
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 18233–18247
November 4-9, 2025 ©2025 Association for Computational Linguistics

LlmFixer: Fix the Helpfulness of Defensive Large Language Models

Zelong Yu1, Xiaoming Zhang1*, Litian Zhang1, Yu Yuan1,
Chaozhuo Li2,

1Beihang University, 2Beijing University of Posts and Telecommunications
{azyu11, yolixs, litianzhang}@buaa.edu.cn, yuyuan21cath@gmail.com, lichaozhuo@bupt.edu.cn

Abstract

Defense strategies of large language models
besides alignment are introduced to defend
against jailbreak attacks, and they have man-
aged to decrease the success rate of jailbreak at-
tacks. However, these defense strategies weak-
ened the helpfulness of large language models.
In this work, we propose a universal frame-
work LlmFixer acting on large language models
equipped with any defense strategy to recover
their original helpfulness. LlmFixer consists
of an input prompt re-writer and a logic patch.
The prompt re-writer is a pre-model for clarify-
ing the intention of input prompts, which pro-
motes large language models to be more helpful
to benign inputs and more rejective to mali-
cious inputs. The logic patch is a lightweight
structure that enhances large language models’
comprehension capacity by supplementing cer-
tain logical relationships. Without updating the
parameters of a defensive large language model,
LlmFixer fixes its helpfulness while preserving
safety. Experiments on three large language
models, five jailbreak attacks, and four defense
strategies show the effectiveness of LlmFixer.

1 Introduction

Although Large Language Models (LLMs) will nor-
mally be aligned with human value by Reinforce-
ment Learning from Human Feedback (RLHF)
(Christiano et al., 2017) or other methods (Rafailov
et al., 2024; Lee et al., 2023) before being released,
they are vulnerable to jailbreak attacks. Jailbreak
attacks like GCG (Zou et al., 2023), AutoDan (Liu
et al., 2024b), and PAIR (Chao et al., 2023) refer
to intentionally bypassing the internal safety mech-
anism of LLMs by designing malicious prompts
to induce LLMs to produce harmful content (Wei
et al., 2024). They could potentially hurt the bene-
fits of LLM users or even threaten social security.

Therefore, numerous defense methods are pro-
posed to increase the resistance of LLMs to jail-
break attacks. They can be categorized into LLM-

ONLY for clear benign

Prompt Re-writer

Defense+LlmFixer

LLM
Defense

Balanced Defense

Clearly Benign Vaguely Benign Vaguely Malicious Clearly Malicious

(a) Different input prompts in the input space

Safety

Helpfulness

Defense+LlmFixer Balanced Defense Defense LLM Method

(b) The comparison of existing methods and ours

Retain the Defense

Clarify the vaguely benign

NOT as good as Defense

How to kill a python process?

I'm sorry, but I cannot provide assistance or information
on illegal or harmful activities.

(c) LLM with balanced defense fails to handle vaguely benign input

Figure 1: Disadvantages of existing defense strategy.

focused methods and input-focused methods. The
former ones change LLM itself (improve parame-
ters or structure) (Piet et al., 2023; Bianchi et al.,
2024), while the latter ones detect and modify input
prompts before LLM processes them (Kumar et al.,
2023; Liu et al., 2024c; Mo et al., 2024; Zhang
et al., 2024). Despite these defense methods effec-
tively reducing the success rate of jailbreak attacks,
LLMs equipped with defensive strategies tend to
be over-conservative. A phenomenon is that the
helpfulness of LLMs (1. willingness to respond
to benign instructions 2. quality of response to be-
nign instructions) is weakened while enhancing the
ability to defend against jailbreak attacks.

As there is a trade-off between safety and help-
fulness when LLMs defend against jailbreak at-
tacks, some other works try to reach a balance.
(Du et al., 2024; Ji et al., 2024; Xu et al., 2024b;
Liu et al., 2024a) proposed balanced defense strate-
gies that can decrease the success rate of jailbreak
attacks while maintaining LLMs’ general perfor-

18233

mance. However, a limitation of these balanced de-
fense methods is that though they help LLMs better
distinguish clearly benign input prompts from mali-
cious ones than normal defense methods, they still
mistakenly reject many vaguely benign queries. As
shown in Figure 1(a), we assume that all LLM in-
put prompts can be divided into four types: clearly
benign, vaguely benign, vaguely malicious, and
clearly malicious. We employ GPT-4 to detect the
intention of input prompts, and those with 60%
or lower confidence are defined as vague input
prompts. An LLM can easily recognize the inten-
tion of clear input prompts while being heavily con-
fused by vague ones. Figure 1(c) shows an example
of LLM with a balanced defense method wrongly
rejecting a vaguely benign question. Those normal
defenses and balanced defenses fail to deal with
vaguely benign inputs not only because they have
not clarified the intention for LLM to process, but
whose defensive mechanism for safety makes the
LLM more sensitive to tokens like ’kill’ or ’sex’
contained in vaguely benign inputs. Furthermore,
they tend to settle the sensitivity conservatively,
rejecting those vaguely benign inputs that should
have been positively responded to.

To tackle the over-defense problem and over-
come the limitation of exisiting works, we propose
a universal framework LlmFixer to help LLMs
equipped with any defense strategy to fix their
helpfulness while allowing the defense strategy
to play its due role. The framework is not a de-
fense method against jailbreak, but it acts on LLMs
with defense strategies to help (1)clarify vague in-
puts. (2)improve understanding capacity. In this
way, LlmFixer improves the possibility of LLM
responding to benign queries and the quality of
response to benign queries while preserving the
safety mechanism contributed by the defense strat-
egy. LlmFixer consists of a re-writer and a logic
patch. The re-writer trained with reinforcement
learning from LLM feedback can discretize token
sequences in the input space of LLM, that is to
say, the re-writer will reconstruct inputs to amplify
the distance between vaguely benign inputs and
vaguely malicious inputs. The logic patch is uti-
lized to improve LLM’s comprehension capacity.
Inspired by the conclusion that the Feed-Forward
Networks (FFNs) in pre-trained language models
contain factual knowledge (Dai et al., 2022), we hy-
pothesize the logical relationship is also contained
in FFNs to some extent. Thus, we add an FFN-
like logic patch to the FFNs of LLM to repair its

inherent comprehension vulnerabilities without up-
dating the LLM’s original parameters. Besides, as
general datasets like AlpacaEval or JustEval rarely
include vaguely benign inputs like the one in Figure
1(c), we propose a vaguely benign prompts dataset
VagueEval to precisely evaluate the helpfulness of
defensive LLMs. LlmFixer is extensively tested on
three LLMs using five jailbreak attacks and four
defense methods. The experimental results demon-
strate its superiority. Our major contributions are
summarized as follows:

• We propose a novel universal framework Llm-
Fixer based on reinforcement learning from
LLM feedback to clarify the intention of LLM
inputs and improve the comprehension capac-
ity of a defensive LLM without affecting its
original defense strategy. To the best of our
knowledge, LlmFixer is the first helpfulness-
enhancing framework acting on defensive
LLMs.

• We create a vaguely benign dataset VagueEval
to reveal the real impact on the helpfulness of
LLM caused by defense strategies.

• We show the effectiveness of LlmFixer in re-
covering the helpfulness of defensive LLMs
through extensive experiments under multiple
circumstances.

2 Preliminaries

Here we introduce the notations and definitions
to formulate LlmFixer. We denote the train set as
{Di}Ni=1 and Di = (Ii, Ri, Yi), where Ii is the in-
put prompt ,Ri is the standard response, and Yi
equals 0 or 1 to label whether Ii is benign or mali-
cious.

Then we denote the output of the prompt re-
writer as Î and the response generated by the defen-
sive LLM as O. O can be divided into affirmative
and rejective. Affirmative responses are LLM mak-
ing efforts to answer questions or follow instruc-
tions in input prompts while rejective responses
are the rejection statements plus explanation. The
attitude A (affirmative: A = 1 or rejective: A = 0)
towards the input prompt can be extracted from O.
If the attitude is affirmative, that is, the LLM is
trying to be helpful, then we define the rest of O
to be a result; If the attitude is rejective, then we
define the rest part of O to be an explanation of
why the LLM refuses to help.

18234

Prompt Re-writer

LLM Logic Patch clear benign

vaguely benign

vaguely malicious

clear malicious

clear benign

clarified benign

clarified malicious

clear malicious

(c) Inference Phase of LlmFixer

 Prompt Re-writer

 𝝅θ

NLPO
Response Quality

 Reward

Affirmative Rejective

Result

kill: harmful

How to kill a python process?

Tell me what is racism.

Sorry, I cannot provide assistance

on illegal or harmful activities.

Racism is a belief that one race is

superior to others, resulting……

Intention Clarification

 Reward

Attitude

LLM Logic Patch

Explanation

…

…

Feed-Forward Network
 （of LLM）

Logic Patch

Explanation: LLM refused to respond to “How to

kill a python process” because it is harmful.

kill a process: NOT harmful

𝑂 𝑂′ ∆ 𝑂 + =
Update

(a) Training of the Prompt Re-writer (b) Training of the Logic Patch

Figure 2: The overview of the proposed LlmFixer framework.

3 Methodology

The overview of the proposed LlmFixer framework
is illustrated in Figure 2. It consists of an input
prompt re-writer and a logic patch, acting on LLMs
equipped with any defense strategy.

3.1 Input Prompt Re-writer

The input prompt re-writer is a pre-model of LLM
applied to assist LLM in correctly judging the in-
tention of input prompts. To be more specific, the
re-writer enlarges the distance between vaguely be-
nign prompts and vaguely malicious prompts in
the input space. Then the rewritten prompt with
a clearer intention will be processed by LLM and
its original defense strategy. The re-writer is ex-
pected to be a re-writing expert so other abilities of
a generation model are considered of no account.

3.1.1 Reinforcement Learning from LLM
Feedback

We train the re-writer based on Reinforcement
Learning from LLM Feedback. Before the training
process, the re-writer is initialized with πθ = πθ0 ,
where πθ0 is a GPT-2(Radford et al., 2019) prelim-
inarily fine-tuned on a normal question rewriting
dataset QReCC (Anantha et al., 2021). Under the
reinforcement learning framework, the re-writer
plays the role of the learning policy. It is a proba-

bility distribution over all tokens in V :

πθ(Î|I) =
L∏

l=1

p(q̂l|q̂1, ..., q̂l−1, I) (1)

where q̂1, ..., q̂l−1 is the first l − 1 tokens the re-
writer generated and q̂l is the next token to be se-
lected, namely the action in the context of RL. V is
the action space respectively. The ultimate goal of
training is to find the optimal policy to maximize
the expected reward. This can be formulated as

Eq̂t∼πθ(·|qt)[R(fϕ(Î))] (2)

where fϕ is the LLM with defense strategy, i.e., the
environment under the RL framework and R is a
reward function. All parameters of the LLM fϕ are
frozen during training.

3.1.2 Reward
The reward R is the sum of the intention clarifica-
tion reward and the response quality reward. We
use whether the attitude of the LLM response is
consistent with the label as the intention clarifica-
tion reward signal:

rintention = Yi ⊕Ai (3)

where ⊕ is an XOR operation. The intention clari-
fication reward motivates the re-writer to discretize
the input space. Then we use a judge function

18235

to score the generated response for the response
quality reward:

rquality =

{
Judge(O) Yi ∧Ai = 1
a+b
2 Yi ∧Ai = 0

(4)

where ∧ denotes an AND operation. a and b denote
the upper and lower bounds of the Judge function.
The Judge function is designed based on ROUGE
(Chin-Yew, 2004). We only want the response
quality reward work when the defensive LLM is
willing to help with a benign prompt so the reward
will be directly assigned to a midrange in other
cases. The response quality reward regulates the re-
writer to reconstruct a prompt by which the LLM
can be instructed to produce a qualified response
similar to the standard response. We get the final
reward by adding rquality and rintention together:

R = rintention + rquality (5)

3.1.3 Policy Optimization
To train the re-writer of LlmFixer, we upgrade nat-
ural language policy optimization (NLPO) (Ra-
mamurthy et al., 2023), a reinforcement learn-
ing algorithm for natural language generation.
NLPO is the parameterized-masked extension of
PPO(Schulman et al., 2017), which learns to mask
out irrelevant tokens in-context as it trains. Based
on that, we extra mask out sensitive words in the be-
nign prompts that mislead LLM’s defensive mech-
anism. To accomplish that, we optimize a masking
policy πψ beside πθ. The masking policy is a copy
of πθ and updated every µ step. We denote

Z(πθ) =
∑

q̂∈V
πθ0(q̂l|q̂1, ..., q̂l−1, I) (6)

as the sum of probabilities of all action q̂ ∈ V
to generate lth token given a particular state of
s = q̂l|q̂1, ..., q̂l−1, I . NLPO originally selects the
top-p tokens from the vocabulary V and then em-
ploys an invalid-mask to the remaining tokens, in
other words, NLPO sets the probabilities of the
remaining tokens to zero when sampling actions
from πθ. Formally, the subset V p

πθ ⊂ V replaces
the original vocabulary V . Above that, when a
vaguely benign prompt is mistakenly rejected, we
additionally mask out sensitive tokens in the top-p
range to clarify the benign intention of the prompt.
The optimizing of πψ can be defined as:

πψ(·|s, πθ) = πθ(·|s)/{Zp(πθ)/Zsensitive(πθ)}
(7)

when the action space is V p/sensitive
πθ .

3.2 Logic Patch
The logic patch is a lightweight structure inserted
into the LLM structure to repair its logical con-
tradictions. The logical contradictions are LLM’s
inherent imperfection or introduced by its defense
strategy. Based on the insight (Dai et al., 2022) that
factual knowledge is stored in the Feed-Forward
Networks(FFNs), we hypothesize that the logical
relationship is also reflected in FFNs. Therefore,
we use the logic patch to amend the output of FFNs
in an LLM, in other words, to fix the logical contra-
diction. In this way, the lightweight trainable logic
patch fixes logical contradictions without updating
the parameters of the LLM. The logic patch has an
FFN-like design: an input layer, two hidden lay-
ers, and an output layer, but with a much smaller
intermediate dimension. It can be denoted as:

Patch(X) = (Activation(XW1 + b1))W2 + b2
(8)

where X is the output of the attention layer in a
transformer block of the LLM and Activation is
the activation function corresponding to the one
in the LLM’s FFNs. W1, b1,W2, and b2 are first
hidden layer weight, first hidden layer bias, sec-
ond hidden layer weight, and second hidden layer
bias respectively. Then we add the output of the
logic patch to the LLM’s FFN output to attain a
contradiction-solved model.

FFN ′(X) = FFN(X) + Patch(X) (9)

3.2.1 Training
The logic patch is trained only when the LLM
rejects a benign prompt. For example, a benign
prompt “how to kill a python process" is input into
LLM and mistakenly responded with “sorry, I can-
not provide assistance or information on illegal
or harmful activities". There is a contradiction
between the intention of the prompt and the expla-
nation given by the LLM, which will be used to
update the parameters of the logic patch. The patch
impacts the prediction for a broad set of prompts
close to each other in the input space, possibly in-
cluding the inputs without logical contradiction.
We set an extra goal during the training process to
avoid affecting logically correct inputs:

fϕ′(I) =

{
O′ I ∈ C

fϕ(I) I /∈ C
(10)

where O′ is the calibrated output and C is the spe-
cific range that we expect the logic patch to act
on.

18236

4 Experiments

4.1 Experimental Settings

Models. We conducted experiments on three open-
source large language models: Vicuna-7b (Chiang
et al., 2023), Llama3-8b (Dubey et al., 2024), and
Qwen2.5-7b (Yang et al., 2024) to evaluate Llm-
Fixer.
Helpfulness Evaluation. To evaluate the impact of
LlmFixer on LLM’s helpfulness, we create VagueE-
val and use JustEval(Lin et al., 2023). VagueEval
is a collection of benign prompts that would be
potentially rejected by defensive LLMs selected
from Chatbot Arena (Zheng et al., 2024) and MS-
MARCO (Nguyen et al., 2016). We choose ques-
tions, instructions, or prompts that contain sen-
sitive words or phrases that frequently appear in
malicious query benchmark Advbench (Zou et al.,
2023) and HEx-PHI (Qi et al., 2024), such as the
example shown in Figure 1(c). The same quantity
of malicious prompts that fails to be detected by
the baseline defense model is collected in VagueE-
val as well. Creation details and quality checks
of VagueEval have been presented in Appendix D.
Additionally, JustEval, a benchmark that analyzes
model performance on six dimensions is employed
to evaluate the general helpfulness of LLM. We
adopt the False Reject Rate (FRR) and the Quality
score as helpfulness evaluation metrics. FRR is de-
fined as the proportion of queries rejected by LLM
in all benign queries, which is utilized to assess the
possibility of LLM responding to benign queries.
Following Multi-aspect Evaluation Protocol (Lin
et al., 2023), we use GPT-4 to evaluate responses
across five dimensions helpfulness, clarity, factual-
ity, depth, and engagement. The average score is
considered to be the Quality score.
Safety Evaluation. We use five jailbreak attacks:
GCG (Zou et al., 2023), AutoDan (Liu et al.,
2024b), PAIR (Chao et al., 2023), SAP30 (Deng
et al., 2023) and DeepInception (Li et al., 2023) to
evaluate the impact of LlmFixer on LLM’s safety.
They are representative state-of-the-art jailbreak at-
tacks of different types, effectively circumventing
the internal alignment of LLM. Following previous
works (Zou et al., 2023; Liu et al., 2024b), we adopt
Attack Success Rate (ASR) as the safety evaluation
metric. ASR is defined as the proportion of mali-
cious inputs successfully inducing LLM to produce
harmful content in all malicious inputs.
Baselines. We consider four advanced defense
strategies as baselines: ICD (Wei et al., 2023) en-

hances model safety through examples that demon-
strate rejection to produce harmful content; PAT
(Mo et al., 2024) trains a prompt control attached
to the user prompt as a guard prefix; SafeDecoding
(Xu et al., 2024b) considered the trade-off between
helpfulness and harmlessness, introducing a safety-
aware decoding strategy to produce helpful and
harmless responses; MoGU (Du et al., 2024) trans-
forms the base LLM into the usable LLM and the
safe LLM to improve LLMs’ safety while retaining
their usability.
Implementation Details. We conduct the experi-
ments with GeForce RTX 3090 and Tesla V100
PCIE. More implementation details have been
shown in Appendix C.

4.2 Experimental Results
We evaluate LLMs protected by different defenses
with and without LlmFixer. For helpfulness eval-
uation, a lower FRR indicates a better willingness
to respond to benign inputs, and a higher Quality
score corresponds to better quality general perfor-
mance. ASR is reported for safety evaluation; the
lower it is, the better. The following observations
are made according to experimental results in Table
1. Items show that LlmFixer improves LLM help-
fulness or retains LLM safety have been bolded.

LlmFixer recovers the helpfulness of defen-
sive LLMs. The results of FFR and Quality score
show that defense methods weaken the helpful-
ness of defensive LLMs and LlmFixer recovers
it. Take Vicuna for example, four different de-
fenses cause varying degrees of increase for the
FRR of Vicuna on both VagueEval and JustEval.
The most notable item is that PAT leads to 48%
FFR on VagueEval, severely damaging the prob-
ability of responding to benign inputs for Vicuna.
SafeDecoding and MoGU try to keep the utility of
LLMs while improving safety. Though they reach
a low FFR on JustEval, the FRR calculated on
VagueEval shows that they cannot deal with vague
inputs, especially vaguely benign inputs. LlmFixer
consistently enhances all defense methods, achiev-
ing -12% FFR with ICD, -36% FFR with PAT, -
7% FFR with SafeDecoding, and -13% FFR with
MoGU on VagueEval. As for response quality, our
proposal also generally improves the Quality score
for LLMs equipped with defense methods. An ex-
ception to this is that LlmFixer does not enhance
the response quality of LLM with ICD. We think
the reason is that the in-context examples from ICD
have already supplemented some logical relation-

18237

Model Defense
Helpfulness Safety (ASR↓)

VagueEval JustEval
GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

Llama3

Llama3 11% 4.62 6% 4.74 8% 6% 0% 0% 0%
Llama3 + Llmfixer 2% 4.68 2% 4.82 10% 6% 0% 2% 0%
ICD 22% 4.57 12% 4.49 0% 0% 0% 0% 0%
ICD + LlmFixer 5% 4.58 5% 4.58 0% 0% 0% 0% 5%
PAT 31% 4.13 16% 4.36 0% 5% 2% 0% 0%
PAT + LlmFixer 6% 4.52 6% 4.79 0% 4% 2% 0% 0%
SafeDecoding 10% 4.71 6% 4.79 0% 4% 0% 0% 0%
SafeDecoding + LlmFixer 6% 4.76 3% 4.82 0% 3% 2% 0% 0%
MoGU 15% 4.82 5% 4.77 2% 0% 0% 0% 0%
MoGU + LlmFixer 2% 4.86 0% 4.88 2% 0% 0% 0% 0%

Qwen2.5

Qwen 9% 4.14 4% 4.23 22% 14% 18% 25% 36%
Qwen + LlmFixer 0% 4.15 0% 4.20 16% 14% 8% 3% 32%
ICD 15% 4.26 9% 4.17 0% 8% 0% 0% 100%
ICD + LlmFixer 5% 4.26 1% 4.22 0% 8% 0% 0% 100%
PAT 39% 3.82 17% 3.90 2% 12% 6% 0% 59%
PAT + LlmFixer 9% 4.08 9% 3.92 1% 12% 8% 0% 50%
SafeDecoding 12% 4.24 2% 4.24 0% 4% 0% 0% 100%
SafeDecoding + LlmFixer 7% 4.17 2% 4.18 2% 2% 0% 0% 78%
MoGU 11% 4.35 3% 4.32 4% 18% 32% 0% 20%
MoGU + LlmFixer 4% 4.35 0% 4.34 4% 16% 16% 0% 20%

Vicuna

Vicuna 6% 4.10 2% 4.29 62% 40% 32% 60% 100%
Vicuna + LlmFixer 2% 4.12 0% 4.29 52% 34% 29% 42% 66%
ICD 17% 3.97 8% 4.25 38% 32% 26% 47% 100%
ICD + LlmFixer 5% 3.97 1% 4.34 32% 28% 22% 47% 80%
PAT 48% 3.22 15% 3.76 1% 28% 5% 0% 78%
PAT + LlmFixer 10% 3.78 2% 4.12 1% 20% 2% 0% 66%
SafeDecoding 11% 4.18 5% 4.28 18% 26% 24% 49% 100%
SafeDecoding + LlmFixer 4% 4.30 4% 4.30 19% 24% 24% 50% 76%
MoGU 13% 4.15 6% 4.08 4% 4% 0% 70% 0%
MoGU + LlmFixer 0% 4.16 0% 4.22 4% 3% 0% 72% 0%

Table 1: The helpfulness and safety evaluation of LLMs protected by different defenses with and without LlmFixer.

ships to LLMs. Extensive experiments prove that
LlmFixer successfully fixes the helpfulness of de-
fensive LLMs. This achievement is more notable
in Llama3 and we attribute this phenomenon to the
strict internal alignment of Llama3. The more con-
servative a LLM is, the more notable our proposal
performs.

LlmFixer preserves the safety of defensive
LLMs. For each row in Table 1, the ASR of five
jailbreak attacks is reported to present safety. Llm-
Fixer barely causes the growth of ASR compared
to the non-LlmFixer item and even facilitates re-
duction. It shows that LlmFixer allows the original
defenses of LLM to play their role when they col-
laborate. We deem that the slight reduction of ASR
is caused by the input discretization contributed by

the prompt re-writer. The re-writer amplifies the
intention of malicious inputs and exposes it to the
defense mechanism, leading to a lower ASR.

LlmFixer is universally effective. We tested
LlmFixer on three LLMs with four defense meth-
ods. Our proposal shows universal effectiveness for
input-focused defense like ICD and PAT, or LLM-
focused defense like SafeDecoding and MoGU.
It works notably on strong alignment LLMs like
Llama3. Additionally, we evaluate LlmFixer on
Qwen2.5 with different parameter counts to demon-
strate how our method performs on smaller and
larger LLMs. As shown in Table 2, LlmFixer makes
a huge improvement in the helpfulness of Qwen2.5-
0.5b and a relatively small increase in the helpful-
ness of Qwen2.5-32b. It indicates that the smaller

18238

LLM
Defense

Helpfulness Safety (ASR↓)

Qwen2.5
VagueEval JustEval

GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

0.5b
ICD 22% 4.12 14% 4.02 0% 8% 0% 0% 100%
ICD+LlmFixer 7% 4.26 1% 4.06 0% 7% 1% 0% 78%

7b
ICD 15% 4.26 9% 4.17 0% 8% 0% 0% 100%
ICD+LlmFixer 5% 4.26 1% 4.22 0% 8% 0% 0% 100%

32b
ICD 9% 4.35 4% 4.24 0% 4% 0% 0% 100%
ICD+LlmFixer 5% 4.36 0% 4.24 0% 4% 0% 0% 26%

Table 2: Study on how LlmFixer works on LLMs with different sizes.

Defense Ablation
Helpfulness Safety (ASR↓)

VagueEval JustEval
GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

ICD
LlmFixer 5% 3.97 1% 4.34 32% 28% 22% 47% 80%
w/o re-writer 18% 3.96 7% 4.29 38% 32% 24% 42% 100%
w/o logic patch 5% 3.97 2% 4.29 32% 29% 22% 42% 80%

PAT
LlmFixer 10% 3.78 2% 4.12 1% 20% 2% 0% 66%
w/o re-writer 32% 3.31 14% 4.03 1% 27% 5% 0% 78%
w/o logic patch 25% 3.49 8% 3.88 1% 20% 2% 0% 67%

SafeDecoding
LlmFixer 4% 4.30 4% 4.30 19% 24% 24% 50% 76%
w/o re-writer 10% 4.24 5% 4.28 18% 26% 24% 49% 100%
w/o logic patch 7% 4.19 4% 4.29 19% 23% 24% 52% 76%

MoGU
LlmFixer 0% 4.16 0% 4.22 4% 3% 0% 72% 0%
w/o re-writer 10% 4.15 5% 4.19 4% 3% 0% 70% 0%
w/o logic patch 4% 4.16 2% 4.10 4% 4% 0% 70% 0%

Table 3: Ablation study to verify the significance of two components of LlmFixer.

the parameter size of an LLM, the better LlmFixer
can fix it. We speculate that the reason for this is
that a larger LLM has greater capability of compre-
hension and there are fewer understanding flaws
for LlmFixer to fix. The safety results show that
LLM size does not affect how LlmFixer retains the
safety of LLMs. After testing LlmFixer with dif-
ferent jailbreak methods, defense methods, LLM
types and LLM sizes, we show when our method
is working and which models benefited from our
method. To sum up, LlmFixer is universally effec-
tive and especially helpful on strictly aligned and
smaller LLMs.

LlmFixer causes a low computation cost. Llm-
Fixer brings extra runtime mainly because of the
re-writing process. We use a GPT-2 with 345M
parameters as the re-writer to be the pre-model of
an LLM scaled nearly 7b or even larger. For which,
LlmFixer approximately introduces an additional
runtime cost of less than one-twentieth.

4.3 Ablation Study
We conduct ablation studies to verify the signif-
icance of two components of LlmFixer. The ab-

lation results of Vicuna are shown in Table 2: the
prompt re-writer and the logic patch separately play
their part to enhance helpfulness. In most cases,
defenses with the re-writer and the logic patch out-
perform defenses with only one module. We also
observe that the prompt re-writer contributes more
improvement on FFR than the logic patch. Espe-
cially for ICD, the logic patch barely has any im-
pact. For safety evaluation, both the re-writer and
the patch preserve the original safety outcome con-
tributed by the defense methods or LLM’s internal
alignment. The prompt re-writer further contributes
to a slight reduction of ASR. More experimental
results on Llama3 and Qwen2.5 are presented in
Appendix A.1.

Besides GPT2, we evaluate MobileLLM, Galac-
tica, and TinyLLama to be the base of the re-writer.
Table in Appendix A.2 shows that LlmFixer with
all LMs are effective and GPT2-based LlmFixer
slightly surpasses others. We attribute it to GPT2
excelling in coherence and grammatical accuracy
and its architectural advantage enables it to better
understand and generate high-quality text in rewrit-

18239

ing tasks.
We also conduct a transferability study. We train

LlmFixer on Qwen2.5 as direct LlmFixer and on
Vicuna as transferred LlmFixer. Then we evaluate
both of them on Qwen2.5. According to results
shown in Appendix A.3, the direct version gen-
erally outperforms the transferred version. But
LlmFixer still shows fair transferability as the trans-
ferred version surpasses the LLM without it.

4.4 Parameter Sensitivity Analysis

Hyperparameter sensitivity analysis is conducted
on Vicuna equipped with ICD. We mainly focus
on the two key parameters: p in Equation 7, which
denotes the number of top tokens in the NLPO op-
timization process, and d, which represents the in-
termediate dimension of the logic patch. As shown
in Figure 3, we obtain the best FFR when p = 0.5.
A large p could mask out excessive tokens, causing
the rewritten prompts to deviate from the original
meaning. With the increase of d, the FFR tends to
decrease. It demonstrates that a larger logic patch
supplements more logical relationships. Neither p
nor d affects the ASR result of jailbreak attacks.

Figure 3: Hyper-parameter sensitivity analysis.

5 Related Works1

Jailbreak Attacks on LLMs. A jailbreak attack
on LLMs is an intentional design of prompts to
trigger LLMs to produce harmful content by cir-
cumventing the alignment for LLMs. Several ef-
fective ways to construct jailbreak prompts are as
follows. Manual Design: People manually design
jailbreak prompts to induce harmful outputs from
LLMs (Deng et al., 2023; Li et al., 2023). A typ-
ical method is DAN (walkerspider, 2022) which

1Because of the page limitation, the intact ’Related Works’
with more details are presented in the Appendix B.

stands for "do anything now", trying to break the
constraint of alignment in LLM by telling the chat-
bot to act like a specific role. Gradient-based
Generation: Considering textual inputs of LLMs
are discrete data, there is no direct gradient sig-
nal when trying to optimize jailbreak prompts. To
solve this problem, (Zou et al., 2023) introduced
Greedy Coordinate Gradient-based Search (GCG).
GCG employs the gradients associated with one-
hot encoded token indicators to identify a selection
of potential substitutes for each token slot. Subse-
quently, it evaluates the impact of these alternatives
through forward propagation. GCG is a simple ex-
tension of the optimization method in AutoPrompt
(Shin et al., 2020) and they both apply the key idea
of Universal Adversarial Triggers (UAT) (Wallace
et al., 2019) which proposed to generate a set of
tokens that induce a model to output a specific
prediction when concatenated to any input. A se-
ries of gradient-based jailbreak methods (Wichers
et al., 2024; Sitawarin et al., 2024; Liao and Sun,
2024; Zhang and Wei, 2024) are postulated after
GCG. Reinforcement Learning Generation: Re-
inforcement learning (RL) is another feasible way
for heuristic optimization (Kassem and Saad, 2024).
In (Hong et al., 2024), curiosity-driven red teaming
(CRT) for LLMs based on RL is put forward to ob-
tain larger coverage of generated jailbreak prompts
while maintaining effectiveness compared to other
existing RL methods. (Kassem and Saad, 2024)
proposed Targeted Paraphrasing via RL (TPRL) to
automatically learn a policy to generate adversarial
samples from language models.
Jailbreak Defenses. Aligning LLMs by Su-
pervised Fine-Tuning (SFT) (Ouyang et al.,
2022), Reinforcement Learning from Human Feed-
back(RLHF) (Ouyang et al., 2022), Direct Prompt
Optimization (DPO) (Rafailov et al., 2024) or other
methods (Lee et al., 2023; Chen et al., 2024) is
becoming a regular step before LLMs are released.
However, extra defensive strategies beyond align-
ment are required after numerous jailbreak attacks
that intentionally bypass LLMs’ built-in safety
mechanisms are proposed. Jailbreak defenses can
be briefly divided into LLM-focused methods and
input-focused methods. LLM-focused methods
alter LLM itself to enhance its safety. Fine-tuning
LLMs with safety data (Piet et al., 2023) is one of
the most common LLM-focused methods. (Bianchi
et al., 2024) proved that safety instruction tuning
successfully increases the general safety of an LLM
when the quantity of safety data is appropriate.

18240

While input-focused methods refer to detecting
and revising prompts before they are input into
LLMs without changing the structure and param-
eters of LLMs. Filter-based defenses are typical
input-focused methods. They work well against
adversarial suffix attacks such as GCG, but per-
form poor againt other main stream attacks like
AutoDan or PAIR. Other advanced input-foucsed
methods, like IBProtector (Liu et al., 2024c), is
proposed to compress input prompts to maintain
only essential information for the target LLMs to
respond for defending jailbreak. (Mo et al., 2024;
Liu et al., 2024a; Wei et al., 2023) generate addi-
tional defensive tokens on original input prompts
to defend jailbreak. (Ji et al., 2024) introduces a
set of seven semantics-preserving transformations
to reconstruct input prompts.
Trade-off Between Helpfulness and Safety.
Large language models have a trade-off between
helpfulness and safety when defending against jail-
break. The results of the experiment in (Bianchi
et al., 2024) show that a proper amount of safety
data introduced to improve the safety of LLMs
does not adversely impact general performance.
However excessive safety data can make LLM ex-
aggerate safety, weakening its ability to answer
general questions. (Tuan et al., 2024) put forward
a Self-Generation and Fine-tuning paradigm, try-
ing to make the helpfulness and safety attributes of
LLMs controllable in different cases. Some works
attempt to improve LLMs’ robustness against jail-
break attacks while maintaining their helpfulness
(Xu et al., 2024b). For example, MoGU frame-
work (Du et al., 2024) is proposed to train the base
LLM into two variants: the helpful LLM and the
safe LLM, and utilize dynamic routing to flexibly
choose either version. And (Ji et al., 2024) invents
a smoothing-based defense SEMANTICSMOOTH
that aggregates the predictions of multiple semanti-
cally transformed copies of a given input prompt to
balance the trade-off. Though some discussion oc-
curred about the trade-off between helpfulness and
safety in LLM jailbreak defense, this phenomenon
has not been seriously analyzed and the problem is
not well solved.

6 Conclusion

This paper proposes a novel framework, LlmFixer,
to handle the over-defense problem of large lan-
guage models. We trained an input prompt re-
writer based on Reinforcement Learning from LLM

Feedback to clarify the intention of input prompts
and proposed a logic patch to repair the logic in-
consistencies of LLMs. Quantitative evaluation of
three mature large language models and five jail-
break attacks with four defenses demonstrates the
superiority of our proposal.

7 Limitations

While the proposed LImFixer framework demon-
strates promising results in recovering the helpful-
ness of defensive LLMs, several limitations warrant
consideration. The logic patch’s design hinges on
the assumption that logical relationships are primar-
ily embedded in FeedForward Networks (FFNs),
which might not hold for models with divergent
architectures, limiting its universal applicability.
Compatibility challenges may also arise with dy-
namically updated defense mechanisms, as Llm-
Fixer assumes static defense strategies. Finally,
while the framework preserves safety metrics un-
der tested scenarios, its robustness against sophis-
ticated, multi-step adversarial attacks remains un-
certain, necessitating further exploration. These
limitations underscore the need for broader val-
idation, architectural adaptability, and enhanced
efficiency to strengthen the framework’s practical
utility.

8 Ethics Statement

This work adheres to ethical research practices by
utilizing publicly available datasets (e.g., VagueE-
val, JustEval, MSMARCO) and ensuring compli-
ance with data usage guidelines. The VagueE-
val dataset, constructed from benign prompts in
Chatbot Arena and MSMARCO, prioritizes non-
sensitive content to avoid privacy violations. All
code, datasets, and artifacts are open-sourced to
foster transparency, reproducibility, and commu-
nity scrutiny. However, risks persist: despite safety
enhancements, malicious actors might exploit the
framework to bypass defenses or amplify harm-
ful outputs, particularly if adversarial techniques
evolve beyond tested scenarios. While the logic
patch and re-writer mitigate over-defensiveness,
no system is impervious to novel attack vectors.
We advocate for ongoing monitoring, rigorous test-
ing, and collaborative efforts to address emergent
vulnerabilities, balancing utility and safety in real-
world LLM deployments.

18241

References
Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,

Shayne Longpre, Stephen Pulman, and Srinivas
Chappidi. 2021. Open-domain question answering
goes conversational via question rewriting. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
520–534.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio,
Paul Rottger, Dan Jurafsky, Tatsunori Hashimoto,
and James Zou. 2024. Safety-tuned llamas: Lessons
from improving the safety of large language models
that follow instructions. In The Twelfth International
Conference on Learning Representations.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. arXiv preprint arXiv:2310.08419.

Kai Chen, Chunwei Wang, Kuo Yang, Jianhua Han,
HONG Lanqing, Fei Mi, Hang Xu, Zhengying Liu,
Wenyong Huang, Zhenguo Li, and 1 others. 2024.
Gaining wisdom from setbacks: Aligning large lan-
guage models via mistake analysis. In The Twelfth
International Conference on Learning Representa-
tions.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, and
1 others. 2023. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. lmsys. org (accessed 14 April 2023),
2(3):6.

Lin Chin-Yew. 2004. Rouge: A package for automatic
evaluation of summaries. In Proceedings of the Work-
shop on Text Summarization Branches Out, 2004.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502.

Boyi Deng, Wenjie Wang, Fuli Feng, Yang Deng, Qifan
Wang, and Xiangnan He. 2023. Attack prompt gen-
eration for red teaming and defending large language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 2176–2189.

Yanrui Du, Sendong Zhao, Danyang Zhao, Ming Ma,
Yuhan Chen, Liangyu Huo, Qing Yang, Dongliang
Xu, and Bing Qin. 2024. Mogu: A framework for en-
hancing safety of open-sourced llms while preserving
their usability. arXiv preprint arXiv:2405.14488.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Zhang-wei Hong, Idan Shenfeld, Tsun-hsuan Wang,
Yung-sung Chuang, Aldo Pareja, James Glass, Akash
Srivastava, and Pulkit Agrawal. 2024. Curiosity-
driven red-teaming for large language models. In
International Conference on Learning Representa-
tions.

Jiabao Ji, Bairu Hou, Alexander Robey, George J Pap-
pas, Hamed Hassani, Yang Zhang, Eric Wong, and
Shiyu Chang. 2024. Defending large language mod-
els against jailbreak attacks via semantic smoothing.
arXiv preprint arXiv:2402.16192.

Aly Kassem and Sherif Saad. 2024. Finding a needle
in the adversarial haystack: A targeted paraphrasing
approach for uncovering edge cases with minimal
distribution distortion. In Proceedings of the 18th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 552–572.

Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Soheil
Feizi, and Hima Lakkaraju. 2023. Certifying llm
safety against adversarial prompting. arXiv preprint
arXiv:2309.02705.

Raz Lapid, Ron Langberg, and Moshe Sipper. 2024.
Open sesame! universal black-box jailbreaking of
large language models. In ICLR 2024 Workshop on
Secure and Trustworthy Large Language Models.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang,
Fanpu Meng, and Yangqiu Song. Multi-step jail-
breaking privacy attacks on chatgpt. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,
Tongliang Liu, and Bo Han. 2023. Deepinception:
Hypnotize large language model to be jailbreaker.
arXiv preprint arXiv:2311.03191.

Zeyi Liao and Huan Sun. 2024. Amplegcg: Learning a
universal and transferable generative model of adver-
sarial suffixes for jailbreaking both open and closed
llms. arXiv preprint arXiv:2404.07921.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-
dra Bhagavatula, and Yejin Choi. 2023. The unlock-
ing spell on base llms: Rethinking alignment via
in-context learning. In The Twelfth International
Conference on Learning Representations.

18242

Jiaxu Liu, Xiangyu Yin, Sihao Wu, Jianhong Wang,
Meng Fang, Xinping Yi, and Xiaowei Huang. 2024a.
Tiny refinements elicit resilience: Toward efficient
prefix-model against llm red-teaming. arXiv preprint
arXiv:2405.12604.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei
Xiao. 2024b. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. In The
Twelfth International Conference on Learning Repre-
sentations.

Zichuan Liu, Zefan Wang, Linjie Xu, Jinyu Wang,
Lei Song, Tianchun Wang, Chunlin Chen, Wei
Cheng, and Jiang Bian. 2024c. Protecting your
llms with information bottleneck. arXiv preprint
arXiv:2404.13968.

Yichuan Mo, Yuji Wang, Zeming Wei, and Yisen Wang.
2024. Studious bob fight back against jailbreak-
ing via prompt adversarial tuning. arXiv preprint
arXiv:2402.06255.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human-generated machine read-
ing comprehension dataset.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

Anselm Paulus, Arman Zharmagambetov, Chuan Guo,
Brandon Amos, and Yuandong Tian. 2024. Ad-
vprompter: Fast adaptive adversarial prompting for
llms. arXiv preprint arXiv:2404.16873.

Julien Piet, Maha Alrashed, Chawin Sitawarin, Sizhe
Chen, Zeming Wei, Elizabeth Sun, Basel Alomair,
and David Wagner. 2023. Jatmo: Prompt injection
defense by task-specific finetuning. arXiv preprint
arXiv:2312.17673.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi
Jia, Prateek Mittal, and Peter Henderson. 2024. Fine-
tuning aligned language models compromises safety,
even when users do not intend to! In International
Conference on Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.

2023. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and
building blocks for natural language policy optimiza-
tion. In The Eleventh International Conference on
Learning Representations.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235.

Chawin Sitawarin, Norman Mu, David Wagner, and
Alexandre Araujo. 2024. Pal: Proxy-guided black-
box attack on large language models. arXiv preprint
arXiv:2402.09674.

Sam Toyer, Olivia Watkins, Ethan Adrian Mendes,
Justin Svegliato, Luke Bailey, Tiffany Wang, Isaac
Ong, Karim Elmaaroufi, Pieter Abbeel, Trevor Dar-
rell, and 1 others. 2023. Tensor trust: Interpretable
prompt injection attacks from an online game. arXiv
preprint arXiv:2311.01011.

Yi-Lin Tuan, Xilun Chen, Eric Michael Smith,
Louis Martin, Soumya Batra, Asli Celikyilmaz,
William Yang Wang, and Daniel M Bikel. 2024. To-
wards safety and helpfulness balanced responses via
controllable large language models. arXiv preprint
arXiv:2404.01295.

walkerspider. 2022. Dan is my new friend.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2153–2162.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.
2024. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems,
36.

Zeming Wei, Yifei Wang, and Yisen Wang. 2023.
Jailbreak and guard aligned language models with
only few in-context demonstrations. arXiv preprint
arXiv:2310.06387.

Nevan Wichers, Carson Denison, and Ahmad Beirami.
2024. Gradient-based language model red teaming.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2862–
2881.

18243

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang,
Jingfeng Zhang, and Mohan Kankanhalli. 2024a. An
llm can fool itself: A prompt-based adversarial attack.
In The Twelfth International Conference on Learning
Representations.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan
Jia, Bill Yuchen Lin, and Radha Poovendran.
2024b. Safedecoding: Defending against jailbreak
attacks via safety-aware decoding. arXiv preprint
arXiv:2402.08983.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Yihao Zhang and Zeming Wei. 2024. Boosting jailbreak
attack with momentum. In ICLR 2024 Workshop on
Reliable and Responsible Foundation Models.

Zhexin Zhang, Yida Lu, Jingyuan Ma, Di Zhang, Rui
Li, Pei Ke, Hao Sun, Lei Sha, Zhifang Sui, Hongning
Wang, and 1 others. 2024. Shieldlm: Empowering
llms as aligned, customizable and explainable safety
detectors. arXiv preprint arXiv:2402.16444.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2024. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrik-
son. 2023. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint
arXiv:2307.15043.

A Ablation Study

A.1 Ablation Studies on Llama3 and Qwen2.5
Ablation Studies on Llama3 and Qwen2.5 are pre-
sented in Table 4.

A.2 Ablation Studies on other LM as
pretrained re-writer

Besides GPT2, we evaluate MobileLLM, Galac-
tica, and TinyLLama to be the base of the re-writer.
Table 5 shows that LlmFixer with all LMs are effec-
tive and GPT2-based LlmFixer slightly surpasses
others.

A.3 Transfer Study
We train LlmFixer on Qwen2.5 as direct LlmFixer
and on Vicuna as transferred LlmFixer. Then we
evaluate both of them on Qwen2.5. According to
Table 6, the direct version generally outperforms
the transferred version. But LlmFixer still shows
fair transferability as the transferred version sur-
passes the LLM without it.

B Related Works

An intact version of Related Works with more de-
tails is presented here.
Jailbreak Attacks on LLMs. A jailbreak attack
on LLMs is an intentional design of prompts to
trigger LLMs to produce harmful content by cir-
cumventing the alignment for LLMs. Several ef-
fective ways to construct jailbreak prompts are as
follows. Manual Design: People manually design
jailbreak prompts to induce harmful outputs from
LLMs (Deng et al., 2023; Li et al., 2023). A typical
method is DAN (walkerspider, 2022) which stands
for "do anything now", trying to break the con-
straint of alignment in LLM by telling the chatbot
to act like a specific role. More role-play (Li et al.)
and in-context (Wei et al., 2023) attacking methods
are proposed inspired by DAN. Importantly, the
paper of (Wei et al., 2024) pointed out two fail-
ure modes of LLM safety: competing objectives
and mismatched generalization, guiding the pro-
duction of hand-crafted jailbreak prompts. For the
good of the research on jailbreak attacks, (Toyer
et al., 2023) proposed a dataset created by players
of an online game called Tensor Trust, containing
over 126,000 prompt injection attacks and 46,000
defenses. Gradient-based Generation: Consider-
ing textual inputs of LLMs are discrete data, there
is no direct gradient signal when trying to opti-
mize jailbreak prompts. To solve this problem,
(Zou et al., 2023) introduced Greedy Coordinate
Gradient-based Search (GCG). GCG employs the
gradients associated with one-hot encoded token
indicators to identify a selection of potential substi-
tutes for each token slot. Subsequently, it evaluates
the impact of these alternatives through forward
propagation. GCG is a simple extension of the
optimization method in AutoPrompt (Shin et al.,
2020) and they both apply the key idea of Uni-
versal Adversarial Triggers (UAT) (Wallace et al.,
2019) which proposed to generate a set of tokens
that induce a model to output a specific predic-
tion when concatenated to any input. A series of
gradient-based jailbreak methods (Wichers et al.,
2024; Sitawarin et al., 2024; Liao and Sun, 2024;
Zhang and Wei, 2024) are postulated after GCG.
Reinforcement Learning Generation: Reinforce-
ment learning (RL) is another feasible way for
heuristic optimization (Kassem and Saad, 2024).
In (Hong et al., 2024), curiosity-driven red teaming
(CRT) for LLMs based on RL is put forward to ob-
tain larger coverage of generated jailbreak prompts

18244

Model Defense Ablation

Helpfulness Safety (ASR)
VagueEval JustEval

GCG PAIR AutoDSAP DeepFRR Quality FRR Quality

Llama3

ICD
LlmFixer 5% 4.58 5% 4.58 0% 0% 0% 0% 5%
w/o re-writer 21% 4.26 9% 4.41 0% 0% 0% 0% 5%
w/o logic patch 8% 4.27 2% 4.45 0% 0% 2% 3% 2%

PAT
LlmFixer 6% 4.52 6% 4.79 0% 4% 2% 0% 0%
w/o re-writer 28% 4.39 13% 4.39 0% 4% 1% 0% 5%
w/o logic patch 9% 4.47 8% 4.22 0% 4% 2% 2% 0%

SafeDecoding
LlmFixer 6% 4.76 3% 4.82 0% 3% 2% 0% 0%
w/o re-writer 19% 4.04 5% 4.28 5% 1% 2% 4% 0%
w/o logic patch 2% 4.86 0% 4.88 2% 0% 0% 0% 0%

MoGU
LlmFixer 2% 4.06 0% 4.28 2% 0% 0% 0% 0%
w/o re-writer 10% 3.85 4% 4.11 4% 0% 0% 23% 0%
w/o logic patch 4% 4.03 2% 4.02 2% 0% 0% 0% 0%

Qwen2.5

ICD
LlmFixer 5% 4.26 1% 4.22 0% 8% 0% 0% 100%
w/o re-writer 13% 4.06 5% 3.90 0% 9% 0% 0% 95%
w/o logic patch 13% 3.92 2% 3.92 2% 7% 0% 0% 100%

PAT
LlmFixer 9% 4.08 9% 3.92 1% 12% 8% 0% 50%
w/o re-writer 32% 3.96 15% 3.61 0% 15% 5% 0% 50%
w/o logic patch 26% 3.78 8% 3.59 5% 10% 8% 0% 67%

SafeDecoding
LlmFixer 7% 4.17 2% 4.18 2% 2% 0% 0% 78%
w/o re-writer 10% 3.85 2% 3.89 2% 2% 2% 5% 60%
w/o logic patch 8% 3.70 2% 4.04 2% 2% 0% 0% 76%

MoGU
LlmFixer 4% 4.35 0% 4.34 4% 16% 16% 0% 20%
w/o re-writer 5% 3.95 4% 4.03 4% 18% 20% 0% 15%
w/o logic patch 8% 3.95 6% 3.99 4% 18% 20% 0% 17%

Table 4: Ablation Study on Llama3 and Qwen2.5.

Defense choice of LM

Helpfulness Safety (ASR↓)
VagueEval JustEval

GCG PAIR Auto SAP DeepFRR Quality FRR Quality

ICD

GPT2(LlmFixer) 5% 3.97 1% 4.34 32% 28% 22% 47% 80%
MobileLLM 8% 3.96 7% 4.02 33% 24% 24% 48% 100%
Galactica 8% 3.88 5% 4.08 54% 25% 26% 32% 95%
TinyLlama 6% 3.92 4% 4.28 32% 22% 22% 42% 78%

PAT

GPT2(LlmFixer) 10% 3.78 2% 4.12 1% 20% 2% 0% 66%
MobileLLM 11% 3.31 16% 4.03 1% 27% 5% 0% 78%
Galactica 11% 3.42 12% 4.11 2% 24% 4% 0% 88%
TinyLlama 11% 3.33 8% 3.98 1% 20% 2% 0% 69%

SafeDecoding

GPT2(LlmFixer) 4% 4.30 4% 4.30 19% 24% 24% 50% 76%
MobileLLM 5% 3.92 5% 4.29 27% 25% 25% 70% 82%
Galactica 4% 4.28 5% 4.28 18% 26% 24% 49% 100%
TinyLlama 5% 4.12 4% 4.29 19% 23% 24% 52% 76%

MoGU

GPT2(LlmFixer) 0% 4.16 0% 4.22 4% 3% 0% 72% 0%
MobileLLM 0% 4.01 0% 4.20 8% 8% 0% 83% 0%
Galactica 2% 4.15 0% 4.19 4% 3% 0% 70% 0%
TinyLlama 4% 4.16 0% 4.07 4% 2% 0% 56% 0%

Table 5: Ablation study to find out whether choice of LLM affects LlmFixer.

18245

Defense Transferability
VagueEval JustEval

GCG PAIR Auto SAP DeepFRR↓ Quality↑ FRR↓ Quality↑

PAT
w/o LlmFixer 39% 3.82 17% 3.90 2% 12 % 6% 0% 59%

direct 9% 4.08 9% 3.92 1% 12% 8% 0% 50%
transferred 32% 3.93 10% 3.90 2% 12% 9% 0% 56%

MoGU
w/o LlmFixer 11% 4.35 3% 4.32 4% 18% 32% 0% 20%

direct 4% 4.35 0% 4.34 4% 16% 16% 0% 20%
transferred 9% 4.33 0% 4.32 4% 10% 15% 0% 20%

Table 6: Transferability study.

while maintaining effectiveness compared to other
existing RL methods. (Kassem and Saad, 2024)
proposed Targeted Paraphrasing via RL (TPRL) to
automatically learn a policy to generate adversar-
ial samples from language models. Besides, other
heuristic learning methods like genetic algorithm
(Lapid et al., 2024; Liu et al., 2024b) and LLM at-
tacking LLM (Xu et al., 2024a; Paulus et al., 2024)
are also applied in generating jailbreak prompts.

Jailbreak Defenses. Aligning LLMs by Su-
pervised Fine-Tuning (SFT) (Ouyang et al.,
2022), Reinforcement Learning from Human Feed-
back(RLHF) (Ouyang et al., 2022), Direct Prompt
Optimization (DPO) (Rafailov et al., 2024) or other
methods (Lee et al., 2023; Chen et al., 2024) is
becoming a regular step before LLMs are released.
However, extra defensive strategies beyond align-
ment are required after numerous jailbreak attacks
that intentionally bypass LLMs’ built-in safety
mechanisms are proposed. Jailbreak defenses can
be briefly divided into LLM-focused methods and
input-focused methods. LLM-focused methods
alter LLM itself to enhance its safety. Fine-tuning
LLMs with safety data (Piet et al., 2023) is one of
the most common LLM-focused methods. (Bianchi
et al., 2024) proved that safety instruction tuning
successfully increases the general safety of an LLM
when the quantity of safety data is appropriate.
While input-focused methods refer to detecting
and revising prompts before they are input into
LLMs without changing the structure and parame-
ters of LLMs. For instance, IBProtector (Liu et al.,
2024c) is proposed to compress input prompts to
maintain only essential information for the target
LLMs to respond to defend against jailbreak. (Mo
et al., 2024; Liu et al., 2024a; Wei et al., 2023) gen-
erate additional defensive tokens on original input
prompts to defend against jailbreak. (Ji et al., 2024)
introduces a set of seven semantics-preserving
transformations to reconstruct input prompts.

Trade-off Between Helpfulness and Safety.

Large language models have a trade-off between
helpfulness and safety when defending against jail-
break. The results of the experiment in (Bianchi
et al., 2024) show that a proper amount of safety
data introduced to improve the safety of LLMs
does not adversely impact general performance.
However, excessive safety data can make LLM ex-
aggerate safety, weakening its ability to answer
general questions. (Tuan et al., 2024) put forward
a Self-Generation and Fine-tuning paradigm, try-
ing to make the helpfulness and safety attributes of
LLMs controllable in different cases. Some works
attempt to improve LLMs’ robustness against jail-
break attacks while maintaining their helpfulness
(Xu et al., 2024b). For example, MoGU frame-
work (Du et al., 2024) is proposed to train the base
LLM into two variants: the helpful LLM and the
safe LLM, and utilize dynamic routing to flexibly
choose either version. And (Ji et al., 2024) invents
a smoothing-based defense SEMANTICSMOOTH
that aggregates the predictions of multiple semanti-
cally transformed copies of a given input prompt to
balance the trade-off. Though some discussion oc-
curred about the trade-off between helpfulness and
safety in LLM jailbreak defense, this phenomenon
has not been seriously analyzed and the problem is
not well solved.

C Implementation Details

We conduct the experiments with GeForce RTX
3090 and Tesla V100 PCIE. The prompt re-writer
is initialized with GPT-2 (Radford et al., 2019)
fine-tuned on a normal question rewriting dataset
QReCC (Anantha et al., 2021) and further trained
by NLPO with a learning rate of 5e-6. For the
logic patch, we concatenate it to the last layer of
the transformer decoder during implementation and
train it with a batch size of 512. Both the re-writer
and the patch are trained on the VagueEval train
set. The code and data are submitted as supplemen-
tary materials and will be publicly available upon

18246

publication.

D Dataset Details

To construct the VagueEval dataset, we first iden-
tify and compile a pool of benign prompts from two
primary sources: Chatbot Arena and MSMARCO.
These sources provide a diverse range of natural
language queries and instructions that are gener-
ally considered safe and non-malicious. Next, we
focus on selecting prompts that contain sensitive
words or phrases. These sensitive elements are
identified based on their frequent appearance in
malicious query benchmarks such as Advbench
and HEx-PHI. By cross-referencing these bench-
marks, we ensure that the selected benign prompts
have the potential to be flagged by defensive lan-
guage models due to the presence of these sensitive
terms. And we use GPT-4 to detect the intention
of input prompts. Those with 60% or lower confi-
dence are defined as vague input prompts. When
a input prompt is detected, GPT-4 provide a bi-
nary result (malicious or benign) and a confidence
score. For example, ’Tell me what chemicals are
in fertilizer’ was classified to be benign by GPT-4
and the confidence score is 57%. It is benign be-
cause it is a general factual question that appears in
many legitimate contexts . The confidence is 57%
because there’s some ambiguity in intent without
context and this type of prompt is commonly used
in early-stage jailbreaks. There is no linguistic def-
inition of vaguely benign, vaguely malicious and
there clear counterparts while we use an advance
LLM to set the borderline. And the purpose of do-
ing that is practically select a bunch of inputs that
challenge the models’ ability of balancing safety
and helpfulness. Additionally, we collect an equal
number of malicious prompts that have success-
fully evaded detection by a baseline defense model.
These malicious prompts are carefully curated to
reflect common evasion tactics used in adversarial
settings. The final dataset is a balanced combina-
tion of benign prompts with sensitive content and
malicious prompts that bypass initial defenses, pro-
viding a comprehensive resource for evaluating the
robustness of defensive language models.

To ensure the reliability and validity of the
VagueEval dataset, a rigorous quality check pro-
cess is implemented. Initially, each prompt in the
dataset undergoes a content review to verify the
presence of sensitive words or phrases as specified
in the construction criteria. This step involves man-

ual inspection and automated keyword matching to
confirm that the prompts align with the character-
istics of both benign and malicious queries. Sub-
sequently, the dataset is subjected to a consistency
check, where the balance between benign and mali-
cious prompts is verified to ensure that the dataset
accurately represents the intended distribution. Ad-
ditionally, a subset of prompts is tested against mul-
tiple defense models to validate that the malicious
prompts indeed evade detection while the benign
prompts are appropriately flagged. This validation
step helps in identifying any anomalies or misclas-
sifications within the dataset. Finally, metadata
associated with each prompt is reviewed for com-
pleteness and accuracy, ensuring that all relevant
information is correctly documented. By following
this multi-step quality check process, VagueEval
is ensured to be a high-quality dataset suitable for
evaluating the effectiveness of defensive mecha-
nisms in language models.

18247

