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Abstract
The increasing complexity of large language
models (LLMs) raises concerns about their abil-
ity to “cheat” on standard Question Answering
(QA) benchmarks by memorizing task-specific
data. This undermines the validity of bench-
mark evaluations, as they no longer reflect gen-
uine model capabilities but instead the effects
of data leakage. While prior work has focused
on detecting such leakage, little attention has
been given to mitigating its impact and pre-
serving the long-term utility of benchmarks.
In this paper, we introduce LASTINGBENCH,
a novel framework designed to continuously
reinforce and safeguard existing benchmarks
against knowledge leakage. LASTINGBENCH
identifies leakage points in the context through
perturbation, then rewrites the leakage points
to counterfactual ones—disrupting memoriza-
tion while preserving the benchmark’s original
evaluative intent. Evaluations of state-of-the-
art QA benchmarks show significant perfor-
mance gaps, highlighting the efficacy of LAST-
INGBENCH in reducing memorization effects.
LASTINGBENCH offers a practical and scal-
able solution to ensure benchmark robustness
over time, promoting fairer and more inter-
pretable evaluations of LLMs. Our code and
data are available at https://github.com/
Seriousss/LastingBench.

1 Introduction

The rapid advancement of LLMs has introduced
critical challenges to the reliability and validity
of QA evaluation benchmarks (Liu et al., 2024b;
Wang et al., 2025a; Qian et al., 2025). Due to
the opaque and large-scale nature of LLM train-
ing pipelines, these models often memorize parts
of benchmark datasets (Xu et al., 2024c; Balloccu
et al., 2024; Geva et al., 2023; Deng et al., 2023;
Cheng et al., 2025). This unintended data leak-
age enables models to “cheat” during evaluation,
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Context:… Shahnawaz Bhutto was the son of 
Zulfiqar Ali Bhutto. …  She died at the age of 82 in 
the Iranian Hospital Dubai.
Question: Where was the place of death of 
Shahnawaz Bhutto‘s mother? Where did 
Shahnawaz Bhutto‘s mother die?

Original test sample

Please strictly comply with the context.
Context:… Shahnawaz Bhutto was the son of 
Zulfiqar Ali Bhutto. …  She died at the age of 82 in 
the Iranian Hospital Dubai. in the hospital on
Mars.
Question: Where was the place of death of 
Shahnawaz Bhutto's mother ?

Benchmark Input

Dubai Australia

Answer

Dubai Mars

Answer

LLM

LLM

Defended test sample

Figure 1: Overview of LASTINGBENCH.

producing correct answers without genuine under-
standing. As a result, evaluation scores on standard
benchmarks may no longer reflect genuine model
capabilities, but instead represent latent memoriza-
tion effects. This poses a serious threat to fair and
meaningful measurement in NLP research (Sainz
et al., 2023a; Oren et al., 2023; Shi et al., 2023;
Dekoninck et al., 2024b).

To address this issue, recent efforts have pro-
posed various techniques to detect benchmark
contamination, including perplexity-based analy-
sis (Balloccu et al., 2024; Nasr et al., 2023), prompt-
based probing (Deng et al., 2024; Oren et al., 2023),
and guided completions (Golchin and Surdeanu,
2025). While useful for identifying leakage, these
approaches do not offer long-term solutions, es-
pecially as LLMs continue to grow in size and
training data volume.

A common reactive strategy is to retire leaked
benchmarks and create new ones, as seen in sys-
tems like LiveCodeBench (Jain et al., 2024). How-
ever, this strategy is both costly and unsustainable,
requiring continuous data collection and annota-
tion (White et al., 2024; Rajore et al., 2024; Dong
et al., 2024). Moreover, previously valuable bench-
marks that are no longer maintained risk becoming
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obsolete, leading to wasted effort and lost evalua-
tive insights.

Therefore, the research community needs a ro-
bust pipeline not just for detecting contamination,
but for actively recovering and reinforcing exist-
ing benchmarks (Musawi and Lu, 2025; Chen
et al., 2025). Such a pipeline should enable
benchmarks to remain reliable and resilient over
time—regardless of future advances in model archi-
tectures, capabilities, or dataset scale (Dekoninck
et al., 2024a; Jiang et al., 2024a). This would en-
sure evaluations focus on true improvements in
reasoning and generalization, rather than incidental
training data exposure.

In this paper, we propose LASTINGBENCH ,
a novel framework to reinforce and safeguard
existing benchmarks against knowledge leak-
age, specifically targeting the long-context QA
domain. Rather than continuously building new
benchmarks, LASTINGBENCH enhances existing
ones by identifying leakage points and rewriting
them using counterfactuals, preserving the bench-
mark’s original purpose while disrupting model
memorization. Our methodology begins with
perturbation-based detection. By systematically
perturbing the original context and the question,
we assess whether a model relies on internal mem-
orization rather than contextual clues. When leak-
age is detected, we locate critical evidence seg-
ments—the minimal context required to justify the
answer—using enriched chain-of-thought (CoT)
queries from an LLM. These segments are then
rewritten into plausible yet semantically contradic-
tory counterfactuals. This makes the benchmark
robust against memorization while maintaining its
reasoning challenge.

We apply LASTINGBENCH to several long-
context QA benchmarks and find widespread mem-
orization, especially in HotpotQA. Our experi-
ments reveal that larger models, such as GPT-4O

and LLAMA-4-MAVERICK, exhibit higher levels of
leakage. After applying our rewriting pipeline, we
observe a substantial drop in inflated performance
metrics, indicating a shift toward evaluations based
on genuine reasoning and generalization.

Our contributions can be summarized as follows:
(i) We propose a solid leakage detection method,

then reveal and empirically validate significant data
leakage in long-context question-answering bench-
marks.

(ii) We propose a chain-of-thought enhanced re-
trieval method using advanced reasoning models to

pinpoint exact leakage locations within contexts.
(iii) We introduce a counter-fact paradigm to

reconstruct benchmarks, preserving their structure
and intent while minimizing vulnerability to model
memorization.

(iv) We release modified benchmarks and
demonstrate through extensive evaluations that, de-
spite retaining original formats, models experience
notable performance drops, confirming the effec-
tiveness of our approach in evaluating genuine rea-
soning capabilities.

2 Knowledge Leakage: Detection and
Current Landscape

In this section, we systematically investigate the
phenomenon of knowledge leakage-whether a
model’s correct answers stem from memorized
training data rather than contextual reasoning. Our
study aims to identify and quantify large-scale
knowledge leakage in existing long-context QA
benchmarks.

2.1 Study Design
Given a long-context QA triple (C, 𝑞, 𝑎★)—where
C = {𝑐1, . . . , 𝑐𝑚} is the concatenated context, 𝑞
the original question, and 𝑎★ the gold answer—we
study whether a language model L answers cor-
rectly by memorization rather than reasoning.

We propose two complementary techniques to
identify knowledge leakage:

1) Context Perturbation: We exclude the con-
text and prompt the model to answer the origi-
nal question based solely on the question. If the
model can still provide the correct answer, i.e.,
L(𝑞) = 𝑎★, this suggests its reliance on internal
knowledge, indicating knowledge leakage.

2) Question Perturbation: We either rephrase
the original question 𝑞 into a semantically equiva-
lent form 𝑞 or reformulate it into a logically con-
tradictory version 𝑞𝑐𝑜𝑛, where the correct answer
should conflict with the original. If the model an-
swers the original question correctly but fails on the
rephrased version, L(𝑞,C) ≠ 𝑎★, or provides the
original answer even when the question is contra-
dictory, L(𝑞con,C) = 𝑎★, this suggests dependence
on memorized internal knowledge rather than con-
textual comprehension.

2.2 Experimental Setup
Dataset We conduct experiments on four QA
datasets: 2WikiMQA (Ho et al., 2020), Hot-
PotQA (Yang et al., 2018), Musique (Trivedi et al.,
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Context 
Disturbance

Question
Disturbance

Context:
None

Question:
Where was the place of death 

of Shahnawaz Bhutto's mother?

Context:
<original context>

Question:
Where was the place of birth 

of Shahnawaz Bhutto's 
mother? (contradict)

Where did Shahnawaz 
Bhutto's mother die? 

(rephrase)

Answer:
Dubai ✅(contradict)

I don’t know❌(rephrase)

Answer:
Dubai✅

Leaked

Leaked

Benchmark Defender

Context:
<original context>

Question:
<original question> Strong Reasoning Models

<thinking> CoT </thinking>
Answer:
Dubai✅

find correct CoT

Retrieve w/ CoT

Critical Sections

1. find 
critical 

sections

2. rewrite 
critical 

sections

Strong Models

Rewritten Critical Sections 1

Rewritten Critical Sections 2

...

Rewritten Critical Sections k

write back to 
context

conditional ppl
id c_ppl

1 2.05

2 4.56

...

k 1.84argmax(c_ppl)

sample k times

Context:
new Passage1: ... 

        ... 
new Passage10: ... 

Question:
Where was the place of death of 
Shahnawaz Bhutto's mother in 

1357?

(Answer: Mars✅)

Context:
Passage1: ... 

        ... 
Passage10: ... 

Question:
Where was the place of death of 
Shahnawaz Bhutto's mother in 

1357?

(Answer: Dubai✅)

Leaked

Leakage Detected❗️

Leakage Detected❗️

Figure 2: Illustration of LASTINGBENCH’s pipeline: 1) Leakage Detection identifies memorization through context
removal and question perturbation tests; 2) Critical Section Extraction uses strong reasoning models to locate
essential evidence through CoT-enhanced retrieval; 3) Counterfactual Rewriting generates multiple alternative
contexts and selects the optimal rewrite based on conditional perplexity, transforming factual information (e.g.,
“Dubai") into contradictory alternatives (e.g., “Mars") to effectively mitigate knowledge leakage while preserving
the question’s reasoning structure.

2022), and Multifieldqa_en (Bai et al., 2024a) from
Longbench, including three multi-doc and one
single-doc benchmarks. The average context length
ranges from 5k to 60k. The diversity in context
length, while ensuring sufficient coverage, enables
a more comprehensive examination of data leakage
issues in long-context QA.

Studied Models We select a diverse set of mod-
els with varying parameter sizes and architectures
for our experiments.(1) Both open-source mod-
els (Qwen2.5-32B-Instruct (Qwen, 2025), Llama-
3.1-8B-Instruct (et al, 2024), Phi-4 (Abdin et al.,
2024)) and proprietary SOTA models including
GPT-4o (Hurst et al., 2024) and DeepSeek-v3 (Liu
et al., 2024a) are evaluated. (2) For the same model
family, we also select models with different ver-
sions (e.g., Qwen3-32B vs. Qwen2.5-32B-Instruct)
and parameter sizes(e.g., Qwen2.5-8B-Instruct vs.
Qwen2.5-32B-Instruct), enabling multi-dimension
comparisons.

Metrics We use two metrics to evaluate the accu-
racy of the model’s answers following standard set-
tings of existing benchmarks (Jiang et al., 2024a).
1) Exact Match (EM) measures the percentage of
predicted answers that exactly match the ground-

truth answers. 2) F1 Score measures the harmonic
mean of precision and recall between the predicted
and ground-truth answers, accounting for partial
overlaps.

2.3 Results and Analysis

2.3.1 Results by Context Perturbation

As shown in Table 1, many models are able to
answer a notable proportion of questions even with-
out access to contextual information, indicating
potential memorization. State-of-the-art LLMs,
including GPT-4O and DEEPSEEK-V3, demon-
strate surprisingly high accuracy on contextless
queries—achieving scores of 0.35 on 2WikiMQA
and 0.41 on HotpotQA. This strongly suggests that
portions of these long-context datasets are mem-
orized during pretraining. Interestingly, smaller
open-source models such as QWEN3-8B and PHI-
4 also achieve non-trivial accuracy under this set-
ting, reinforcing the conclusion that dataset leakage
is widespread and not limited to frontier models.

Across all evaluated datasets, some degree of
leakage is observed. However, 2WikiMQA and
HotpotQA show notably higher levels of leakage
compared to MuSiQue. This discrepancy may be
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Model 2WikiMQA HotpotQA MuSiQue

QWEN2.5-7B-INSTRUCT 0.24 0.26 0.09
QWEN2.5-32B-INSTRUCT 0.28 0.27 0.10
QWEN3-8B 0.27 0.28 0.07
QWEN3-32B 0.28 0.26 0.12
LLAMA-4-MAVERICK 0.30 0.37 0.13
GPT-4O 0.35 0.41 0.27
CLAUDE-3-HAIKU 0.23 0.37 0.14
PHI-4 0.35 0.27 0.12
DEEPSEEK-V3 0.33 0.39 0.17

Table 1: EM Scores for Context Removal Test Across
Multiple Language Models and Datasets

attributed to their earlier release dates, increasing
the likelihood that they were included in the pre-
training corpora of existing LLMs. Additionally,
MuSiQue adopts a bottom-up strategy that system-
atically compose multi-hop questions from tightly
coupled single-hop questions, resulting in tighter
connection between the question and the context.

2.3.2 Results by Question Perturbation
Contradictory Question To test whether models
truly comprehend the context or simply rely on
memorized associations, we rephrase questions to
convey meanings that contradict the original. The
context remains unchanged, and a strong LLM1

is used to generate these contradictory versions.
Since some modified questions become unanswer-
able by design, we allow models to respond with
"I don’t know". We then measure the proportion
of cases where the model still outputs the original
ground truth answer despite the contradiction.

The results shown in Table 2 reveal varying
levels of memorization across models. Notably,
CLAUDE-3-HAIKU shows the highest overlap on
HotpotQA, with 40% of contradictory questions
yielding the same answer as the original, despite
the altered semantics. Similar trends are observed
for models like QWEN2.5-32B-INSTRUCT and
PHI-4. These findings suggest that current LLMs
heavily rely on memorized internal answers rather
than reasoning over the given context.

Equivalent Question We additionally evalu-
ate model robustness to question rephrasing. The
rephrased questions are semantically identical to
the originals but differ in surface form. In princi-
ple, models with true comprehension should show
minimal degradation in performance. As shown
in Table 3, we observe notable performance drops
on the rephrased questions. For instance, QWEN3-
8B experiences a sharp decline of 0.33 EM on

1We use GPT-4O for rephrasing.

Model HotpotQA Multifieldqa_en

QWEN2.5-7B-INSTRUCT 0.29 0.20
QWEN2.5-32B-INSTRUCT 0.37 0.11
QWEN3-8B 0.19 0.11
QWEN3-32B 0.21 0.07
GPT-4O 0.18 0.02
CLAUDE-3-HAIKU 0.40 0.19
DEEPSEEK-V3 0.13 0.07
PHI-4 0.34 0.14

Table 2: EM Scores When Evaluating Models with
Contradictory Questions Against Original Ground Truth
Answers

Model 2WikiMQA HotpotQA

Original Rephrased Original Rephrased

QWEN2.5-7B-INSTRUCT 0.49 0.52 (+0.03) 0.60 0.53 (–0.07)

QWEN2.5-32B-INSTRUCT 0.61 0.65 (+0.04) 0.65 0.62 (–0.03)

QWEN3-8B 0.83 0.50 (–0.33) 0.64 0.57 (–0.07)

QWEN3-32B 0.83 0.58 (–0.25) 0.64 0.52 (–0.12)

LLAMA-4-MAVERICK 0.67 0.67 (+0.00) 0.68 0.62 (–0.06)

GPT-4O 0.72 0.72 (+0.00) 0.69 0.57 (–0.12)

CLAUDE-3-HAIKU 0.60 0.70 (+0.10) 0.60 0.63 (+0.03)

DEEPSEEK-V3 0.72 0.67 (–0.05) 0.71 0.62 (–0.09)

PHI-4 0.63 0.80 (+0.17) 0.57 0.62 (+0.05)

Table 3: Performance Comparison Between Original
Questions and Semantically Equivalent Reformulations
Across Language Models

2WikiMQA. Such a substantial drop suggests that
the model’s original performance may have relied
more on memorization than on understanding the
interplay between context and question. These re-
sults further highlight the fragility of benchmark
performance under even minor input variations, re-
vealing potential overfitting to known data.

2.4 Current Landscape and Trend

Our findings reveal that knowledge leakage is al-
ready widespread across long-context benchmarks,
and the situation is deteriorating. Newer and larger
models such as Qwen3 exhibit much higher leak-
age than their predecessors, as evidenced by drastic
performance drops under question rephrasing. This
trend suggests that mainstream benchmarks grad-
ually no longer reliably reflect models’ genuine
abilities—instead, they often measure memoriza-
tion and result in inflated numbers. These findings
highlight the urgent need for a pipeline to restore
and defend benchmarks.

3 Method

To tackle the memorization problem of existing
benchmarks, we propose a novel framework to
continuously defend existing benchmarks against
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Algorithm 1 LASTINGBENCH: Detecting Knowl-
edge Leakage (DETECT) and Defending Bench-
marks (DEFENSE)

1: function DETECT(𝑞, 𝑎★, 𝐶, L)
2: 𝑞 ← REPHRASE(𝑞) ⊲ rephrase query
3: 𝑞con ← CONTRA(𝑞) ⊲ contradictory query
4: if L(𝑞) = 𝑎★ or 𝐿 (𝑞, 𝐶) ≠ 𝑎★ or

𝐿 (𝑞con, 𝐶) = 𝑎★ then
5: return true
6: end if
7: return false
8: end function

9: function DEFENSE(𝑞, 𝑎★, 𝐶, L, 𝑘)
10: 𝑞 ← REPHRASE(𝑞)
11: repeat ⊲ find critical context
12: (𝑎̃, 𝑟) ← 𝐿 (𝑞, 𝐶)
13: 𝑞+ ← (𝑞, 𝑎̃, 𝑟)
14: 𝐶crit ← RETRIEVE(𝐶, 𝑞+)
15: until 𝐿 (𝑞 |𝐶crit) = 𝑎★

16: for 𝑖 ← 1 to 𝑘 do ⊲ counterfactual
rewriting

17: 𝐶 (𝑖)cf ← REWRITECONTRADICT(𝐶crit)
18: CPPL𝑖 ← PPL(𝑞) − PPL(𝑞 |𝐶 (𝑖)cf )
19: end for
20: 𝑖★← arg max𝑖 CPPL𝑖

21: return MERGE(𝐶, 𝐶crit, 𝐶
(𝑖★)
cf )

22: end function

knowledge leakage. Given a QA instance (C, 𝑞, 𝑎)
identified as potentially leaking knowledge (as de-
scribed in Section 2.1), LASTINGBENCH applies
a two-stage defense process: (1) Localize critical
evidence segments within the context C that are
likely memorized; and (2) Replace these segments
with carefully constructed counterfactuals that con-
tradict model-internal knowledge, while preserving
the question’s evaluative intent. An overview of
the pseudocode is presented in Algorithm 1.

3.1 Localize Critical Sections

After detecting potential knowledge leakage, we
localize critical section within the original context.
Given a QA instance with context C, question 𝑞,
and answer 𝑎, we aim to identify a minimal context
segment Ccrit ⊆ C that suffices to answer 𝑞 (or
a paraphrased equivalent). To reduce the risk of
triggering memorized responses, we reformulate
the question into a semantically equivalent version,
denoted 𝑞.

We start by prompting a strong reasoning model

L (e.g., DEEPSEEK-R1 (DeepSeek-AI, 2025)) to
answer 𝑞 using Chain-of-Thought (CoT) reason-
ing (Jiang et al., 2025), producing an intermedi-
ate answer 𝑎̃ = L(𝑞,C) and a reasoning trace
r = CoT(L, 𝑞,C). The correctness of 𝑎̃ indicates
that the reasoning path has successfully captured
key semantic cues. Next, We construct an enriched
retrieval query by concatenating r, 𝑞 and 𝑎̃, denoted
𝑞+.

𝑞+ = CONCAT(r, 𝑞, 𝑎̃) (1)

Using the enriched query 𝑞+, we perform
embedding-based retrieval: each chunk 𝑐 𝑗 ∈ C
and the query itself are embedded by the sentence-
encoder 𝑓 (·), cosine similarities are computed, and
the top-𝑘 most similar chunks are retained. The
resulting minimal evidence set is

Ccrit =
⋃
𝑗∈N𝑘

𝑐 𝑗 ,

N𝑘 = Top-k
sim

(
𝑓 (𝑞+), { 𝑓 (𝑐1), . . . , 𝑓 (𝑐𝑚)}

)
.

(2)

To validate that Ccrit indeed contains sufficient
information, we use L to answer 𝑞 using only Ccrit.
If the model fails to produce the correct answer,
meaning the retrieval omitted crucial content, we
repeat the process with an updated retrieval query
until a satisfactory Ccrit is found.

3.2 Counterfactual Rewriting

To prevent reliance on memorized context seg-
ments, we apply a counterfactual rewriting strategy
that transforms the localized critical evidence into
content that contradicts the model’s internal knowl-
edge. This serves two purposes: (1) to weaken
the model’s ability to rely on memorized knowl-
edge, and (2) to test whether the model can adapt
to the revised context while preserving the original
question’s reasoning requirements.

For each critical section Ccrit, we generate 𝑘
counterfactual variants {C(𝑖)cf }𝑘𝑖=1 using a prede-
fined rewriting paradigm2. Each C(𝑖)𝑐 𝑓 is a contexu-
ally consistent but semantically conflicting alterna-
tive to C𝑐𝑟𝑖𝑡 .

To select the most effective counterfactual, we
compute the conditional perplexity of the original
question 𝑞 as:

CPPL(C(𝑖)cf , 𝑞) = PPL(𝑞) − PPL(𝑞 | C(𝑖)𝑐 𝑓 )
2Details of prompts are provided in Appendix B

18308



where PPL(𝑞) is the perplexity of the question
𝑞 answered without context, and PPL(𝑞 | C(𝑖)𝑐 𝑓 )
measures perplexity given the i-th counterfactual.
A higher CPPL indicates a stronger contradiction
to the model’s internal knowledge. We select the
counterfactual with the highest conditional perplex-
ity:

C∗cf = arg max
𝑖

CPPL(C(𝑖)cf , 𝑞)

Finally, we construct the defended context Cdefend

by replacing Ccrit in C with C∗cf. This defended
instance enforces contextual alignment and tests
the model’s ability to reason rather than recall, pre-
serving benchmark reliability.

4 Experiments

In this section, we evaluate LASTINGBENCH

through experiments. We use the same experimen-
tal setup as in Section 2.

4.1 Revised Dataset Details

We utilize DEEPSEEK-R1 as the leakage detecting
model, evaluating with same methods in Section 2.
Table 4 reports the percentages of revised (leaked)
and unchanged entries for each dataset used in our
experiments. Regarding the quality of the rewrit-
ten dataset, through manual inspection, we found
that after rewriting, 99% of the contexts can fully
support answering the question with the antifact an-
swer. A genuine understanding of the full context
should enable the model to generate the antifact
answer. We acknowledge that a very small por-
tion contained minor issues, such as unnecessary
alterations to irrelevant parts. However, in most
cases, the inaccurate modifications only involve
distracting content that does not affect answering
the question.

Dataset Revised Entries Unchanged Entries

2WIKIMQA 81% 19%
HOTPOTQA 71% 29%
MUSIQUE 61% 39%
MULTIFIELDQA_EN 77% 23%

Table 4: Distribution of Revised and Preserved Entries
Across Evaluated Datasets

4.2 Efficacy in Model Evaluation

We show the efficacy of LASTINGBENCH in model
evaluation by comparing model performance on
the original and the revised benchmarks.

As is displayed in Table 5, across all datasets,
most models exhibit a consistent performance
decline across different datasets. The perfor-
mance drop is more pronounced on HotpotQA
and 2WikiMQA, with HotpotQA showing the
most significant decline (30% for Deepseek-v3).
This aligns with our observations in §2.3.1 re-
garding context perturbation-based leakage detec-
tion. Among all evaluated models, Claude-3-Haiku
(27% on HotpotQA) and the Qwen 3 series (30%
on 2WikiMQA) show more pronounced perfor-
mance degradation on the revised datasets, which
is consistent with the leakage detection results pre-
sented in §2.3.2. This may be attributed to the fact
that these models are relatively newer and therefore
more likely to have been exposed to these datasets
during the training stage, leading to potentially in-
flated performance. In addition, larger models tend
to exhibit a higher degree of data memorization
within their parameters. For example, GPT-4o and
DeepSeek-v3 show a consistent decline on all the
datasets. In contrast, our revised datasets provide
a more trustworthy assessment of the models’ gen-
uine long-context reasoning ability.

Figure 3: Performance Comparison of Language Mod-
els on Original and LastingBench-Revised Datasets

4.3 Comparative Analysis

We then compare LASTINGBENCH to alternative
methods and analyze the efficacy of LASTING-
BENCH. More specifically, we substitute the coun-
terfactual rewriting component with a random

18309



Model
2WikiMQA HotpotQA Musique Multifieldqa_en

Original Defensed Original Defensed Original Defensed Original Defensed

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

QWEN2.5-7B-INSTRUCT 0.48 0.49 0.45 0.45 0.56 0.60 0.41 0.41 0.26 0.23 0.33 0.33 0.53 0.41 0.42 0.36
QWEN2.5-32B-INSTRUCT 0.61 0.61 0.58 0.58 0.61 0.65 0.43 0.43 0.36 0.34 0.36 0.36 0.47 0.35 0.46 0.37
QWEN3-8B 0.76 0.83 0.56 0.57 0.60 0.64 0.45 0.43 0.31 0.28 0.33 0.33 0.49 0.40 0.46 0.33
QWEN3-32B 0.76 0.83 0.53 0.53 0.56 0.64 0.40 0.41 0.35 0.35 0.36 0.35 0.51 0.42 0.43 0.31
LLAMA-3.1-8B-INSTRUCT 0.28 0.53 0.39 0.59 0.32 0.54 0.26 0.48 0.16 0.29 0.13 0.32 0.38 0.27 0.30 0.28
LLAMA-3.1-70B 0.46 0.58 0.46 0.56 0.36 0.46 0.28 0.31 0.08 0.11 0.12 0.12 0.50 0.39 0.47 0.37
LLAMA-4-MAVERICK 0.63 0.67 0.52 0.55 0.64 0.68 0.44 0.45 0.44 0.42 0.38 0.37 0.54 0.49 0.49 0.38
GPT-4O 0.68 0.72 0.55 0.55 0.67 0.69 0.47 0.45 0.48 0.51 0.39 0.39 0.56 0.46 0.53 0.40
CLAUDE-3-HAIKU 0.36 0.60 0.40 0.53 0.47 0.60 0.28 0.33 0.22 0.36 0.18 0.29 0.40 0.34 0.41 0.30
PHI-4 0.23 0.63 0.23 0.60 0.33 0.57 0.14 0.38 0.08 0.23 0.06 0.21 0.44 0.34 0.36 0.28
DEEPSEEK-V3 0.64 0.72 0.50 0.53 0.68 0.72 0.44 0.42 0.53 0.57 0.41 0.41 0.50 0.36 0.46 0.33

Table 5: Comprehensive Performance Analysis of Models on Original and LASTINGBENCH-Defensed Datasets
with Change Visualization (Red Indicates Performance Decrease, Green Indicates Increase)

Model Original Random Counterfact

QWEN2.5-7B-INSTRUCT 0.60 0.41 0.41
QWEN2.5-32B-INSTRUCT 0.65 0.50 0.43
QWEN3-8B 0.64 0.44 0.43
QWEN3-32B 0.64 0.47 0.41
LLAMA-3.1-8B-INSTRUCT 0.54 0.42 0.48
LLAMA-3.1-70B 0.46 0.44 0.31
GPT-4O 0.69 0.49 0.45
CLAUDE-3-HAIKU 0.60 0.43 0.33
PHI-4 0.50 0.44 0.38
DEEPSEEK-V3 0.71 0.50 0.42

Table 6: Comparative Analysis of Model Performance
(EM) Across Different Context-Rewriting Strategies

rewriting strategy: prompting the model to gen-
erate a random alternative answer and accordingly
rewrite the supporting evidence, while the remain-
der of the pipeline remains unchanged.

Table 6 shows the model performance on Hot-
potQA. The results indicate that model perfor-
mance on the randomly reformulated dataset falls
short of the original, yet surpasses that on the coun-
terfactual dataset, which suggests that our counter-
factual rewriting method is more resistant to model
cheating and poses a greater challenge, making it
less likely to be memorized during pre-training.
As a result, it offers a more faithful and enduring
evaluation of the model’s long-context reasoning
abilities.

4.4 Efficacy in Model Training

To examine whether our dataset defense effectively
increases the learning complexity for language
models and consequently reduces the likelihood of
models memorizing information during the train-
ing stage, we conducted an empirical evaluation.

Figure 4: Training Loss Comparison of Language
Models on Original and LASTINGBENCH-Revised
2WikiMQA Datasets

Specifically, we fine-tuned four distinct models on
both the original 2WikiMQA dataset and our re-
vised dataset3. Introducing knowledge conflicts in
datasets naturally creates greater complexity dur-
ing the learning process. Ideally, this discourages
models from memorizing knowledge.

As displayed in Figure 4, throughout the fine-
tuning process, all models exhibit higher training
loss on our revised dataset than on the original
dataset, indicating that it exposes them to knowl-
edge conflict situations. The consistently higher
training loss values indicate that the revised data
poses greater learning difficulty, which in turn mit-
igates the risk of future data leakage by making it
less likely for models to memorize or retain such

3Details of our fine-tuning settings are provided in Sec-
tion A
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information.

4.5 Case Study

Table 7 illustrates how models may produce cor-
rect answers without genuinely reasoning over the
provided context. In the first setting (Without
Context), the model still predicts the correct year of
appointment and the correct Olympic Games even
though no supporting passages are given. This sug-
gests that the model simply recalled memorized
knowledge rather than performing contextual rea-
soning.

In contrast, the second part (Original/Rewritten
Context) highlights the effect of counterfactual
rewriting. When the original context explicitly
contains the correct evidence (Marie of Hohen-
staufen), the model outputs the right answer. How-
ever, after rewriting the critical evidence to state
Joan of Arc, the model still produces the mem-
orized answer, thus failing on the modified case.
This discrepancy reveals that the earlier success
was driven by leakage and memorization rather
than true understanding of the context.

5 Related Works

5.1 Contamination Detection

The evaluation of Large Language Models (LLMs)
is increasingly complicated by data contamina-
tion—the unintended overlap between training data
and evaluation benchmarks (Fu et al., 2025; Cheng
et al., 2025; Xu et al., 2024a). This issue can ar-
tificially inflate performance scores, misrepresent-
ing LLMs’ true generalization capabilities. Vast
pre-training datasets, often web-scraped, frequently
include common benchmark samples, leading to
deceptively high leaderboard scores that may not
reflect real-world robustness (Tonmoy et al., 2024;
Xu et al., 2024b; Fu et al., 2025).

Early detection efforts relied on simple string-
matching and overlap detection to find direct tex-
tual similarities. However, these methods struggle
with nuanced contamination, like paraphrased con-
tent or memorized knowledge lacking direct textual
overlap (Carlini et al., 2021; Nasr et al., 2023). Con-
sequently, researchers developed advanced tech-
niques that do not require access to proprietary
training data (Musawi and Lu, 2025; Dekoninck
et al., 2024b; Deng et al., 2023). For instance,
PaCoST (Paired Confidence Significance Testing)
constructs distributionally similar counterparts for
benchmark instances and statistically analyzes

model confidence on original versus counterpart
data to detect significantly higher confidence on
originals as potential contamination (Zhang et al.,
2024; Li et al., 2023). Similarly, ConStat adopts
a performance-based approach, defining contam-
ination as artificially inflated, non-generalizable
performance, and uses statistical analysis to com-
pare model performance on primary and reference
benchmarks (Dekoninck et al., 2024a; Bommasani
et al., 2021).

Despite these advancements, comprehensively
addressing data contamination remains challenging.
Notably, specific methodologies for contamination
detection in long-context scenarios are lacking in
reviewed material (Wang et al., 2024; Jiang et al.,
2024a; Geva et al., 2023). The complexities of
extended input sequences may demand novel ap-
proaches for identification and mitigation in such
contexts (Rajore et al., 2024; Shi et al., 2023).

5.2 Long Context Benchmark
Long-context benchmark suites now serve as the
standard yardstick for a broad range of evalua-
tions—spanning RAG applications (Cheng et al.,
2024; Fang et al., 2025; Wang et al., 2025c),
context-compression methods (Jiang et al., 2023;
Pan et al., 2024; Jiang et al., 2024b), and many
other long-sequence tasks (Wang et al., 2025b; Zhu
et al., 2025; Liu et al., 2025b; Lan et al., 2025;
Han et al., 2024; Liu et al., 2025a; Yang et al.,
2025; Qiu et al., 2025; Zhang et al., 2025b,a).
The development of long-context benchmarks
like SCROLLS (Shaham et al., 2022) and Long-
Bench (Bai et al., 2024b) has been crucial for eval-
uating LLMs’ extended sequence processing. How-
ever, these suites are also susceptible to data con-
tamination, where inadvertent inclusion of evalu-
ation samples in training data can inflate perfor-
mance metrics (Xu et al., 2024d; Oren et al., 2023).

To address this, newer contamination-aware
benchmarks have been developed, employing vari-
ous strategies to combat data leakage. Some, like
BAMBOO (Dong et al., 2024), LiveBench (White
et al., 2024), and AcademicEval (Chen et al., 2025),
feature continuously updated test sets. Others, such
as VarBench, introduce dynamic variable perturba-
tion to create more robust and generalizable evalua-
tion scenarios (Qian et al., 2024). A significant lim-
itation with manually updated benchmarks, how-
ever, is their heavy reliance on laborious human ef-
fort for data collection and maintenance, rendering
the process resource-intensive (Sainz et al., 2023b).
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Without Context: After Russell D. Moore served at the Southern Baptist Theological Seminary, he
became the President of The Ethics & Religious Liberty Commission (ERLC) in
what year?

GPT-4o: 2013
✓

Professional cyclist Sara Symington competed in which Olympic Games held in
Sydney, Australia?

GPT-4o: 2000
✓

Original/rewritten Context: Question: Who is the paternal grandmother of Marie of Brabant, Queen of
France?
Original Context: ... Marie of Brabant (13 May 1254 – 12 January 1322) was
Queen of France from 1274 until 1285 as the second wife of King Philip III.
Born in Leuven, Brabant, she was a daughter of Henry III, Duke of Brabant, and
Adelaide of Burgundy. ...
Henry III of Brabant (c. 1230 – February 28, 1261, Leuven) was Duke of Brabant
between 1248 and his death. He was the son of Henry II of Brabant and Marie
of Hohenstaufen. ...

Marie of Ho-
henstaufen

Rewritten Context: ... Marie of Brabant (13 May 1254 – 12 January 1322) was
Queen of France from 1274 until 1285 as the second wife of King Philip III.
Born in Leuven, Brabant, she was a daughter of Henry III, Duke of Brabant, and
Adelaide of Burgundy. ...
Henry III of Brabant (c. 1230 – February 28, 1261, Leuven) was Duke of
Brabant between 1248 and his death. He was the son of Henry II of Brabant
and Marie of Hohenstaufen. Joan of Arc ...

Marie of
Hohenstaufen
Joan of Arc

Table 7: Case study showing knowledge leakage and counterfactual defense. Top: without any context, the model
still gives correct answers (2013, 2000), revealing reliance on memorized knowledge. Bottom: in the Original
Context, the correct answer (Marie of Hohenstaufen) is present, so the model answers correctly (✓), but this
could be due to memorization rather than reasoning. In the Rewritten Context, we replace the key evidence with
Joan of Arc . The model still outputs the original memorized answer, yielding an error (×), which confirms that the

first success came from recall instead of contextual understanding.

To mitigate this, approaches like Antileak-Bench
aim to automatically construct benchmarks from
updated real-world knowledge, offering a more
scalable solution (Wu et al., 2024). Ensuring these
updated benchmarks remain truly contamination-
free is also challenging, as new data might still
contain pre-existing knowledge (Yuan et al., 2024;
Lee et al., 2024; Gao et al., 2025). Furthermore,
undisclosed training data specifics for many LLMs
make guaranteeing contamination absence in these
benchmarks difficult (Modarressi et al., 2025; Qi
et al., 2024).

6 Conclusion

In this paper, we introduced LASTINGBENCH, a
novel framework designed to address the critical
challenge of model cheating and knowledge leak-
age in QA benchmarks. LASTINGBENCH com-
bines perturbation-based detection with counter-
factual rewriting to identify and repair leakage
points—disrupting memorization while preserving
the original evaluative intent of the benchmark. Our
experiments on long-context QA benchmarks re-
veal widespread data leakage across a range of
models, including both frontier and smaller open-
source LLMs. By applying LASTINGBENCH, we
substantially reduce memorization effects and pro-
vide a more faithful evaluation of models’ reason-

ing and generalization capabilities. This work of-
fers a robust and sustainable approach to reinforce
benchmark integrity, ensuring that evaluations re-
main meaningful and resilient against the evolving
capabilities of LLMs.

Limitations

LASTINGBENCH currently targets with-context
QA and has only been validated on textual long-
context benchmarks; applying the same leakage
probes and counterfactual rewriting to generation-
heavy or multimodal tasks (e.g., summarization, di-
alogue, code, images) will require new success cri-
teria and may introduce extra computational over-
head. Addressing these extensions is left for future
work.
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A Finetune Settings

We fine-tune four models on both datasets us-
ing one NVIDIA A100-SXM4-80GB GPU for 10
epochs. The fine-tuning process leverages the Un-
sloth library (Daniel Han and team, 2023) and in-
corporates LoRA (Hu et al., 2021) with a rank of 32
and an alpha of 32. The initial learning rate is set
at 2e-5. We adopt a per-device training batch size
of 12 and set the gradient accumulation steps to
4 for LLaMA-3.1-8B and Qwen3-8B. Meanwhile,
for Phi-4 and Qwen2.5-7B, we use a per-device
training batch size of 8 and set the gradient accu-
mulation steps to 6.

B Prompt Templates

We present the two core prompt templates for our
defense pipeline. Table 8 shows the CoT prompt
used to identify critical evidence segments, while
Table 9 guides the counterfactual rewriting process
to generate contradictory alternatives.

Answer the question based on the given
passages. The following are the passages:
{Context}
Answer the question based on the given
passages.
Question: {Question}
Please first provide your answer in the
format of Answer:[Your answer]. Then
provide your reasoning process step-by-
step.(Only include explicit clues)
At the end of each reasoning step, include a
new line that specifies the key information
or reference content used in that step.
Please ensure that the [reference content]
you include is the complete original
sentence or consecutive sentences from the
text. Please do not change the punctuation.
Do not use ellipses inside the sentence.
Follow this format:
Answer: [Your answer]
Step-by-step Reasoning:
1. [Reasoning step 1]
[replaced by your reference content]
2. [Reasoning step 2]
[replaced by your reference content]

Table 8: Chain-of-Thought Reasoning Prompt
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You are a creative contrarian. Given the
question below, and the original answer,
first propose a concise alternative an-
swer—that is, a plausible but intentionally
misleading answer.
Followed are some sentences supporting
the original answer, please rewrite them.
When rewriting each sentence, modify only
the parts necessary to support the antifact
answer. Parts unrelated to the answer
must keep their original meaning. Be sure
that the modified evidence sentences are
sufficient to answer the original question.
Output must be strictly in the specified
JSON format, with no additional text.
{
"answer": "<your antifact answer here, just
provide the answer phrase, no need for
complete sentence>",
"revised": [
"<rewritten sentence 1>",
"<rewritten sentence 2>",
]
}
Question:
{Question}
Original answer:
{Original Answer}
Sentences to rewrite:
{Numbered Sentences}

Table 9: Counterfactual Evidence Rewriting Prompt
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