Predicting Language Models’ Success at Zero-Shot Probabilistic Prediction

Kevin Ren T, Santiago Cortes-Gomez?, Carlos Miguel Patifio?>, Ananya Joshi?,
Ruiqi Lyu?, Jingjing Tang?, Alistair Turcan?, Khurram Yamin?,
Steven Wu?, Bryan Wilder?

!Cornell Tech, >Carnegie Mellon University
"Work done while at Carnegie Mellon University

Correspondence: kevinren@cs.cornell.edu

Abstract

Recent work has investigated the capabilities
of large language models (LLMs) as zero-shot
models for generating individual-level charac-
teristics (e.g., to serve as risk models or aug-
ment survey datasets). However, when should
a user have confidence that an LLM will pro-
vide high-quality predictions for their partic-
ular task? To address this question, we con-
duct a large-scale empirical study of LLMs’
zero-shot predictive capabilities across a wide
range of tabular prediction tasks. We find that
LLMs’ performance is highly variable, both
on tasks within the same dataset and across
different datasets. However, when the LLM
performs well on the base prediction task, its
predicted probabilities become a stronger sig-
nal for individual-level accuracy. Then, we con-
struct metrics to predict LLMs’ performance at
the task level, aiming to distinguish between
tasks where LLMs may perform well and where
they are likely unsuitable. We find that some of
these metrics, each of which are assessed with-
out labeled data, yield strong signals of LLMs’
predictive performance on new tasks '.

1 Introduction

There is increasing interest in using large language
models (LLMs) as predictive models, leveraging
the world knowledge encoded by their pretraining
corpora to make zero-shot predictions in domains
without any labeled data. While this predictive ca-
pability was first investigated for traditional tasks
within Natural Language Processing (NLP), such
as text classification or question-answering (Wang
et al., 2023b), recent work has utilized LLMs as
predictive models in a broader sense. For instance,
LLMs have been used to provide medical risk
scores (Chung et al., 2024), predict fraud risk in
financial applications (Xie et al., 2024) and im-
pute unsurveyed fields in social science surveys
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(Park et al., 2024; Dominguez-Olmedo et al., 2024).
More generally, LLMs can effectively consume
text serializations of tabular data; the prevalence
of tabular data across many domains likely con-
tributes to this increasing interest across application
areas. These applications differ from traditional
text-based tasks (Cruz et al., 2024) because the
label is not determined fully by the input: people
with identical features may have different outcomes.
We refer to tasks with this property as probabilistic
prediction, and the predicted probabilities from the
LLM as risk scores.

While the zero-shot prediction capabilities of
LLMs offer exciting opportunities to scientists and
practitioners, it is likely (as we empirically ver-
ify) that LLMs’ performance varies widely across
settings. Then, how can practitioners tell whether
an LLM will perform well as a predictive model,
prior to observing labeled data? This is a question
with no easy answer. The appeal of using a pre-
trained model in many domains lies in avoiding the
cost of collecting labeled data. However, validat-
ing conclusions from foundation models without
labeled-data confirmation is far from straightfor-
ward.

This challenge is especially pronounced in the
fully zero-shot case, where users lack access to
ground-truth labels altogether. We distinguish per-
formance at two levels of granularity: at the indi-
vidual level, referring to which examples an LLM
is likely to predict accurately, and at the task level,
referring to which overall prediction problems, de-
fined by a dataset and outcome variable, the LLM
is likely to perform well on. The ability to quan-
tify uncertainty at both levels allows practitioners
to judge which individuals and overall predictive
tasks may result in inaccurate predictions.

Previous work has primarily studied uncertainty
at the individual level, finding mixed results. Ab-
stention methods use measures of individual-level

https://github.com/kkr36/11m-eval/tree/camera-ready. confidence to flag dubious predictions that should
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be examined manually by a human expert, or ig-
nored altogether (Tomani et al., 2024; Feng et al.,
2024). However, both answer-token probabilities
and verbalized confidence scores from LLMs have
been found to be badly calibrated for probabilis-
tic prediction (Cruz et al., 2024) and also for a
variety of question-answering tasks (Xiong et al.,
2023), typically due to overconfidence. Despite
this, multiple approaches train a post-processing
step to improve calibration using only the outputs
or last-layer representations of models (Shen et al.,
2024; Ulmer et al., 2024). Confidence scores have
also been found to be useful in conformal pre-
diction frameworks (Kumar et al., 2023; Mohri
and Hashimoto, 2024), suggesting that they can be
post-processed to yield informative decisions about
when to provide specific information.

Analogously, practitioners may wish to know
whether a task is likely suitable for an LLM before
using its outputs, via some metric of uncertainty at
the task level. Yet, to our knowledge, no previous
work considers uncertainty quantification at the
task level, at least in the context of probabilistic
prediction. This presents a significant challenge, as
in many real-world scenarios, practitioners would
benefit from heuristics to assess whether LLMs
will perform well a priori. However, doing so
typically requires labeled data—a costly resource
that pretrained models are meant to help avoid.

In this work, we conduct a large-scale empirical
study on the performance of LLMs for probabilistic
prediction on 316 tasks across 31 tabular datasets.
The primary question we ask is: given only unla-
beled data, is it possible to anticipate how well
the model will perform on a zero-shot predic-
tion task? We provide the first empirical evidence
using task-level strategies to assess signals of LLM
performance across prediction tasks. Additionally,
we provide more nuanced results about individual-
level uncertainty quantification; previous results on
LLM calibration for probabilistic prediction (Cruz
et al., 2024) are restricted to data from the US
Census while we employ a much larger number
of tabular datasets across many subject areas. Our
empirical study reveals several findings that can
inform how LLMs are employed and evaluated in
predictive settings:

1. The distribution of LLMs’ predictions on un-
labeled data encodes substantial information
about their suitability for a task. We propose
simple heuristics and more elaborate model-
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based strategies that provide a strong signal
of LLMs’ predictive performance, using only
unlabeled data. While we do not suggest that
practitioners forgo labeled-data evaluation in
high-stakes settings, our results could be use-
ful to provide an initial assessment of which
candidates from a set of prediction tasks are
more promising for further development—or
to screen out applications that have a lower
chance of success.

. At the task level, naive “elicited confidence"

strategies (e.g., asking LLMs to rate their skill
level given a description of the task) are com-
paratively unreliable predictors of success.

. Substantial variation in LLMs’ performance

on different prediction tasks is not explained
by broader patterns of “subject matter exper-
tise"; within different tasks defined on the
same dataset, predictive performance exhibits
very high variance. This implies that attempts
to validate LLMs’ suitability must be specific
to individual predictive tasks, and should not
solely utilize information at a dataset or gen-
eral subject level. For example, validating
a social simulator by demonstrating that the
LLM predicts observed fields well carries a
high degree of risk because success on ob-
served fields often fails to generalize to suc-
cess on a specific, unobserved field.

. At the individual level, LLMs’ responses to

probabilistic prediction tasks are typically
poorly calibrated. Beyond overconfidence as
reported in previous work (Cruz et al., 2024),
we find that LLMs’ responses in a given do-
main are often describable as simply being
over- or under-predictions, where risk scores
are consistently too large or too small.

. Despite a lack of calibration in individual-

level predictions, in many tasks, individual-
level responses still provide an informative
signal for abstention decisions because LLMs
are more accurate on examples for which they
output more extreme risk scores. This conclu-
sion empirically holds even if the numerical
scale of the scores is highly distorted. This
echoes our first two findings at the task level:
LLMs’ responses contain considerable latent
information about performance at both levels,



but this information often requires postpro-
cessing to elicit meaningful results.

Our results provide a pathway towards more rig-
orous decisions about which tasks and individual
instances are appropriate for LLMs.

2 Related Work

LLMs for Tabular Data: Recent work has
shown that LLMs can effectively process tabular
data using simple prompting strategies, achieving
strong performance (Hegselmann et al., 2023). Pre-
trained models like TaBERT (Yin et al., 2020),
TAPAS (Herzig et al., 2020), and TURL (Deng
et al., 2021) focus on tabular data for QA tasks,
while others leverage chain-of-thought prompting
(Sui et al., 2023; Jin and Lu, 2023) and fact ver-
ification (Chen et al., 2020; Eisenschlos et al.,
2020). Broader generalization strategies include
UniPredict (Wang et al., 2023a) and instruction
tuning (Yang et al., 2024). More recent efforts
highlight LLLMs’ ability to perform zero-shot tabu-
lar predictions (Shi et al., 2024; Wen et al., 2023;
Gardner et al., 2024). As opposed to developing
methods to optimize LLMs for the purposes of un-
derstanding tabular data, our work seeks to empiri-
cally distinguish general factors predicting LLMs’
success and failure across prediction tasks.

Elicited Confidence Scores From LLMs: LLM
predictions on tabular data can suffer from
pretraining-induced biases (Liu et al., 2024), and
their uncertainty estimates are often poorly cali-
brated (Cruz et al., 2024). Methods like multical-
ibration and prompt-based scoring (Xiong et al.,
2023; Detommaso et al., 2024) aim to improve cal-
ibration. In contrast to prior work, we primarily
study uncertainty estimation at the task level. En
route, we also provide a more nuanced picture of
individual-level uncertainty on a wider range of
tasks than previous work.

3 Methods

We describe our experimental setup, the problem of
predicting LLLM performance, and the set of proxy
methods that we assess for performance prediction.

3.1 Experimental Setup

We conduct experiments on 31 tabular datasets
spanning domains such as social surveys, finance,
medicine, and transportation (see Appendix A.1 for
details). Each dataset is associated with a binary

classification task. Using the folktexts library
(Cruz et al., 2024), we serialize 1,000 randomly
sampled rows per dataset (or the full dataset if
smaller) into text prompts, followed by a multiple-
choice question requesting the label. Predicted
probabilities (risk scores) are derived from the
token-level output distribution. We evaluate four
models that expose token-probability APIs: GPT-
40-Mini, GPT-40, Mistral-7B-Instruct-v0.1, and
Llama-3.1-8b-Instruct. Each model also gener-
ates a verbalized confidence score per row (see
Appendix A.12 for details). Final evaluations use
the ground-truth labels to compute accuracy, AUC,
and expected calibration error (ECE).

Beyond the designated “label” column for each
dataset, we also treat other features as additional
prediction targets, expanding the number of tasks
substantially. In each case, one feature is treated
as the prediction target while the others serve as
inputs. For continuous features, we define binary
labels relative to the median to standardize outputs,
while for categorical features, we predict whether
the value equals the mode. Features with >70%
missing values, or categorical features where >99%
of rows equal the mode or <10% equal the mode,
are excluded. We sample 10 features per dataset
to construct auxiliary prediction tasks. For exam-
ple, given features A, B, C, and an outcome D,
we remove D and create three tasks, (A,B—C),
(B,C—A), and (A,C—B). We then compute zero-
shot predictions on each task and average the AUCs,
yielding 285 additional proxy evaluations.

3.2 Predicting task-level performance

We define and empirically evaluate metrics for
predicting LLMs’ zero-shot performance over do-
mains. Many of these are intuitive extensions of
individual-level uncertainty quantification strate-
gies to the task level, and part of our goal is to give
practitioners guidance about which extensions per-
form well empirically and which do not. We group
our strategies into several broad categories.

Task-level confidence elicitation: Perhaps the
simplest strategy to predict LLMs’ performance at
a new task is to ask the LLM itself whether it will
perform well, analogous to verbalized confidence
strategies at the individual level (Tian et al., 2023).
We provide the LLM with a text description of the
dataset and its target variable (see Appendix A.12
for the exact prompt). We assess several strategies
that prompt the LLM to output assessments of its
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own expected performance, given that LLMs are
sensitive to the manner in which information is
elicited. Direct AUC prediction asks the LLM
to output a prediction of its own AUC at the task.
Integer scoring asks the LLM to rate its confidence
at the task as a number between 1 (no confidence)
and 5 (full confidence). Finally, Decimal scoring
asks the LLM for a continuous rating between 0.0
(no confidence) and 1.0 (full confidence).

Aggregating individual-level confidence: We
utilize LLM outputs for each row of a dataset, given
a prediction task, to design proxies for task-level
AUC. For each row, we obtain the risk score p; and
verbalized confidence score ¢;. One natural strategy
is to aggregate these individual-level measures of
uncertainty to the task level, reasoning that LLMs
will perform well on tasks where they are confi-
dent in many individual examples. We evaluate
four metrics as proxies for task-level performance.
First, average confidence, defined for task j as
% ZZ 1 ¢i (where n; is the number of samples for
task 5). Second, average Maximum Class Proba-
bility (MCP), defined as ni] 7 max{p;, 1 —p; }.
This measures how close predictions are to O or
1, which is a proxy for confidence. Finally, we
include two additional metrics, standard devia-
tion of confidence and standard deviation of risk
scores, the empirical standard deviations of the sets
{¢;} and {p; }, respectively. These are motivated by
the anecdotal observation that one common failure
mode LL.Ms encounter is outputting (near) identi-
cal responses for every row. One potential proxy to
account for this is simply whether the LLM makes
a wide range of predictions.

Masking: Finally, we might think that an LLM
will output high-quality predictions of a label y if
it performs well at other predictive tasks on the
same dataset: predicting each feature z* from the
other features 2 ~*. This procedure is motivated by
the hypothesis that strong performance on these
proxy tasks signals broader task-relevant under-
standing by the LLM. We collect risk scores from
a sample of such masked prediction tasks for each
dataset. The masking strategy takes the average of
the AUCs in these simulated tasks as a proxy for
the AUC from predicting the true label y.

4 Results

Our analysis is structured as follows. We begin
by examining the zero-shot classification perfor-

mance of the LLMs on our curated datasets, with
a focus on the quality of individual-level predic-
tions. We then broaden the scope to analyze the
predictability of aggregate-level LLM performance
across datasets. Results are shown for a spread of
tested LL.Ms, with the full scope of results added
to the Appendix.

4.1 Overall Trends in Performance.
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Figure 1: Histograms of AUC and ECE over all datasets,
for GPT-40-mini (a,c) and Llama-3.1-8b-Instruct (b,d).

LIMs have significant spread in their predic-
tion capabilities, both across datasets and across
prediction tasks from the same dataset. In Fig-
ures la and 1b, we observe that both GPT-40-mini
and Llama-3.1-8b-Instruct have nontrivial zero-
shot predictive capabilities, with a median AUC
of 0.7232 for the GPT-40-mini and 0.7080 for the
Llama model. The range is wide, with AUCs above
0.9 for some tasks, but at near-random (or worse
than random) levels for others. This confirms that
practitioners must take steps to assess the appro-
priateness of LLM zero-shot inference for a given
task. See Appendix A.2 for a full set of AUC and
ECE scores over all datasets and LLMs.

Within individual datasets, the quality of LLM
predictions can vary substantially when using dif-
ferent columns as outcome variables (i.e., different
prediction tasks). In Figure 2, we plot the distri-
bution of AUC scores across columns within each
dataset for GPT-40-Mini (see Appendix A.6 for
similar plots for the other LLMs.). These results
show that intra-dataset variation is often consider-
able: many datasets contain prediction tasks with
AUC scores below 0.5 as well as tasks with scores
above 0.9. To quantify this result, we compute an
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intra-class correlation coefficient, defined as the
ratio of the variance in AUC within datasets vs
overall, measuring the fraction of variance at the
dataset level. We find that only 19% of the vari-
ance is explained by the dataset for GPT-40-mini
(for Llama-3.1-8b-Instruct, 12.80%), with 81% per-
sisting within datasets. Perhaps surprisingly, this
indicates that checking the performance of an LLM
on some tasks in a given domain offers practitioners
little confidence that it will perform well in unseen
tasks from the same domain.

For deeper analysis, we also examine LLM per-
formance relative to the best achievable, as some
within-dataset variation may stem from inherent
differences in column difficulty, independent of
model skill. To test for dataset-level variation
in relative LLM skill, we compute the ratio be-
tween the LLM’s AUC and that of an XGBoost
model trained on labeled data (Chen and Guestrin,
2016), as a proxy for optimal performance. This
normalized metric is more concentrated within
datasets than AUC (Appendix A.5), with the in-
traclass correlation increasing to 53.02% for GPT-
40-mini (47.68% for Llama-3.1-8b-Instruct), in-
dicating more variation is explained at the dataset
level. From the perspective of scientific understand-
ing of LLMs’ capabilities, this suggests there are
meaningful differences in skill across domains af-
ter accounting for the inherent difficulty of a task
(although practitioners may more heavily weigh ab-
solute performance, where our earlier results show
high within-dataset variation). Interestingly, GPT-
40-Mini’s and Llama-3.1-8b-Instruct’s AUC scores
correlate strongly across tasks (R? = 0.497, Fig-
ure 3), suggesting certain tasks are more amenable
to LLM-based inference than others. This correla-
tion is stronger than either model’s correlation with
XGBoost performance (Figure 4), implying that
shared LLM performance factors are not reducible
to the difficulty of the base task. Analogous figures
for GPT-40 and Mistral-7b-Instruct-v0.1 are shown
in the Appendix A.7.

4.2 Individual-Level Results.

Elicited risk scores from LLMs are poorly cali-
brated, but are often useful for abstention tasks.
Figure 1c and 1d show median ECEs around 0.2
for GPT-40-mini and Llama (0.2426 and 0.1722,
respectively), with GPT-40-mini exhibiting greater
variability. This corroborates previous findings of
poor LLM calibration in US census tasks (Cruz
et al., 2024) in a larger set of probabilistic pre-
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Figure 2: Box plots of AUC scores over masked-out
columns in the Masking experiment, for all datasets.
Results shown for GPT-40-mini.

1.0

GPT AUC

° ' ' R?=0.497
0.4 0.5 0.6 0.7 0.8 0.9 1.0
Llama AUC

Figure 3: Plot of AUC scores for each of the datasets, for
both Llama-3.1-8b-Instruct and GPT-40-mini. Best-fit
line with R? value plotted in red.

diction tasks. While prior work reports overcon-
fident, inverted-sigmoid calibration curves from
instruction-tuned models, we observe curves (see
Figure 5, Appendix A.8) that often remain entirely
above or below the identity line, indicating predic-
tions are consistently too high or too low. This sug-
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Figure 4: Correlation between AUC scores of GPT-4o-
mini (a) and Llama (b) over prediction tasks on each
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gests that LLMs often misjudge the absolute scale
of their risk scores, even when preserving relative
ranking accuracy (as reflected by high AUCs). Our
findings thus contradict prior notions of overcon-
fidence: instead, LLMs ostensibly have difficulty
scaling their predictions to fit the marginal distribu-
tion of the label, even while correctly identifying
which features correlate well with the label, which
was a previously unknown phenomenon.

Despite poor numerical calibration, predictions
closer to 0 or 1 (higher confidence) tend to be more
accurate. We simulate abstention systems with
LLM outputs by examining the degree to which
MCP, a proxy of confidence in the predicted label,
predicts individual-level accuracy, a task referred
to by (Xiong et al., 2023) as failure prediction.
We observe that LLM outputs are nontrivially suc-
cessful at failure prediction for many tasks (see
Figure 6, Appendix A.9). On the high end, we
find AUC:s for failure prediction of nearly 0.9, al-
though performance varies across tasks (ranging
from around 0.4 to 0.9). Strikingly, this effect is
stronger for tasks where the LLM already performs
well: the AUC of the original prediction task is
highly correlated with AUC of failure prediction,
indicating that when a model has a strong base-
line ability, its confidence is better aligned with
accuracy. Thus, risk scores—despite calibration is-
sues—can potentially support abstention strategies
on domains where LLM usage is well-motivated to
begin with, as LLMs often distinguish effectively
between more and less reliable predictions on those
tasks.

Figure 5: Calibration curves for GPT-40-mini (a) and
Llama-3.1-8b-Instruct (b) across 31 datasets. Each
curve corresponds to a prediction task. Curves crossing
the identity line are shown in grey; those consistently
above or below are blue and red, respectively. Con-
cretely, all curves that a) are on average 0.2 above the
identity line and b) have no points more than .1 below
the identity line are colored in blue; curves on average
.2 below the identity line and with no points more than
.1 above are colored in red.
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Figure 6: Correlation between AUC scores of failure
prediction and predicting the outcome variable for all
datasets, for GPT-40-mini (a) and Llama (b).

4.3 Task-Level Results.

LLMs vary widely in their ability to anticipate
their performance on new tasks, correlating with
their baseline strength. We observe that newer
and more capable LLMs demonstrate the strongest
general performance on tabular data. GPT-4o, the
newest and largest LLM we study, achieves the
highest median AUC across tasks (0.82) and has
a nontrivial correlation between metrics that do
not leverage any unlabeled data (the "direct AUC
prediction," "decimal scoring," and "integer scor-
ing" metrics) and its actual performance (Figure 8).
There is also a strong correlation between GPT-40’s
task-level performance and its average confidence
on unlabeled data points for that task. However,
these metrics display much weaker correlations
with task-level performance for the other LLMs
studied. These models have both weaker predictive
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Figure 8: Correlation between aggregate metrics derived from our experiments on the unlabeled datasets and the
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performance and little correlation between their The limitations of smaller models make this con-
self-predicted performance and actual performance. trast even clearer. For smaller models (see Figure 7,
We note that aggregate LLM performance is ex- Appendix A.4), most evaluated metrics show little
actly in line with the strength of the LLM (i.e.,  correlation with AUC. In particular, methods that
parameter count): in order from lowest to high-  do not use any unlabeled data are entirely uncor-
est average AUC across the 31 original tasks, we  related with performance. Even for GPT-40, these
have Mistral-7b-Instruct-v0.1 (AUC: 0.66), Llama-  metrics are weaker predictors of AUC than metrics
3.1-8b-Instruct (AUC: 0.69), GPT-40-mini (AUC: that exploit unlabeled data, such as the standard de-
0.72), and GPT-40 (AUC: 0.77). These findings  viation of risk scores (Figure 8). This suggests that
suggest that an LLLM’s baseline capability corre- confidence signals derived from unlabeled data are
lates with its ability to anticipate its own perfor-  consistently more informative than self-estimates
mance, perhaps due to its inherent grasp of the that rely solely on task descriptions, even while
prediction task. the strength of all metrics roughly scales with the
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complexity of the LLM.

Surprisingly, the masking strategy (proxying the
LLMs’ performance at predicting a label by its per-
formance at predicting features) poorly predicts
downstream AUC for all tested LLMs. Although
one might expect that an LLM’s performance on
masked columns would reflect its overall predic-
tive capacity on a dataset, this assumption does
not hold empirically. As shown in Figure 2, AUC
scores vary widely across tasks within the same
dataset, limiting the utility of dataset-averaged met-
rics. In other words, the variance in predictive
quality across outcome variables makes it difficult
for a dataset-level average to be a strong indica-
tor of performance on any specific task within the
dataset. As this appears to be a trend across many
datasets, the results point to LLMs’ capabilities as
the mechanism: we find no evidence to support
the expectation that LLMs are reliably good within
some domains and consistently bad at others.

Information describing the spread of risk
scores provides particularly strong signals for
downstream performance. As shown in Fig-
ures 7b, 8b, 14b, 13b, the standard deviation of
risk scores correlates positively with downstream
AUC. For all tested models, the R? of this rela-
tionship is the highest among all metrics evalu-
ated (e.g., R? = 0.605 and 0.270 for GPT-40 and
Llama-3.1-8b-Instruct, respectively). A higher vari-
ance in risk scores may reflect greater separation
between classes in a model’s predictions, suggest-
ing that some failure modes are distinguished by
the model giving similar predictions for most rows.
Importantly, there are significant outliers from this
relationship, indicating that large variance in risk
scores is not a guarantee of good performance on a
task. Nevertheless, since this metric exhibits by far
the largest correlation with predictive performance,
we conduct a deeper dive by querying the distri-
bution of model predictions for the 285 additional
masked-column prediction tasks in addition to the
31 original tasks of predicting the designated label
for each dataset. This gives us a significantly larger
task-level sample size for more detailed analysis.

Checking the variance of risk scores can aid
task-level abstention decisions. Aggregating re-
sults across all 316 tasks (Figures 9a and 9b for
GPT-40-mini and Llama; Appendix A.10 for GPT-
40 and Mistral), we still observe a monotonically
increasing relationship between the standard devia-
tion of risk scores and AUC. To measure whether
a practitioner would get an informative signal by

screening potential tasks according to this met-
ric, Figures 9c, 9d, 20c, and 20d show the mean
AUC on all tasks above a given minimum threshold
for the standard deviation, for all LLMs. By rais-
ing this threshold, we are able to distinguish tasks
with significantly higher than average AUC. For in-
stance, for GPT-40-mini, the set of all datasets with
a standard deviation in risk scores of at least 0.4
has an average AUC of 0.8417, much higher than
the average AUC over all datasets (0.7186). While
it is important not to rely on this metric absolutely,
we suggest that practitioners check whether LLMs
make similarly-valued predictions for all individ-
uals, since doing so can help flag datasets where
LLMs may not be suitable for zero-shot prediction.

The full distribution of predictions captures ad-
ditional information about performance. As the
standard deviation of the risk score distribution
alone contains significant signal, we test whether
additional information about performance can be
gleaned from the full distribution of risk scores.
For each task, we discretize the distribution of risk
scores from the LLM into 201 values giving each
a-percentile of the distribution, varying « by 0.5-
percentile increments, and train XGBoost models
to predict task-level AUC. We use 5-fold cross-
validation, grouping by dataset to avoid leakage,
so each task’s out-of-sample prediction is based on
the other 4 folds. Figure 10 plots the average out-
of-sample predicted AUC against the actual AUC,
along with a LOESS-smoothed curve and 95% con-
fidence interval, for GPT-40-mini and Llama (see
Appendix 21 for an equivalent plot for GPT-40 and
Mistral). The resulting trend is clearly positive,
suggesting that the distribution of LLM-generated
risk scores, computed solely on unlabeled data, con-
tains meaningful information about task-level zero-
shot performance. The relationship between pre-
dicted and actual AUCs becomes somewhat tighter
than in Figure 9, particularly for Llama, suggesting
that while the standard deviation of the distribu-
tion carries much of the signal about performance,
other features of the distribution can contribute ad-
ditional information. Despite the strong correlation
between coarser metrics (i.e., standard deviation
of risk scores) and downstream AUC for GPT-4o,
we still find that the full distribution of risk scores
adds meaningful information when regressing on
AUC (see Appendix 21a, 21c).

To visualize what information the XGBoost mod-
els associate with high AUCs, Figure 11 shows the
cumulative distribution functions (CDFs) of the
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LLMs’ risk scores for the 10 tasks with the highest
and lowest predicted AUCs (see Appendix A.11
for an equivalent plot for GPT-40 and Mistral). No-
tably, results differ between LLMs. For GPT-4o-
mini (Figure 11a), high AUC is associated with
strongly bimodal risk scores, clustered near O or
1. In contrast, for Llama (Figure 11b), high AUC
aligns with broader, high-variance distributions,
while tighter, low-variance distributions correspond
to lower AUCs. These differences suggest that the
qualitative signals of good performance vary across
LLMs. Although both LLLMs encode useful infor-
mation, the way this information manifests differs,
indicating a need to analyze distributional traits on
a per-model basis.
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Figure 9: Proxy tasks in the Masking experiment using
GPT-40-mini (a,c) and Llama (b,d), including the origi-
nal 31 tasks. LOESS curves with 95% CI shown in (a,b);
each point represents predictions on one dataset column.
(c,d) show average AUC as the minimum threshold on
standard deviation of risk scores increases.

5 Conclusion

While the zero-shot prediction capabilities of
LLMs offer exciting opportunities, it remains un-
clear how to reliably employ LLM predictions with-
out validating their outputs on labeled data. We
conduct a large-scale empirical study across 316
prediction tasks to explore whether LLMs can serve
as reliable zero-shot predictors across a diverse col-
lection of tabular classification tasks. We introduce
eight novel task-level metrics for better estimating
the LLMs’ confidence in the prediction task.

Our findings indicate that performance is highly
variable even within individual datasets, so success

Actual AUC
Actual AUC
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(a) (b)

Mean AUC
o
o0
Mean AUC
o
[oo}

1

0.4 0.6 0.8 : 0.4 0.6 0.8
Avg OOS Pred = Threshold Avg OOS Pred = Threshold
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Figure 10: Proxy tasks in the Masking experiment us-
ing GPT-40-mini (a,c) and Llama (b,d), including the
original 31 tasks. (a,b) show LOESS fits (with 95%
CI) of actual vs. XGBoost-predicted AUCs, trained via
grouped 5-fold cross-validation. Each point represents
one prediction task. (c,d) show AUC averages after
thresholding on predicted AUCs, analogous to Figures
9c and 9d.

1.0 — — 1.0
o8] [/ y 0.8
w 0.6] [t — | wos
[a} —— a
Qo4 Qo4
0.2 p 0.2
0.0 0.0 7 B
0.00 025 050 075 1.00 0.00 025 050 0.75 1.00
Probability Probability
(a) (b)

Figure 11: CDFs of the 10 highest (blue) and lowest
(red) predicted AUCs over prediction tasks by XGBoost,
using 201 percentile values along with standard devi-
ation of risk scores to predict AUC. We observe clear
trends within LLMs—for GPT-40-mini (a), bimodal dis-
tributions of risk scores correlate with high XGBoost
predictions, whereas for Llama (b), distributions encom-
passing a wide range of probabilities correlate with high
predictions.

at one task is no guarantee of success at other tasks
on similar data. Instead, measuring the distribution
of risk scores for a new task yields both heuristics
as well as more sophisticated models that capture a
strong signal about the LLMs’ performance on that
task. However, enough variance in performance re-
mains that such predictions of performance should
be seen more as a way to prioritize more promising
tasks or screen out ones with a low likelihood of
success, not a substitute for eventual validation on
labeled data for consequential applications.
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Limitations

This paper investigates the predictive performance
of large language models (LLMs) in zero-shot
settings on tabular data, using unlabeled data to
estimate task-level performance while drawing
new conclusions about individual-level calibrations.
While our findings offer novel insights, several lim-
itations merit discussion:

Memorization or data leakage. The datasets that
we use are publicly accessible, raising the prospect
that they may have appeared in LLM training sets.
Our results do imply that LLMs have not memo-
rized the data in the sense of perfectly replicating
individual rows, as AUCs vary widely at predicting
individual columns within the same dataset given
the other columns. Our serialization strategy also
alters the presentation of information from the orig-
inal csv file, which has been found to disrupt some
explicit memorization (Bordt et al., 2024). Beyond
literal row-by-row memorization though, previous
work shows that LLMs perform better at tasks seen
more during training, especially for tasks related to
retrieval of world knowledge (Kandpal et al., 2023;
Wang et al., 2025). The impact of this phenomena
depends on the application at hand—practitioners
in many settings may hope to actually benefit from
LLMs having seen relevant data to their application
during the training process. Accordingly, proxies
for task-level performance that partly pick up on
prior exposure to similar tasks may still serve their
needs. However, using public data does represent a
potential limitation in external validity for our re-
sults; we can’t rule out that predictors of task-level
performance might be different in domains that are
completely unseen during LLM training.

Model access and scale. We rely on LLMs
that expose token-level probabilities (GPT-40-mini,
GPT-40, Mistral-7b-Instruct-v0.1, and Llama-3.1-
8b-Instruct), which may not generalize to other
models without such access or with substantially
different architectures. Larger models, or mod-
els with distinct fine-tuning or pretraining regimes,
may behave differently.

Prompting. Our serialization of tabular data
uses fixed, template-based formats (i.e., “Feature:
Value” pairs, followed by binary questions). Our
prompting approaches do not explore alternative
prompts, few-shot settings, or chain-of-thought rea-
soning.
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A Appendix

A.1 Dataset Descriptions, Sources, and Artifacts

Dataset Name Short Description Source
acsincome ACSIncome task from the folktables package. link
acsmobility ACSMobility task from the folktables package. link
acspubcov ACSPublicCoverage task from the folktables package. link
acstraveltime ACSTravelTime task from the folktables package. link
acsunemployment ACSEmployment task from the folktables package. link
airline Predict flight delays based on scheduled departure info. link
bank Predict term deposit subscription in a marketing campaign. link
brfssdiabetes Predict whether a patient has diabetes (BRFSS survey). link
brfsshbp Predict hypertension diagnosis for 50+ age group. link
brfsshighcholesterol ~ Predict high cholesterol in BRFSS survey data. link
car Predict acceptability of cars from evaluation records. link
diabetes Predict readmission of diabetic patients within 30 days. link
glioma Classify glioma (brain tumor) grade. link
houses Predict if California housing value exceeds $200k. link
indiandiabetes Predict diabetes using diagnostic features. link
ipums Predict facility birth in Latin/Caribbean countries. link
mushroom Classify mushrooms as edible or poisonous. link
nursery Prioritize nursery school applications. link
rice Classity Turkish rice grains as Osmancik or Cammeo. link
sepsis Predict ICU patient risk of sepsis within 6 hours. link
support2 Predict hospital death of critically ill patients. link
taxibog Predict long taxi rides in Bogota. link
taximex Predict long taxi rides in Mexico City. link
taxiuio Predict long taxi rides in Quito. link
telescope Classify cosmic ray vs gamma signal events. link
ucibreastcancer Predict breast mass as malignant or benign. link
ucidiabetes Predict diabetes using lifestyle statistics. link
uciheart Predict heart disease diagnosis. link
ucispambase Classify email as spam or not spam. link
ucistatloggerman Classify credit risk from attributes. link
usaccidents Predict severity of US traffic accidents. link

For more details regarding our dataset sources and other artifacts:

e The car, diabetes, glioma, mushroom, nursery, rice, support2, telescope, ucibreastcancer,
ucidiabetes, uciheart, ucispambase, and ucistatloggerman datasets all come from the UCI

repository (Dua and Graff, 2019).

e The acsincome, acsmobility, acspubcov, acstraveltime, and acsunemployment datasets all

come from the Folktables repository (Ding et al., 2021).

¢ The brfssdiabetes, brfsshbp, brfsshighcholesterol, and sepsis datasets all come from the

Tableshift repository (Gardner et al., 2023).

* The airline, bank, and house datasets all come from OpenML (OpenML).

e The indiandiabetes, taxibog, taximex, taxiuio, and usaccidents datasets all come from
Kaggle (UCI and Contributors; Navas, 2022; Moosavi, 2020).

* the ipums dataset is curated from the IPUMS Global Health repository of international health survey
data (Health).

 All datasets are publicly available and we release our data for replication, with the exception of the
ipums data, which required individual-level dataset requests for the de-identified data on maternal
outcomes, and is thus not released. All data is compliant with anonymization policies (i.e., de-
identified) and does not contain offensive or sensitive content.
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https://archive.ics.uci.edu/dataset/144
https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents

* We use GPT-40-mini, GPT-40 (Hurst et al., 2024), Mistral-7b-Instruct-v0.1 (Chaplot, 2023), and
Llama-3.1-8b-Instruct (Grattafiori et al., 2024) as LLMs for predictive modeling, for all experiments.
All models contain publicly available APIs for personal and research use. Furthermore, Mistral-7b-
Instruct-v0.1 and Llama-3.1-8b-Instruct make their model weights publicly available.
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A.2 LLM Metrics Table

Dataset GPT-40-mini AUC GPT-40-mini ECE Llama AUC Llama ECE
taxiuio 0.8794 0.0971 0.7929 0.3087
mushroom 0.8881 0.2900 0.6931 0.1676
acsincome 0.8655 0.1939 0.8481 0.2812
support2 0.8904 0.1369 0.8644 0.2953
telescope 0.4322 0.6490 0.4900 0.3038
nursery 0.8368 0.2425 0.7776 0.1163
diabetes 0.4979 0.0960 0.5235 0.1940
brfssdiabetes 0.6497 0.1540 0.7144 0.0706
airline 0.4768 0.0697 0.4779 0.1867
bank 0.6805 0.1115 0.5507 0.0854
acspubcov 0.7232 0.2211 0.6963 0.0723
ucistatloggerman 0.4499 0.4677 0.4589 0.4457
brfsshbp 0.7249 0.4550 0.7052 0.1633
usaccidents 0.5974 0.1980 0.7300 0.1535
uciheart 0.8756 0.2504 0.8117 0.1348
IndianDiabetes 0.7882 0.4330 0.7971 0.0877
taxibog 0.8730 0.0770 0.8202 0.1923
ucispambase 0.8921 0.2954 0.7491 0.1632
ucidiabetes 0.6624 0.3149 0.7133 0.4992
glioma 0.8837 0.2426 0.3511 0.2808
rice 0.4907 0.3090 0.6011 0.2925
acstraveltime 0.6599 0.3724 0.6556 0.0357
acsmobility 0.5803 0.1427 0.5779 0.1153
car 0.9121 0.1308 0.8564 0.1067
acsunemployment 0.8880 0.4190 0.8711 0.2171
houses 0.4935 0.4083 0.4659 0.1077
sepsis 0.5936 0.0273 0.5950 0.2442
brfsshighcholesterol ~ 0.6977 0.4171 0.6846 0.1722
ucibreastcancer 0.8115 0.5732 0.9436 0.4302
taximex 0.8859 0.0494 0.8180 0.2640
ipums 0.6970 0.3519 0.7080 0.1563
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Dataset GPT-40 AUC GPT-40 ECE Mistral AUC Mistral ECE
taxiuio 09115 0.0845 0.7166 0.4622
mushroom 0.9964 0.2077 0.8277 0.2423
acsincome 0.8801 0.1696 0.8102 0.1016
support2 0.9226 0.0921 0.7242 0.5444
telescope 0.6145 0.2760 0.6420 0.0480
nursery 0.7935 0.2672 0.8622 0.1841
diabetes 0.4935 0.1304 0.4973 0.2322
brfssdiabetes 0.8239 0.0894 0.7785 0.1827
airline 0.5084 0.1529 0.5114 0.2466
bank 0.8480 0.4554 0.5559 0.1709
acspubcov 0.7238 0.2866 0.6122 0.0780
ucistatloggerman 0.4962 0.3348 0.4436 0.2079
brfsshbp 0.7538 0.2986 0.6665 0.0886
usaccidents 0.5527 0.2241 0.6028 0.3827
uciheart 0.8983 0.2046 0.7593 0.2384
IndianDiabetes 0.8231 0.2400 0.7723 0.1712
taxibog 0.8895 0.1253 0.7495 0.3091
ucispambase 0.9594 0.1051 0.7447 0.0519
ucidiabetes 0.7248 0.5399 0.6910 0.2811
glioma 0.8988 0.1425 0.4919 0.1840
rice 0.4950 0.0449 0.2742 0.0616
acstraveltime 0.7038 0.3325 0.5685 0.1266
acsmobility 0.5628 0.1987 0.5293 0.1105
car 0.9250 0.0986 0.8565 0.2582
acsunemployment 0.8896 0.1346 0.5654 0.2648
houses 0.8890 0.1692 0.4260 0.0345
sepsis 0.6568 0.1264 0.5929 0.3422
brfsshighcholesterol ~ 0.7139 0.3755 0.6982 0.0806
ucibreastcancer 0.9911 0.0358 0.9597 0.3950
taximex 0.8965 0.0868 0.7839 0.4085
ipums 0.7225 0.1912 0.6658 0.2763
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A.3 Additional AUC and ECE Histograms
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Figure 12: Histograms of AUC and ECE over all datasets, for GPT-40 (a,c) and Mistral-7b-Instruct-v0.1 (b,d).
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A.4 Correlation between Metrics and AUC
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Figure 13: Correlation between aggregate metrics derived from our experiments on the unlabeled datasets and the
AUC scores of Llama-3.1-8b-Instruct on each of the datasets, where each point represents one dataset. We plot the
best-fit line with its corresponding R? value for each metric.
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Figure 14: Correlation between aggregate metrics derived from our experiments on the unlabeled datasets and the
AUC scores of Mistral-7B-Instruct-v0.1 on each of the datasets, where each point represents one dataset. We plot
the best-fit line with its corresponding R? value for each metric.
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A.5 Normalized AUC Scores, Masking Experiment
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Figure 15: Box plots of AUC scores over masked-out columns in the Masking experiment, for all datasets, where
each AUC is divided by the AUC achieved by an XGBoost classifier on the same prediction task. Results shown for
GPT-40-mini (a), Llama (b), Mistral (c), and GPT-4o (d).
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A.6 AUC Scores, Masking Experiment
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Figure 16: Box plots of AUC scores over masked-out columns in the Masking experiment, for all datasets. Results
shown for Llama (a), Mistral (b), and GPT-40 (¢).
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A.7 Additional Agreement Plots
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Figure 17: (a) Plot of AUC scores for each of the datasets, for both GPT-40 and Mistral-7b-Instruct-v0.1. Best-fit
line with R2 value plotted in red. (b,c) Correlation between AUC scores of GPT-40 (b) and Mistral-7b-Instruct-v0.1
(c) over prediction tasks on each dataset, along with the AUCs achieved by training an XGBoost classification

1.0

MISTRAL AUC

o
(o)

©
N

o
o

o
U

©
>

R2=0.123

0.4

0.6 0.8 1.0
XGB AUC

(b)

model on a subset of the training set, and evaluating on a disjoint validation set.
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A.8 Additional Calibration Curve Plots
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Figure 18: Calibration curves for GPT-40 (a) and Mistral-7b-Instruct-v0.1 (b) across 31 datasets. Each curve
corresponds to a prediction task. Curves crossing the identity line are shown in grey; those consistently above or
below are blue and red, respectively. Concretely, all curves that a) are on average 0.2 above the identity line and b)
have no points more than .1 below the identity line are colored in blue; curves on average .2 below the identity line
and with no points more than .1 above are colored in red.
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A.9 Additional Failure Analysis Plots
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Figure 19: Correlation between AUC scores of failure prediction and predicting the outcome variable for all datasets,
for GPT-40 (a) and Mistral-7B-Instruct-v0.1 (b).
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A.10 Additional Regression on AUC
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Figure 20: Proxy tasks in the Masking experiment using GPT-40 (a,c) and Mistral-7b-Instruct-v0.1 (b,d), including
the original 31 tasks. LOESS curves with 95% CI shown in (a,b); each point represents predictions on one dataset
column. (c,d) show average AUC as the minimum threshold on standard deviation of risk scores increases.
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Figure 21: Proxy tasks in the Masking experiment using GPT-40 (a,c) and Mistral-7b-Instruct-v0.1 (b,d), including
the original 31 tasks. (a,b) show LOESS fits (with 95% CI) of actual vs. XGBoost-predicted AUCs, trained
via grouped 5-fold cross-validation. Each point represents one prediction task. (c,d) show AUC averages after
thresholding on predicted AUCs, analogous to Figures 9c and 9d.
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A.11 Additional CDF Plots
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Figure 22: CDFs of the 10 highest (blue) and lowest (red) predicted AUCs over prediction tasks by XGBoost,
using 201 percentile values along with standard deviation of risk scores to predict AUC. Shown for GPT-40 (a) and
Mistral-7b-Instruct-v0.1 (b).

18362



A.12 Prompting Templates

We provide the templates used to generate each of our dataset-level metrics below.

Context Content
Risk Scores "Please respond with a single $DESCRIPTION OF DATASET$\n\n
letter."” Information: $SERIALIZED

ROW$\n\n Question: $QUESTIONS$\n
A. S$POSITIVE LABEL TEXT$\n B.
$NEGATIVE LABEL TEXT$

Verb. Confidence $DESCRIPTION OF DATASET$ $SERIALIZED ROW$ Provide your
best guess and the probability
that it is correct (0.0
to 1.0) for\n the following
question. Give ONLY the
guess and probability, no
other words or\n explanation.
For example:\n\n Guess: <most
likely guess, as short as
possible; not\n a complete
sentence, just the guess!>\n
Probability: <the probability
between ©.0\n and 1.0 that
your guess is correct, without
any extra commentary whatsoever;
just\n the probability!>\n \n
The question is: $QUESTION$

A.13 Al Assistants In Research Or Writing

As our paper centers around the zero-shot capabilities of LLMs for tabular data, all of our experiments
necessarily deal with Al assistants (GPT-40-Mini, Llama-3.1-8b-Instruct) to generate core research results.
We also utilize Al assistants (Copilot, GPT) for assistance with rewording and clarity during the paper
writing process, along with providing starter code for generating plots.

A.14 Risks

One risk with our findings is the potential misuse of our proposed metrics. While we identify metrics, such
as the standard deviation of risk scores, that correlate with LLM performance, these signals should not be
interpreted as guarantees of success. Practitioners may be tempted to rely upon our metrics as substitutes
for evaluation on labeled data, leading to over-confidence in model outputs. This is particularly of concern
in high-stakes domains (e.g., healthcare or finance), where systematically inaccurate predictions carry
serious consequences. We emphasize that our metrics are diagnostic tools or guides to which tasks are
more promising as opposed to actionable decision rules. They should be used in conjunction with domain
knowledge and do not substitute for eventual labeled-data evaluation in high-stakes settings.

A.15 Hardware Details.

For GPT-40-mini and GPT-40, we conduct all inference via the OpenAl API, and so we do not require
any GPU assistance. However, we run Llama-3.1-8b-Instruct and Mistral-7b-Instruct-v0.1 locally with
Huggingface. To do this, we utilize a single NVIDIA Tesla V100 GPU, and require 80 GPU hours to run
all experiments.
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