.127 0.400 + 0.202 0.271 + 0.064 0.112 + 0.040 0.483
Random | 0.289 + 0.051 0.525 £0.005 0.012 +0.013 0.008 £ 0.013 0.044 + 0.077 0.176
OpenChat  Scaffold | 0.749 £+ 0.022 0.665 4+ 0.053 0.364 £0.018 0.111 £0.085 0.083 £ 0.144 0.394
GAE 0.745 £ 0.013 0.674 +£0.021 0.315+£0.055 0.131 +0.059 0.048 + 0.082 0.383
GAMIC 0.836 + 0.024 0.674 + 0.037 0.365 + 0.019 0.153 +0.019 0.203 + 0.093 0.446
Random | 0.518 £0.034 0.750 £ 0.032 0.020 +0.009 0.095 £ 0.040 0.139 +0.127 0.304
Zephyr Scaffold | 0.875 +£0.004 0.769 + 0.040 0.386 +0.054 0.242 + 0.046 0.242 +0.162 0.503
GAE 0.881 +0.022 0.747 £0.065 0.326 +0.037 0.246 +£0.021 0.169 + 0.177 0.474
GAMIC 0.924 + 0.009 0.783 + 0.034 0.422 +0.011 0.276 &+ 0.023 0.361 + 0.127 0.553

Table 4: Property prediction F1-score and a summarized mean score

deployment in real-world applications, we briefly
explore GAMIC’s performance on larger LLMs by
evaluating it on Qwen-2.5-32B, as reported in Ta-
ble 3.

The results suggest the contributions of GAMIC
extend to larger LLMs and improve their perfor-
mance significantly compared to baseline ICL re-
trieval methods.

4.3 RQ2: Sensitivity Analysis

Model & Results

BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

0 | 0.055 0.023 0.135 0.065 0.123 0.073

1 10536 0431 0.612 0459 0.554 0.581

. 2 10542 0439 0.617 0466 0.561 0.585
Mistral

3 10543 0.440 0.619 0468 0.563 0.586

4 10531 0426 0.609 0454 0551 0573

5 10530 0425 0.609 0454 0.551 0.573

10 | 0.528 0.423 0.605 0450 0547 0572

0 | 0.037 0.007 0.101 0.011 0.083 0.067

1 10523 0422 0.606 0455 0.550 0.569

OpenChat 2 10527 0427 0.613 0462 0.557 0.571

3 10528 0427 0.614 0461 0.557 0.573

4 10518 0416 0.603 0449 0547 0.563

5 10521 0419 0.609 0456 0.553 0.569

10 | 0.518 0415 0.605 0.449 0.549 0.563

0 | 0.048 0.005 0.130 0.018 0.100 0.082

1 10514 0409 0592 0438 0535 0.558

2 10526 0422 0.605 0451 0.548 0.570
Zephyr

3 10526 0423 0.609 0455 0.552 0.570

4 10524 0419 0.606 0.451 0.549  0.568

5 10520 0416 0.605 0449 0.547 0.565

10 | 0.518 0412 0599 0442  0.540 0.563

Table 5: Sensitivity analysis for different ICL demon-
stration sample sizes (k) on molecule captioning

We conduct a sensitivity analysis to assess how
molecule captioning performs in response to addi-
tional demonstration samples. Specifically, we vary
the number of demonstrations as {0, 1,2, 3,5, 10}.
As reported in Table 5, the results plateau at three
ICL samples and there is insignificant improve-
ment between k¥ = 2, and k¥ = 3, which further

motivates our selection of k = 2 for this task to
control prompt length. As we increase k > 3, the
performance begins to deteriorate slowly.
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Figure 4: ) sensitivity analysis using average yield pre-
diction

Furthermore, we analyze the sensitivity of the
MMR parameter, A, on the prediction outcome. We
fix k =3 and vary A from 0.1 to 0.9. Based on the
results in Figure 4, we observe that A = 0.3 or
A = 0.4 are plausible configurations.

4.4 RQ3: Ablation Study

We conduct a focused ablation study to evaluate
the contribution of each module to our framework
by comparing GAMIC against the following vari-
ants: (i) W/o Morgan-BERT: During training, this
method uses only the corresponding caption as the
positive pair, and other samples as negative pairs.
It also encodes captions with BERT, which has
limited scientific vocabulary, rather than SciBERT.
This helps isolate the contributions of SciBERT
and Morgan sampling; (ii) GAMIC-BERT: Uses Mor-
gan sampling during training, but encodes captions
with BERT instead of SciBERT; (iii) W/o Morgan:
Similar to (i), but encodes captions using SciBERT,
which helps to quantify the individual contribution
of SciBERT to GAMIC without Morgan sampling.
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Model Method Morgan S SciBERT Results
BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
W/o Morgan-BERT X X 0.520  0.415 0.599 0.444 0.541 0.566
Mistral GAMIC-BERT X 0.533  0.430 0.611 0.457 0.553 0.577
W/o Morgan X 0.535  0.431 0.613 0.460 0.554 0.580
GAMIC 0.542 0439 0.617 0.466 0.561 0.585
W/o Morgan-BERT X X 0.505  0.404 0.594 0.441 0.538 0.551
OpenChat GAMIC-BERT X 0.518  0.418 0.604 0.452 0.548 0.562
W/o Morgan X 0.522  0.421 0.608 0.456 0.552 0.566
GAMIC 0.527  0.427 0.613 0.462 0.557 0.571
W/o Morgan-BERT X X 0.508  0.404 0.589 0.434 0.532 0.553
Zephyr GAMIC-BERT X 0.520 0.416 0.600 0.445 0.543 0.565
W/o Morgan X 0.521 0.416 0.602 0.447 0.545 0.567
GAMIC 0.526  0.422 0.605 0.451 0.548 0.570

Table 6: GAMIC ablation results on molecule captioning using ChEBI-20 dataset

Table 6 demonstrates the contribution of Morgan
sampling and SciBERT compared to W/o Morgan-
BERT. Both approaches contribute similarly on
their own, with a slight advantage for using SciB-
ERT. The combined contribution of both elements
leads to better overall performance than either com-
ponent individually. Additional comparisons with
other BERT-based encoders are provided in Ap-
pendix D.

Suzuki Coupling PubChem

0.78 033

025
Mistral OpenChat Zephyr Mistral OpenChat Zephyr

w/oMMR [l GAMIC

Figure 5: MMR vs Top-K on Suzuki dataset accuracy
(left) and PubChem BLEU score (right)

Additionally, we evaluate the contribution of
MMR by comparing it with Top-K, which retrieves
top k£ most similar demonstrations ordered in re-
verse similarity.

Figure 5 illustrates the improvement of MMR in
yield and property prediction averages. It shows
that MMR provides better overall results across
multiple molecular tasks and LLMs.

Figure 6 illustrates the selection strategies of
Top-K and MMR in 2-D projected latent space.
There is more overlap among the demonstrations
selected by Top-K, whereas MMR produces greater
diversity. Furthermore, while some demonstrations
are common to both methods, the order in which
these examples are selected differs.

Dim 2

® Top-K Samples
X MMR Samples
x W Test Point

Dim 1

Figure 6: MMR vs Top-K demonstration selection on
projected latent spaces

5 Conclusion

In this work, we demonstrate the potential of ICL
in improving LLM performance on molecular tasks.
We focus on medium-sized LL.Ms (7-10B param-
eters) due to their lower computational costs and
ease of deployment in real-world applications.

While previous work has considered either Mor-
gan similarity (scaffold) or graph-based similarity
in isolation, we present GAMIC, which effectively
combines the merits of both approaches. Mor-
gan fingerprints encode molecular substructures,
while graphs capture the complex interactions be-
tween individual elements. Combining both ap-
proaches provides a more holistic representation of
the molecule. Our experiments demonstrate that
our method achieves SOTA on 26 of 27 tests per-
formed across three molecular tasks.
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Limitations

We focus on medium-sized LLMs with lower com-
putational costs and ease of deployment in real-
world applications (<10B). We have not exten-
sively examined the applicability of our approach
to larger or proprietary models, although prelimi-
nary experiments with a larger model suggest that
our method may generalize.

In addition, we have not considered the impact
of using decoder-based LLMs instead of SciB-
ERT (an encoder-based language model). Existing
studies (Muennighoff et al., 2024) find that LLMs
(decoder-only transformers) are good at generation,
but not at representation learning, and will result in
degraded performance. On the other hand, encoder-
only transformers such as SciBERT are well-suited
for representation learning. There has been recent
work suggesting certain layers of LLMs may per-
form better at representation learning, however, the
reported gains are marginal (Skean et al., 2025).
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A Prompt for zero-shot Molecule
Captioning

For zero-shot molecular captioning experiments,
we utilize the following prompt:

Zero-shot Prompt

You are an expert chemist. Given the
molecular SMILES, your task is to predict
the molecule description using your
experienced molecular knowledge.

SMILES:[SMILES String]
Caption:
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Results

Model ‘ Method ‘ BLEU-2 BLEU-4 ROUGE-l ROUGE2 ROUGE-L METEOR
Qwen-2.5-7B GAMIC 0.496 0.401 0.607 0.460 0.552 0.577
Meta-Llama-3-8B 0.319 0.247 0.519 0.371 0.461 0.493
Table 7: GAMIC results using other medium-sized LLMs
Model Encoder Results
BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
BioBERT 0.538 0.434 0.615 0.463 0.557 0.581
Mistral PubMedBERT 0.541 0.438 0.619 0.467 0.561 0.584
SciBERT 0.542 0.439 0.617 0.466 0.561 0.585
text-embedding-3-large | 0.550  0.445 0.625 0.472 0.566 0.591
BioBERT 0.522 0.421 0.609 0.457 0.552 0.568
OvenChat PubMedBERT 0.526 0.425 0.613 0.460 0.557 0.569
PERtAAt | gciBERT 0527 0427 0613 0462 0557  0.571
text-embedding-3-large | 0.534  0.430 0.614 0.459 0.554 0.577
BioBERT 0.525 0.420 0.607 0.451 0.548 0.570
Zephvr PubMedBERT 0.526 0.422 0.607 0.452 0.549 0.569
phy SciBERT 0.526 0.422 0.605 0.451 0.548 0.570
text-embedding-3-large | 0.535 0.434 0.619 0.468 0.561 0.570

Table 8: GAMIC ablation results with different BERT configurations, and a large proprietary encoder. Best and
second-best results for each model are highlighted in bold and underlined, respectively.

For multi-shot, we do not provide instructions.
Instead, we begin the prompt with the ICL demon-
strations in input/output format:

2-shot Prompt Captioning

SMILES: [Sample 1 SMILES]
Caption: [Sample 1 CAPTION]

SMILES: [Sample 2 SMILES]
Caption: [Sample 2 CAPTION]

SMILES: [Test SMILES]
Caption:

Depending on the dataset, the label was changed
from ’Caption’ to "High-Yield’ for yield predic-
tion. For datasets: BBBP, BACE, HIV, Tox21, Clin-
Tox, the label was changed to ‘BBBP’, ‘BACE’,
‘HIV Active’,'NR-ER’, and ‘CT_TOX’, respec-
tively. This is consistent with the conventions used
by Guo et al. (2023).

B Additional Data on Evaluation Metrics

For molecular explanation we utilize the following
metrics:

* BLEU (Bilingual Evaluation Understudy) (Pa-
pineni et al., 2002): We use BLEU-2 and

BLEU-4 scores to assess n-gram precision be-
tween generated and reference texts. BLEU-2
captures local phrase matching, while BLEU-
4 evaluates longer sequence accuracy.

* ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004): We utilize
three variants: (1) ROUGE-1: measures uni-
gram overlap (2) ROUGE-2: assesses bigram
overlap (3) ROUGE-L: evaluates longest com-
mon subsequence, capturing flexible sequence
matching

* METEOR (Metric for Evaluation of Trans-
lation with Explicit ORdering) (Banerjee and
Lavie, 2005): provides a more nuanced evalu-
ation by incorporating synonyms, stemming,
and word order, to better capture semantic
similarity.

C Additional LLMs

We performed preliminary tests on additional
medium LLMs to evaluate their performance in
molecular tasks, which motivated our choice of
LLMs selected for the main experiments.

Table 7 reports molecule captioning results of
GAMIC on Qwen-2.5-7B and Meta-Llama-3-8B.
These results may be compared with Table 2.
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Figure 7: Retrieval examples using various methods

D Additional Embedding Models

In this section, we compare the performance of
SciBERT with two domain-specific BERT variants:
BioBERT (Lee et al., 2020) and PubMedBERT (Gu
et al., 2021), as well as a proprietary large embed-
ding model.

Table 8 shows the three BERT methods provide
comparable results, with a slight edge for SciBERT.
This may be due to SciBERT’s broader semantic
grounding and exposure to diverse scientific for-
mats (Beltagy et al., 2019), making it better suited
for graph-text alignment tasks such as GAMIC, de-
spite being trained on less data than PubMedBERT.

Conversely, we observe that proprietary large-
scale models, notably OpenAlI’s text-embedding-3-
large (OpenAl, 2024), can outperform scientifically
aware models, although their adoption will result
in additional costs.

E MMR Time Complexity Analysis

Here, we establish an upper bound on the time
complexity of MMR sample selection.

Let n denote the size of the demonstration pool.
For a given test sample z;, we first retrieve the
top K nearest neighbors, where K' < n (typically,
K = 30-50), using a priority queue-based selec-
tion in O(n + K logn) time.

Next, we apply the MMR selection procedure
(as described in Equation (5)) to choose the final &
demonstrations from the K candidates. This step
requires:

O(K)+ OQ2K) +---+ O(kK) < O(Kk*)

time, as each of the k selections involves scan-
ning up to K candidates against previously selected
items.

Hence, the time complexity of MMR-based
demonstration retrieval is bounded by:

O(n+ Klogn + Kk?)
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F Case Study

Figure 7 shows the molecules recovered for a set of
test molecules using GAMIC alongside several base-
line methods. It is visually apparent that GAMIC
consistently retrieves molecular graphs that more
closely resemble the global structure of the target
molecule, including connectivity patterns. Con-
versely, the baselines often miss broader structural
context. This highlights GAMIC’s ability to capture
and leverage global graph-level information more
effectively during retrieval.

G Computational Experiments

All experiments were carried out using NVIDIA
A100 40GB GPUs. Across all runs, the total com-
putational cost amounted to approximately 310
GPU hours for the evaluations reported in this work.
This estimate reflects efficient batching and opti-
mization to minimize overhead, while ensuring re-
producibility. This number does not include GPU
usage for debugging, hyperparameter tuning, or
other tests.
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