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Abstract

Digital tool-based agents, powered by Large
Language Models (LLMs), that invoke external
Application Programming Interfaces (APIs) of-
ten rely on documentation to understand API
functionality. However, such documentation
is frequently missing, outdated, privatized, or
inconsistent—hindering the development of re-
liable, general-purpose agents. In this work,
we propose a new research direction: learning
of API functionality directly from in-context
demonstrations. This task is a new paradigm
applicable in scenarios without documentation.
Using API benchmarks, we collect demon-
strations from both expert agents and from
self-exploration. To understand what infor-
mation demonstrations must convey for suc-
cessful task completion, we extensively study
how the number of demonstrations and the
use of LLM-generated summaries and evalu-
ations affect the task success rate of the API-
based agent. Our experiments across 3 datasets
and 6 models show that learning functional-
ity from in-context demonstrations remains a
non-trivial challenge, even for state-of-the-art
LLMs. We find that providing explicit func-
tion calls and natural language critiques signif-
icantly improves the agent’s task success rate
due to more accurate parameter filling. We an-
alyze failure modes, identify sources of error,
and highlight key open challenges for future
work in documentation-free, self-improving,
API-based agents.

1 Introduction

In the past few years, AI agents have been rapidly
adopted in society due to the development of Large
Language Models (LLMs) (Achiam et al., 2023;
Touvron et al., 2023), allowing for superb perfor-
mance in natural language understanding, sum-
marization, and generation. More recently, tool-
based agents have been introduced to increase
the abilities of agents for specialized tasks that
may even require up-to-date knowledge of external

Figure 1: Expert demonstration of the email.reply_email
function extracted from WorkBench dataset (Styles
et al., 2024). Demonstrations are the basis of how agents
understand functionality without prior documentation.

databases, such as in cases for enterprise work-
flows (Styles et al., 2024; Xu et al., 2024; Wang
et al., 2024). Tool-based agents can select and
call external functions like Application Program-
ming Interface1 (API) functions. API-based agents
can automate digital tasks in various domains such
as finance, health, and analytics (An et al., 2024;
Gawade et al., 2025; Guo et al., 2024).

A common, crucial requirement for API-based
agents is access to API documentation that explains
to the agent in natural language the functionality
of the specific API functions available (Kim et al.,
2024; Styles et al., 2024). The documentation ex-
plains both 1) what the function does and returns (if
anything), and 2) what the input parameter schema
is. Both these components are important for tool
selection and their execution by the agent. How-
ever, API documentation can frequently be unavail-
able, inconsistent, unstructured, or out-of-date (Li
et al., 2022; Khan et al., 2021; Zhong and Su, 2013).
Prior work in software engineering research on API

1In this work, “tool” and “API” are used interchangeably,
as our work can be extended to any external tool with an API
wrapper.
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documentation generation (Khan and Uddin, 2022;
Yang et al., 2023) lacks evaluation of the generated
documents via downstream tasks by an LLM-based
agent. Other work (Tang et al., 2023) generates
API documentation by inputting a brief description
of the function into an LLM, and this documenta-
tion is then used by an agent. However, a rigorous
analysis of learning functionality with no prior doc-
umentation or description remains absent in the
API-based agent literature.

We address these gaps by introducing and for-
malizing the problem of learning API function-
ality from scratch via in-context demonstrations
of tool calls. Demonstrations of tool calls are
present within codebases of public repositories and
logs. While prior work has finetuned agents on
demonstrations (Schick et al., 2023), we focus on
in-context learning to remove the need to update
parameters. In this work, we analyze the ability
of an API-based agent with a frozen LLM with
only access to demonstrations of tool calls to learn
functionality to perform tasks. Using various API
datasets, we extract and standardize demonstrations
for the agent to learn from, to perform the dataset
tasks. Our experiments revolve around three main
pillars. We investigate the effect of 1) the num-
ber of demonstrations and 2) the representation of
the demonstrations. Specifically, we compare, in
terms of downstream task performance, between
providing the demonstrations directly, generating
documentation from the demonstrations, or a com-
bination of both. Furthermore, we also show the
impact of 3) collecting, evaluating, and summariz-
ing experiences of the agent to update its under-
standing of the APIs. Our results consistently show
across experiments the difficulties of the agent to
perform tasks, highlighting how non-trivial learn-
ing of API functionality from in-context demonstra-
tions is, even with state-of-the-art (SoTA) LLMs.

We summarize our main contributions below:

• Novel, Applicable Problem. We present the
problem of learning of API functionality from
in-context demonstrations without any initial
ground-truth documentation. Our work is the
first work that removes the assumption of ac-
cess to documentation, and the agent must rely
solely on demonstrations to understand func-
tionality. We formalize this problem with an
optimization objective to characterize the task
success rate’s dependence on the information
processing of the demonstrations.

• Various Methods to Learn From Demon-
strations. To tackle this new issue, we present
3 processing methods to learn from a set of
demonstrations while also providing 4 meth-
ods to update the functionality understanding
from the experiences collected by the agent’s
self-exploration. We also incorporate an LLM-
based evaluator to provide richer, natural lan-
guage feedback on each step the agent takes.

• Empirical Evaluation and Analysis. We
conduct experiments with our methods, show-
ing that learning of API functionality from in-
context demonstrations for downstream task
completion is challenging for existing LLMs,
highlighting the need for further research. We
wish to answer what is needed to maximize
performance given a set of demonstrations.
From our experiments, we find that a cen-
tral recurrent problem is filling in parameter
values, leading up to a 39% decrease in an
agent’s success rate if the method for process-
ing demonstrations incorrectly describes the
parameter schema.

2 Preliminaries: Task Completion with
API-based Agents

Consider a goal-conditioned Partially Ob-
servable Markov Decision Process (POMDP)
(G,S,O,F , P, Z, r). G is a set of goals, which
we refer to as “tasks”, that the user could ask. (e.g.
“Reply to my last email from Dev with the body
‘Let us catch up soon to discuss the project.’ ”2);
state s ∈ S in the digital environment could be a
set of employees, emails, calendar events, etc.; O
is the information the agent currently knows (e.g.
Dev’s email is dev@business.com); F is the set of
function names (e.g. reply_email) the agent can
choose to execute; P (f) is the parameter schema
given whose domain contains the valid inputs of
f ∈ F (e.g. email ID and message). Z represents
the transition dynamics. Executing function f and
input parameters p ∈ dom(P (f)) at s results in the
new state and observation s′, o′ = Z(s, f, p) (e.g.
s′ is Dev having a new message in his inbox and o′

is the agent receiving a message that the email was
sent). Finally, r(s′|g) : S × G → {0, 1}, where
r = 1 indicates task g is completed correctly. Note
that r is not dependent on o′ as the observation
may not correctly indicate task completion (e.g.

2Example task from WorkBench dataset (Styles et al.,
2024).
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“Email sent successfully” is returned to the agent,
but the email is sent to the wrong person.) In this
work, the policy π of that API-based agent that
completes tasks is a fixed LLM3.

For an LLM-based agent to understand the func-
tions in F , it needs a textual description, or textu-
alization, of P , and Z (e.g., API documentation).
Let T ∗

P , T
∗
Z be the set of all possible textualizations

of P and Z, respectively, that correctly convey the
functionality of F . With tp ∈ T ∗

P , tz ∈ T ∗
Z , an

agent selects an API with input parameters with
a policy (f, p) ∼ π(·|o,F , tp, tz, g). In practice,
the LLM agent generates a JSON object detailing
the chosen f and p that will be passed to another
program to execute. Note that π is treated as a prob-
ability due to the inherent randomness of LLMs.
However, given the agent has access to some tp and
tz , it can make appropriate decisions.
Limitation in Prior Work: Access to tp and tz .
As mentioned previously, API documentation is
often inaccessible, out-of-date, or inconsistent with
the functionality of the APIs. Thus, the agent may
not have access to some tp and tz , and we aim to
learn and model the information as tθp and tθz for
P and Z, respectively. Ideally tθp ∈ T ∗

P and tθz ∈
T ∗
Z . We wish to maximize the total successful task

completions with (tθp, t
θ
z). Letting H be the number

of steps an agent performed to try to complete g,
we can formally write

max
θ

J(θ) =
∑

g∈G
E(fh,ph)∼π(·|oh,F ,tθp,t

θ
z ,g)

[RH ] ,
(1)

where RH =
∑H

h=0 r(sh+1|g), (sh+1, oh+1) =
Z(oh, fh, ph). Equation 1 provides a mathemat-
ical grounding of how well tθp and tθz textualize the
unknown P and Z to how well the LLM-based
agent performs the set of tasks G. The next section
details how we tackle this problem by learning θ
via demonstrations of API function calls.

3 Learning of API Functionality from
In-Context Demonstrations

Although API documentation may inaccessible, of-
ten there are demonstrations available based on
codebases of public repositories and logs. With
this in mind, we investigate how we can utilize

3We will use the terms “agent” and “policy” interchange-
ably; so π refers to both.

these demonstrations to learn API functionality in-
context without updating the LLM parameters.

3.1 Demonstration Definition and Format
For each API function f , we aim to obtain a collec-
tion of expert demonstrations Df

expert, where each
demonstration d ∈ Df

expert is a single use case of f
for a given task. We also define a demonstration
trajectory as a series of demonstrations to complete
a task. A trajectory of length M can be comprised
of demonstrations of at most M distinct functions.

Each demonstration must show not only the func-
tion call itself, but also the context of the call. To
display the context of the call, we need the task it
is trying to perform and the previous steps taken
to complete the task. Demonstrations of single-
step tasks or initial steps have an empty list of
calls for the previous steps. Figure 1 shows an
example demonstration of the reply_email func-
tion from the WorkBench dataset by (Styles et al.,
2024). In this example, the reply_email function
is trying to reply to an email as mentioned in the
“Overall Task/Query” section and is preceded by
the search_emails function that is necessary to find
the email_id value.
Expert Demonstrations. We define an “expert
demonstration” as a demonstration produced by an
agent that used ground-truth, original documenta-
tion. We propose that instead of relying on prior
documentation, we can learn P and Z and model
their textualization as tθp and tθz via demonstrations
of the function calls used to complete tasks. With a
set of expert demonstrations Dexpert, we can obtain
the textualization (tθp, t

θ
z) = I(Dexpert), where I is

a method for processing the demonstrations. We
can thus rewrite Equation 1 as

max
I

J(I) =
∑

g∈G
E(fh,ph)∼π(·|oh,F ,I(Dexpert),g) [RH ] .

(2)

We want to process the information from a given
Dexpert to maximize performance.

3.2 Methods for Processing Expert
Demonstrations

In all of the methods for I described below, for
each f ∈ F that has at least N training expert
demonstrations, |Df

train| ≥ N , we sample a set of
N random demonstrations Df,N

train.
1) Direct Expert Demonstrations (DxD). We
pass the f ×N demonstrations directly to π.
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Figure 2: Processing Methods of Expert Demonstrations: Given a set of training demonstrations for each function
f , we sample N demonstrations for each function to be used for either (TOP) LLM-based documentation generation
or (BOTTOM) to be directly passed into the agent.

2) Generated Documentation With the sampled
Df,N

train, we use an LLM generator to produce
documentation for f . We repeat for all f that have
at least N demonstrations. The system prompt for
the generator is provided in Appendix E.
3) Generated Documents with Example Calls
(GDEC). We combine the previous approaches
by generating a document of f with Df,N

train and
then appending the function calls of those demon-
strations to the bottom of the generated document
as example use cases. See “Demonstration of
Function” in Figure 1 for an example call. We do
not give the task or previous steps like with DxD.
4) Oracle Baseline: Original Documentation
(OD). We give the agent the original, ground-truth
documentation provided by the given dataset. This
baseline is essentially the “expert” agent.

Figure 2 visualizes the pipeline for DxD and GD.
The same Df,N

train used for DxD are also used for
GD for f . For GDEC, the function calls from all
sampled N demonstrations of f are attached to the
generated document of f .

3.3 Experiences from Self-Exploration

Demonstrations from Experience. To understand
how the agent can improve its understanding of
the API functionality after initial learning from ex-
pert demonstrations, we study how self-exploration
can be used to gather useful observations. Before
having the agent π perform test query tasks, we
have it complete training tasks. Given Dtrain and
a processing method I , the agent uses its resulting
(tθp, t

θ
z) to complete tasks in the training set.

Each function call the agent takes to complete
a task is an experience of some function f . Ex-
periences are a different source of demonstrations,

apart from expert demonstrations. For each func-
tion call the agent takes, combined with the result-
ing return value, is a new demonstration. Further-
more, in some sandbox environments like Work-
Bench (Styles et al., 2024), the agent will some-
times provide its thought process before the call.
We add that to the experience-based demonstration.
We store each experience to be used to help the
agent with the test tasks. Figure 3 gives an exam-
ple self-exploration experience of the same task in
Figure 1. Here, the agent uses reply_email prema-
turely and receives an “Email not found.” Rather
than throwing at incorrect uses, we provide richer
feedback and distinguish between positive and neg-
ative experiences by implementing an LLM-based
evaluator, which we describe next.
Evaluating Self-Exploration with LLM Judges.
Due to the expensive nature of repeated LLM calls,
one would want to extract more feedback from the
experience than just whether or not the task was
completed. However, the reward signal for the ex-
periment setup described so far has been the sparse,
binary reward function of whether or not the task
was completed. To synthesize more feedback from
the collected experience, we pass each experience
to an LLM-based evaluator to produce a natural
language critique. We add this evaluation to the
experience. We provide the LLM-based judge the
task, the entire trajectory by π, whether or not the
trajectory was correct, and the specific demonstra-
tion we wish to analyze. Therefore, if the trajectory
had three function calls, we would make three calls
to the LLM-judge, changing only the demonstra-
tion to evaluate. We ask it to specifically look at
whether or not it was a 1) repeated call, 2) whether
the parameter filling is accurate, and 3) whether the
function is used in the right place in the trajectory.
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Figure 3: Experience-based demonstration gained
during self-exploration by π for the same task in Figure
1. This experience includes the thought process and
return of the reply_email function. Note that this is
an incorrect use of reply_email. The “Evaluation of
Demonstration” is shown in Figure 4.

Figure 4 gives an example self-exploration trajec-
tory from the same task in Figures 1 and 3 and the
generated LLM-based evaluation of the first, incor-
rect reply_email call (shown in Figure 3) and the
second, correct reply_email call in that trajectory.
We see that it correctly flags the error of the first re-
ply_email call, mentioning that a search_email call
should have preceded it to find the right email_id,
and that it flags the second reply email call as cor-
rect. See Appendix E for system prompts of the
evaluator and summarizer.

With these experiences, we can update the tex-
tualizations as (tθp, t

θ
z) = I ′(Dexpert, Dexperience),

where I ′ is a processing method that takes in both
the expert demonstrations and experience.

3.4 Methods for Processing Experiences

1) Direct Experience (DE). For each f , we pass
in Df

experience with expert demonstrations Df
train as

the descriptions. If |Df
experience| = 0, only Df

train

is used instead.
2) Updated Documentation (UD). We take the
initial generated document of f (GD) and use an
LLM to update the document using the experiences
of f . If |Df

experience| = 0, the GD of f is used.
3) Regenerated Documentation (RD). We
regenerate the documentation from scratch using
both expert demonstrations and experiences. If
|Df

experience| = 0, the GD of f is used.
4) Attached Guidelines (AG). An LLM summa-
rizer takes in the experiences of f and generates
guidelines. We then attach those guidelines to the
initial generated document from expert demonstra-
tions (GD) of f . Figure 5 gives an example lesson
generated from all the self-exploration experiences

Figure 4: LLM-Generated Evaluation of Self-
Exploration Trajectory by π for same task in Figures
1 and 3. The agent incorrectly tries to reply email with-
out searching for the email ID. It then corrects itself
by executing search_email and then correctly using re-
ply_email again. The first reply_id is formatted into
the demonstration shown in Figure 3. The evaluation
of the first reply_email call emphasizes that the agent
should have first confirmed it had the right email ID.
The evaluation for the second reply_email call states it
was correctly used after the agent found the email ID
with search_email. Each of these evaluations is added
to the demonstration of their respective calls.

of reply_email. If |Df
experience| = 0, the GD of f is

used without any guidelines.

Figure 7 in the Appendix provides a visual
pipeline delineating the process of self-exploration
on training queries, evaluating experiences, and the
methods used to update θ for test-time. The sys-
tem prompts for the LLM document updater and
summarizer are given in Appendix E.

4 Experimental Setup

In this section, we provide the experimental details
for studying our methods of learning of API func-
tionality from in-context demonstrations. Across
our experiments, we run 3 trials, each with a differ-
ent random seed: 2003, 2004, 2005.
Train-Test Splitting Expert Demonstrations. To
ensure that we do not evaluate the LLM agent on
tasks it has seen from its demonstrations, we divide
the tasks and demonstrations with a train-test split.
Furthermore, we also have to ensure that no task in
the test set includes an API not seen in the training
set. Simply train-test splitting the set of tasks and
removing test tasks that include APIs not in the
training set can greatly reduce the number of test
tasks to evaluate on. Therefore, for our train-test
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Figure 5: Summarized guidelines from experiences
and evaluations of reply_email. The lesson emphasizes
using search_email beforehand to find the right email_id
to use for reply_email, which the agent sometimes did
not do as shown in Figure 4.

split, we iterate through each API function avail-
able. For each API f , we train-test split the tasks it
is associated with if the task has not already been
assigned to the train or test set from a previous it-
eration. We then use the demonstrations for all the
training tasks as the training set, Dtrain. For every
train-test split in this iterative process, use a split
of 70− 30% on the remaining tasks that have yet
to be assigned a set. This process, while dividing
the demonstrations as we desire, creates variability
in the number of test queries across seed numbers.
Appendix A details the train-test approach in depth.
Sampling Expert Demonstrations. When com-
paring the effect of N demonstrations of f against
that of N + k demonstrations, we ensure that the
Df,N

train ⊂ Df,N+k
train .

Environments. We utilize three API benchmarks:
WorkBench (Styles et al., 2024) τ -Bench (retail)
(Yao et al., 2024), and CRMArena (Huang et al.,
2025). We utilize these benchmarks because they
focus on multi-step queries. Furthermore, each has
its own sandbox environment to execute its func-
tion, ensuring reliability in evaluation that is absent
from other API benchmarks (Kim et al., 2024). We
augment each sandbox environment so that we can
change the tool descriptions given to the agent to
experiment with the methods described above. In
Appendix C, we detail how we standardized each
dataset to fit our demonstration and documentation
formats. For WorkBench, we created demonstra-
tions from the pre-computed trajectories available
in the repository that were generated by a GPT-
4-powered agent that used ground-truth, original
documentation. We did the same with τ -Bench,
where those pre-computed trajectories are from a
GPT-4.5-based agent. For CRMArena, we regen-
erated the expert trajectories using GPT-4o as that

was their default model. For both τ -Bench and
CRMArena, the return values for each step were
included in the expert trajectories, so we added the
return of a function call to the demonstration.
The Presence of Noisy, Suboptimal Expert
Demonstrations. An important note is how we
extracted expert demonstrations. We only used
demonstrations from trajectories from the expert
agent if it got an r = 1 from its environment. How-
ever, this heuristic has its flaws in cases where
the evaluation is outcome-centric, where only the
ending state of the environment matters. So, for
example, the agent tries to send an email to an ad-
dress that does not exist (e.g. nadia@example.com
in WorkBench). Even though it is a wrong step, the
environment does not change due to the email not
going to any inbox. If the agent self-corrects by
then searching for the right email and retrying to
send the email, all demonstrations are used in the
expert demonstration pool.
Models. For experiments with the entire pipeline,
we utilize o3-mini, GPT-4o-mini, GPT-4o, as this
set contains reasoning and non-reasoning models.
For each experiment, we use the same model across
the system. To include open-source models, we use
Mixtral-8x7B-Instruct-v0.1 (Mistral) and gemma-
2b-it (Gemma) to analyze document generation.
Evaluation. For task completion, we report the
mean success rate (SR) over the three trials.
Filtering Tasks with Unavailable APIs. In the
next section, we compare the agent task success
rate with different methods I for expert demon-
strations. We compare the different methods and
also the number of demonstrations from N =
{5, 15, 25, 35}. If an API in a dataset did not have
at least 35 demonstrations, we removed that API
from the set of available API the agent can use.
Therefore, we filtered out any task that relies on
any f where |Df

train| < 35 when comparing dif-
ferent I . When comparing different I ′ after self-
exploration, we set N = 5 for the two I methods,
DxD and GD, we use before self-exploration. Thus,
we filtered out queries that relied on any f where
|Df

train| < 5. We report the average number of test
queries next to each dataset in Tables 1 and 2.

5 Results: Learning Parameter
Information Is Crucial

From our experiments, a recurring problem at ev-
ery stage of the pipeline (document generation, task
completion, and evaluation) is the parameter fill-
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Benchmark Method
o3-mini gpt-4o-mini gpt-4o

No. of Expert Demonstrations

5 15 25 35 5 15 25 35 5 15 25 35

WorkBench DxD 41.53 39.24 38.03 40.25 50.65 34.15 35.85 40.09 17.76 16.53 14.90 15.51
GD 28.86 30.07 28.68 24.74 32.37 21.96 22.93 15.46 15.01 15.00 14.60 14.81

(55 Tasks) GDEC 32.56 26.36 26.30 27.52 40.37 28.87 26.09 30.44 15.97 15.16 14.76 15.37
OD 24.16 17.19 17.31

τ -Bench DxD 48.49 12.89 0.00 0.00 42.12 0.00 0.00 0.00 54.59 0.00 0.00 0.00
GD 10.44 5.62 6.43 8.03 35.34 27.31 38.15 21.29 27.71 31.33 21.69 13.25

(77.6 Tasks) GDEC 40.96 40.16 34.94 34.94 56.63 66.27 65.06 51.0 58.23 53.82 53.01 39.76
OD 78.59 69.08 86.30

CRMArena DxD 69.24 67.22 0.00 0.00 12.02 0.00 0.00 0.00 66.33 0.00 0.00 0.00
GD 52.30 49.86 18.86 39.22 0.0 0.0 0.0 0.0 8.20 14.19 15.84 14.38

(183 Tasks) GDEC 60.49 51.88 45.92 9.96 7.51 11.52 0.0 0.0 54.13 49.91 0.00 0.00
OD 72.14 29.26 84.53

Table 1: The models specified in the top row indicate the LLM used as the API-based agent and the document
generator. All experiments ran across 3 trials, and all values reported are the mean success rate (%). Bolded values
are the highest SR given a dataset and model.

ing. Parameter filling has also been indicated as a
problem by Styles et al. (2024); Yao et al. (2024)
for WorkBench and τ -Bench, respectively. We
now show how the problem increases in difficulty
in scenarios with no ground-truth documentation.
Document Generation Has Problems With Spec-
ifying Parameter Information. One main issue
is generating parameter information. Many times,
generators hallucinated input parameters that did
not exist or left out input parameters seen in the
demonstrations. This occurred even when in the
system prompt we stated not to hallucinate and only
focus on the parameters it saw. Thus, given a set of
demonstrations for f , we programmatically found
all used input parameters and explicitly mentioned
in the user prompt to generate information on only
these parameters. That solved the issue for the
OpenAI models and Gemma. However, documents
generated by Mistral many times do not include
parameter information (see Figure 13 in the Ap-
pendix). Other sources of error were more specific,
such as when generated documents would spec-
ify to include timezone information for time_min
and time_max parameters in WorkBench functions.
Agents that followed this got a runtime error. The
generated documents from more demonstrations
would more frequently make this mistake, and also
say that the time_min and time_max parameters
were required when they were optional. Docu-
ments generated from fewer demonstrations would,
in some trials, correctly say that those parameters
were optional, allowing the agent to not fill in those
parameters with incorrect formatting. We hypothe-
size that the more repeated use of these parameters

in the larger set of demonstrations causes the doc-
ument generator to believe that those are required,
causing the degradation in Table 1 as N increases.

Generated Guidelines Can Help Parameter Un-
derstanding. Attaching generated guidelines (AG)
has a 12% improvement over (GD) in WorkBench.
In a representative case, “Kerry Moore is no longer
a customer. Can you delete them from the crm?”,
the GD agent tries to directly delete the customer
by using their name as the customer_id parameter,
rather than searching for their ID and then delet-
ing. The guidelines for customer.delete_customer
state to avoid directly deleting customers and en-
sure that the customer ID is a valid value, not
someone’s name. This result shows that self-
exploration with an evaluation protocol can enable
self-improvement.

Error Handling of Parameter Formatting Af-
fects Performance. However, we see that for τ -
Bench, AG, and all other methods except for OD,
achieved a low score with τ -Bench. A major con-
tributing factor is the order_id parameter. The or-
der_id parameter is in 7 out of 14 functions in τ -
Bench, and requires a ‘#’ at the beginning of the
value; otherwise, an error is returned. When the
order_id is formatted incorrectly, the error message
“Order not found”, shown in Figure 6, is mislead-
ing to the agent and the self-improvement system
because there is no indication that the missing “#”
is the problem of the error. Some of the generated
evaluations marked some of the function calls that
used the ‘#’ as wrong. This error in evaluation then
affects the summarized guidelines. In 2 trials, the
guidelines would say to remove the ‘#’ formatting
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Figure 6: Failure of System Due to Misleading Error Messages. Incorrectly formatting the order_id parameter
value for an order that does exist causes the τ -Bench function to return “Order does not exist”, misleading the
LLM-based agent and LLM-based evaluator.

from IDs. In τ -Bench, none of the generated docu-
mentation methods (GD, UD, and RD) mention the
formatting requirement either. Therefore, the only
way to know that the “#” is required was by using
the OD. We reran the AG (with DxD method before
self-exploration) experiment. However, this time
we hardcoded the following phrase in all the guide-
lines for all functions that use order_id: “THERE
NEEDS TO BE A ‘#’ AT THE START OF THE
ORDER ID. THIS IS MANDATORY. FOR EXAM-
PLE: “#W8732376” IS VALID, BUT “W8732376”
IS NOT!!!!” This modification raises the aver-
age success rate from 10% to 49%, and this result
shows again that having specific, correct parameter
information can significantly help the SR, and that
robust and descriptive error handling of the API
functions is imperative for reliable evaluation and
summarization.

DxD and DE have more advantages than the
summarization methods. DxD and DE have con-
sistently had a higher success rate over other I
and I ′ methods. However, this can be attributed to
data leakage. The set of tasks G for each environ-
ment has many repeated formats, such as sending
emails, canceling orders, or looking up information
on cases. Thus, the train-test distributions are simi-
lar. It would be interesting to try DxD and DE in
environments that provide distinctive tasks that use
the same APIs.

Note on Increasing N . For DxD with τ -Bench
and CRMArena, using the conversation history be-
tween causes the LLM of the agent to exceed its
maximum context length. We truncated the conver-
sation history to at most the past three messages.
This truncation allowed o3-mini to handle 5 and
15 demonstrations per function for τ -Bench, and

Test-Time WorkBench (167 Tasks) τ -Bench (83 Tasks)

Method I Method Before Self-Exploration

DxD GD DxD GD

DE 44.71 32.14 45.00 44.00
UD 29.20 28.94 9.00 9.00
RD 30.34 28.54 6.00 10.00
AG 42.51 38.92 10.00 9.00

DxD 44.11 47.00
GD 30.14 9.00

GDEC 34.73 41.00
OD 33.33 78.00

Table 2: Results of gaining experience with training
queries during self-exploration using o3-mini. We used
N = 5 expert demonstrations per f for self-exploration.
The methods on the bottom half of the table (DxD, GD,
GDEC, OD) do not depend on self-exploration. All
experiments ran across 3 trials, and all values reported
are the mean success rate (%). Bolded values represent
the highest success rate for a given dataset.

5 per function for CRMArena. All other models
could only handle 5 demonstrations per function.
For GDEC, we noticed that for WorkBench and
CRMArena, the agent will repeatedly call the same
function, suggesting that the repeated N example
calls teach the LLM agent to repeat.

6 Additional Analysis and Results

Retrieval-Augmented Generation (RAG). To
handle the context length issue seen with GPT-4o-
mini, we provide an additional RAG (Lewis et al.,
2020) experiment on τ -Bench using DxD. We em-
bed the sampled N demonstrations with OpenAI
text-embedding-3-small and retrieve the 5 most rel-
evant demonstrations based on the current query
with cosine similarity. This experiment is over 3
trials with the set of questions that use APIs with at
least 35 demonstrations, same as in Table 1. Table
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3 shows no significant change in performance in
number of demonstrations when using RAG.

OD 5 Dems 15 Dems 35 Dems
(No RAG) (No RAG)

69.08 42.12 39.13 44.262

Table 3: Mean success rate (%) across different demon-
stration counts with RAG on τ -Bench.

DxD with Open-Source Models. We ran Mistral
8x7B and Qwen3 on three trials of WorkBench
with OD, and DxD (with 5 Dems). The test tasks
are the same set of questions from Table 1, where
APIs needed have at least 35 demonstrations. In
Table 4, Qwen3 achieves higher SR with DxD than
with OD, and it outperforms all OpenAI models
on WorkBench. We believe that this increase is
due to the amount of prior reasoning it does before
generating an action, and the similarity between
the train and test split in WorkBench.

I Method Qwen3 Mistral 8x7B

DxD 5 Dems 67.27 13.28
OD 54.62 14.56

Table 4: Comparing 5 DxD against OD with Qwen-3
and Mistral 8x7B on WorkBench.

7 Related Works

Tool-based agents expand the capabilities of tra-
ditional LLMs by connecting to external sources
such as API functions, search engines, data cen-
ters, etc., to complete multi-step queries. Multiple
benchmarks have been proposed with various sets
of API functions with documentation (Guo et al.,
2024; Liu et al., 2024; Huang et al., 2025; Styles
et al., 2024; Yao et al., 2024; Xu et al., 2024; Ar-
cadinho et al., 2024). While generating documen-
tation has been studied before the advent of LLMs
(Wang et al., 2023; Nybom et al., 2018), there is
little work on generating documentation for down-
stream agent task planning. For documentation-
free agents, ToolAlpaca by Tang et al. (2023) gen-
erated documentation via an LLM given a brief
description of the function from OpenAPI. API-
DocBooster (Yang et al., 2023) used GPT-4 to pro-
duce and update documentation based on search
results from StackOverflow. Concurrent to this
work, Fang et al. (2025) also used experiences of
the agent to update the documentation. However,

they still relied on initial documentation. Tool-
former by Schick et al. (2023) finetuned their agent
on API calls. Our work is the first to study how we
can generate and update an agent’s understanding
of functionality with expert demonstrations and ex-
perience with a frozen LLM. We are also the first
to use demonstrations directly into the LLM-based
agent for functionality understanding. Our formal-
ization is similar to Reinforcement Learning with
parameterized action spaces (Masson et al., 2016;
Zhang et al., 2024) where the agent must choose
an action from a discrete set (in our case, choose
an f ∈ F), and then must choose parameters spe-
cific to the selected action, i.e. p ∈ dom(P (f)).
However, to our knowledge, previous literature as-
sumes a single, continuous parameter per action.
Our work relaxes this assumption as an API func-
tion can allow for multiple parameters, continuous
or discrete.

8 Conclusion

We provide and formalize the problem of earning of
API functionality from in-context demonstrations
with no prior documentation. We highlight the
persisting and challenging problem of API-agent
planning with limited information on the set of
functions. We investigate tackling this problem by
learning functionality, specifically function descrip-
tion, return, and input parameters, from in-context
demonstrations of tool calls. We analyze the num-
ber of demonstrations, various processing methods,
and the impact of self-exploration and LLM-based
evaluation. Importantly, our extensive experiments
highlight the difficulties of SoTA LLMs on this
problem, specifically due to failures in describing
the parameter schema, suggesting further research
to improve results.

9 Limitations and Further Work

As we present this new challenge, we would like
to highlight some limitations of this work. The
heuristic mentioned in Section 4 when extracting
expert demonstrations leads to suboptimal demon-
strations. We do not focus on mitigating or filtering
out these suboptimal demonstrations. One could
also look at using an LLM-based evaluator to sig-
nal what steps are correct. We do not consider it
in this work, as we analyzed LLM-based evalua-
tions during self-exploration. However, filtering
out suboptimal demonstrations is an exciting and
interesting direction to pursue.
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Furthermore, we iteratively generated docu-
ments for each function independently. One in-
teresting extension is to see the effect of group
learning functions together. We see in τ -Bench
that the order_id parameter was shared across mul-
tiple functions, so the agent should only have to
learn it correctly once. This sharing of parameter
information could lead to more stable performance
as the information between functions is more con-
sistent.

One could also extend this problem to the Model-
Context Protocol (MCP), where the agent must rely
on multiple data sources and sets of API functions.
This direction is a more complex, realistic scenario
than ours, as we only focus on a single set of data
and APIs. Furthermore, human-in-the-loop setups
where the user acts as an expert policy to extract
online demonstrations could pave the way to in-
corporate imitation learning algorithms, such as
DAgger (Ross et al., 2011).
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A Train-Test Split

Algorithm 1 details the process of how, for a given dataset, we divide the demonstrations of the API
functions into the train and test sets. Because a task in a dataset could require different APIs, had we
simply just split the demonstrations, which include task information, into train and test sets, data leakage
would almost certainly occur. To ensure no tasks in the test sets were in the training sets, for each API
function, we first divide the tasks from only the demonstrations of that function into train and test task sets.
We then divide the demonstrations into training and test demonstration sets. For the next API function, if a
task for that API has already been assigned to the train or test task set, we simply assign the demonstration
to the corresponding set for demonstrations. The remaining tasks for the function that have not been seen
will be split into the train and test task sets, and the process repeats for all functions.

Algorithm 1 Train-Test Split

Input: List of API functions A, dictionary of demonstrations D, test split percentage p, random seed s
Initialize: List of training tasks Ttrain = []; list of test tasks Ttrain Dictionary of training demonstrations
Dtrain = , Dictionary of training demonstrations Dtest =
for a in A do

T a
remaining = {} ▷ See which tasks of a have not been assigned to either train or test

for d in D[a] do ▷ D[a] is the list of demonstrations for a
t = d[Task] ▷ Get the task that the demonstration is for
if t in Ttrain then

Add d to list Dtrain[a]
else if t in Ttest then

Add d to list Dtest[a]
else

Add t to list TremainingY a
end if

end for
Set random state to seed s ▷ We now split the tasks that have not been assigned yet
numtest = len(T a

remaining) ∗ p
T a
test = random n subset of T a

remaining

T a
train = T a

remaining − T a
test

for d in D[a] do
t = d[Task]
if t in T a

train then
Add d to Dtrain[a]

else
Add d to Dtest[a]

end if
end for
Add elements of T a

train to Ttrain

Add elements of T a
test to Ttest

end for

B AI Writing Tools

We used LLM services such as ChatGPT and Perplexity for feedback and editing of this document.

C Dataset Statistics and Specifications

WorkBench. To extract the expert demonstrations, we take their pre-computed predictions for all queries
and then run their evaluation script. From there, we have access to the prediction of their GPT-4 agent
that used the original documentation. The prediction is used as the demonstration trajectory. For each
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Function from WorkBench No. of Demonstrations

analytics.create_plot 152
analytics.engaged_users_count 46

analytics.get_average_session_duration 33
analytics.total_visits_count 28

analytics.traffic_source_count 2
calendar.create_event 93
calendar.delete_event 118

calendar.search_events 85
calendar.update_event 52

company_directory.find_email_address 67
customer_relationship_manager.add_customer 25

customer_relationship_manager.delete_customer 175
customer_relationship_manager.search_customers 13
customer_relationship_manager.update_customer 133

email.delete_email 44
email.forward_email 67

email.reply_email 31
email.search_emails 62

email.send_email 108
project_management.create_task 78

project_management.search_tasks 34
project_management.update_task 96

Table 5: WorkBench functions and Number of Expert Demonstrations

function call of prediction, we format a demonstration as shown in Figure 1. Because WorkBench is
outcome-centric, the ground-truth will contain fewer steps than needed to properly complete the task. The
only functions that are included affect the environment. For example, sending an email to someone, a task
that involves finding the email address, will only have the search_email function in the ground-truth. All
functions that search for events, customers, emails, etc., or analyze data like analytics.get_average_session
will not appear. Some queries will have ground truths with 0 steps. These are for queries where the
required condition before performing an environment-changing action is not satisfied. For example, the
agent needs to set up a meeting only if the last meeting was over a week ago, and the last meeting was
the day before. Then, the ground truth is 0 steps. However, the agent should execute the search_events
function before deciding not to set up an email. For this reason, we use the pre-computed trajectories
provided by (Styles et al., 2024) with a GPT-4 powered agent with ground-truth documentation. We only
extract demonstrations from successful trajectories. This heuristic, as previously mentioned in Section 4,
can lead to wrong demonstrations in the set of expert demonstrations. Table 5 provides the number of
expert demonstrations we extracted from the pre-computed trajectory.

τ -Bench and CRMArena. Both τ -Bench and CRMArena have their results stored as JSON objects.
Each task attempted stores a sequence of tool calls and accompanying tool executions. Each pair of tool
calls and tool executions is turned into the demonstration data, where we can also extract the Return value
from the tool execution to add to the expert demonstrations. While τ -Bench does provide ground-truth
function calls for the tasks, it disregards the interaction with the simulated user. Seeing examples of these
interactions is important for the agent to understand when to use tools, relating to parameter filling. We
thus do not use the ground-truth answers and rather use the pre-computed trajectories from the dataset as
expert demonstrations. Figure 14 shows generated guidelines that specify, in green, that the agent should
confirm the input parameters of the address details with the user.
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Function from τ -Bench No. of Demonstrations

calculate 36
cancel_pending_order 129

exchange_delivered_order_items 133
find_user_id_by_email 245

find_user_id_by_name_zip 320
get_order_details 871

get_product_details 340
get_user_details 279

list_all_product_types 74
modify_pending_order_address 43
modify_pending_order_items 146

modify_pending_order_payment 12
modify_user_address 16

return_delivered_order_items 140

Table 6: τ -Bench functions and Number of Expert Demonstrations

Function from CRMArena No. of Demonstrations

calculate_average_handle_time 62
calculate_region_average_closure_times 114

find_id_with_max_value 175
find_id_with_min_value 144

get_account_id_by_contact_id 63
get_agent_handled_cases_by_period 136

get_agent_transferred_cases_by_period 97
get_agents_with_max_cases 113
get_agents_with_min_cases 32

get_cases 421
get_email_messages_by_case_id 53

get_issue_counts 166
get_issues 83

get_livechat_transcript_by_case_id 53
get_month_to_case_count 38

get_non_transferred_case_ids 59
get_order_item_ids_by_product 304

get_period 290
get_purchase_history 172

get_qualified_agent_ids_by_case_count 218
get_shipping_state 82

get_start_date 240
search_knowledge_articles 114

search_products 195

Table 7: CRMArena functions and Number of Expert Demonstrations
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D Self-Exploration Pipeline

Figure 7 visualizes the process of updating the agent’s initial learning from in-context demonstrations via
self-exploration.

Figure 7: Overview of Self-Exploration Pipeline. Visualizes is the three-step process of updating functionality
understanding with experience. In the first step, the agent performs self-exploration with the training queries in
the sandbox environment, collecting experiences. The agent can use any method I to initially learn functionality
from expert demonstrations. In the second step, each experience is then evaluated via an LLM-based evaluator.
Finally, we present four different options to update the agent’s understanding of functionality with the original
expert demonstrations and the new experience-based demonstrations. The updated understanding is then passed into
the agent for test queries.

18332



E System Prompts

Figure 8: System Prompt of document generator
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Figure 9: System Prompt of documentation updater given initial generated document and experiences
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Figure 10: System Prompt of evaluator that critiques an experience during self-exploration

Figure 11: System Prompt that summarizes experiences and evaluations to generate guidelines

Figure 12: GPT-4o Generated Document of analytics.create_plot with 10 demonstrations before we explicitly stated
in the user prompt what the input parameters should be. GPT-4o hallucinates a ‘data’ input parameter that does not
exist in the implementation.
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Figure 13: Mistral Generated Document of analytics.create_plot with 5 demonstrations. It has no parameter
information.

Figure 14: Generated guidelines for the modify_pending_order_items function in τ -Bench

18336


