Skeleton-Guided-Translation: A Benchmarking Framework for
Code Repository Translation with Fine-Grained Quality Evaluation

Xing Zhang?*, Jiaheng Wen**, Fangkai Yang', Yu Kang!’,
Pu Zhao', Junhao Wang*, Maoquan Wang', Yufan Huang', Shengyu Fu', Elsie Nallipogu,
Qingwei Lin!, Yingnong Dang', Saravan Rajmohan', Dongmei Zhang'

"Microsoft 2Peking University

Abstract

Code translation benchmarks are essential
for evaluating the accuracy and efficiency of
LLM-based systems. Existing benchmarks
mainly target individual functions, overlook-
ing repository-level challenges like intermod-
ule coherence and dependency management.
Recent repository-level efforts exist, but suf-
fer from poor maintainability and coarse eval-
uation granularity. We introduce Skeleton-
Guided-Translation, a framework for bench-
marking Java-to-C# translation at the repository
level, featuring fine-grained quality evaluation.
It follows a two-step process: first translating
repository “skeletons”, then refining the entire
repository guided by these skeletons. Based
on this, we present TRANSREPO-BENCH , the
first test-driven benchmark of high-quality Java
repositories paired with C# skeletons, unit tests,
and build configurations. Our adaptive unit
tests support multiple and incremental trans-
lations without manual tuning, enhancing au-
tomation and scalability. We also propose fine-
grained metrics that evaluate translation quality
per test case, overcoming limitations of binary
metrics in distinguishing build failures. Evalua-
tions using TRANSREPO-BENCH reveal issues
like broken cross-file references, showing that
our structured approach reduces dependency
errors and preserves interface consistency.

1 Introduction

Large language models (LLMs) are reshaping soft-
ware development, driving system modernization
and legacy code migration. For example, migrating
C to Rust improves safety (Matsakis and Klock,
2014), and frameworks like TensorFlow require
synchronized multi-language updates. Evaluating
LLMs in migration tasks is key to assessing reli-
ability. Benchmarks provide quantitative insights
for comparison and improvement, but existing ones

*These authors contributed equally to this work.
Corresponding author.

3Zhejiang University *Tongji University

Partially Correct

« Method1 @
AN
@ Method2 @ L g i failed @
< Method3 €@ Score: 0
Translated

Repo

We expect a more detailed score, for
example, 66.7% would be more appropriate.

Figure 1: A more fine-grained quality evaluation to
evaluate translated repositories is needed.

focus on function-level tasks or competition-style
problems (Yan et al., 2023; Lu et al., 2021; Khan
et al., 2024), ignoring real-world complexities.
Repository-level translation is essential for man-
aging dependencies, structure, and interconnected
components (Jiao et al., 2023), requiring reliable
benchmarks to assess model performance.

A major challenge in repository-level code trans-
lation is the absence of a systematic framework
that enables fine-grained control over maintainabil-
ity. For instance, updating parts of a Java-based
SDK often requires re-translating large portions
of the corresponding C++ codebase, making small
changes costly. Without fine-grained control, main-
tainability suffers.

Another challenge is the lack of repository-level
parallel corpora, complicating automated verifica-
tion. Line-by-line metrics like codeBLEU (Ren
et al., 2020) lack functional validation, and auto-
matic test generation remains unreliable (Eniser
et al., 2024). A practical alternative is translating
unit tests from the source library for systematic
validation. However, ensuring test accuracy and
consistency with translated code interfaces is cru-
cial for reliable verification.

The third challenge is that current metrics often
miss nuanced translation outcomes, reducing us-
ability. RepoTransBench (Wang et al., 2024), for
example, uses a binary build success metric, ignor-
ing partial successes. As Figure 1 shows, this over-

18187

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 1818718198
November 4-9, 2025 ©2025 Association for Computational Linguistics

import java.util.Arrays;

public class FrameBuffer implements Buffer {
public static final int WIDTH = 10;
public static final int HEIGHT = 8;

private final Pixel[] pixels = new Pixel[WIDTH * HEIGHT];

@override
public void draw(int x, int y) {

using System;
namespace DoubleBuffer
{
public class FrameBuffer : Buffer {
public static readonly int WIDTH = 10;
public static readonly int HEIGHT = 8;

private readonly Pixel[] pixels = new Pixel[WIDTH * HEIGHT];

public void Draw(int x, int y) {

pixels[getIndex(x, y)] = Pixel.BLACK;:

return;

Replace the function body with a return }
statement that matches the return type.

@override
public Pixel[] getPixels() {

public Pixel[] GetPixels() {

return pixels; ¢

¥

private int getIndex(int x, int y) {

return new Pixel[0];

}

private int GetIndex(int x, int y) {

return x + WIDTH * y;

return 0;

}
}

(a) Example of a File in the Source Java Repository

Extraction and Translation

}

} Note: Red shows deletions, green shows
} additions from Java source to C# target skeleton.

» (b) Example of a File in the Target C# Repository Skeleton

of Repository Skeletons

Figure 2: Example Code Snippets of Translation Input with Corresponding Skeleton

simplifies performance by neglecting cases where
some components translate correctly while others
fail. Schaeffer et al. (Schaeffer et al., 2023) warn
that threshold-based metrics can create misleading
performance leaps. In contrast, continuous met-
rics, such as the percentage of successfully trans-
lated modules (e.g., 66.7%), improve usability by
identifying failures, guiding fixes, and providing
smoother, more reliable insights.

Our Contributions

To address these challenges, we introduce Skeleton-
Guided-Translation, a framework for benchmark-
ing repository-level code translation with fine-
grained quality evaluation. Our two-step process
first translates the repository skeleton to define
structure and interfaces, then populates it while
indexing dependencies for unit tests. Skeletons
are simplified versions of repositories with pre-
served structure and method signatures, but with
method bodies replaced by defaults (e.g., return
null). By providing unified unit tests, this design
facilitates fair and consistent comparison across
models during evaluation. Based on our frame-
work, we present TRANSREPO-BENCH , the first
test-driven benchmark to provide fine-grained eval-
uation, overcoming limitations of existing bench-
marks. Specifically:

» We introduce Skeleton-Guided-Translation,! a
novel framework for benchmarking repository-
level code translation with fine-grained evalua-
tion metrics. Complementing this, our bench-

'The source code implementing Skeleton-Guided-

Translation, along with all code samples in our bench-

mark TRANSREPO-BENCH , are available at https:
//anonymous. 4open.science/r/TransRepo-bench.

mark TRANSREPO-BENCH , the first test-driven
repo-level translation benchmark, provides a fine-
grained evaluation by scoring individual test
cases based on unit tests and their associated
code, offering more meaningful feedback than
binary metrics.

* High-Quality Open-Source Repository Bench-
mark: TRANSREPO-BENCH features high-
quality open-source Java libraries and their C#
translations, including unit tests and configura-
tions. Designed for translation and fine-grained
evaluation, it enables researchers to assess mod-
els in realistic repository-level scenarios.

 Evaluation of Advanced Models: TRANSREPO-
BENCH is validated through extensive evaluations
of classic and state-of-the-art models, offering
detailed performance analysis. Our benchmark
reveals that even SOTA LLMs reach only 26.65%
accuracy under realistic repository conditions.

2 Motivation

In this section, we use an example to illustrate
the challenges involved in building a repository-
level code translation benchmark and explain our
solutions more effectively.

2.1 Challenges in Repository Translation

Lack of a Systematic Translation Framework. Fig-
ure 2 presents an example of LLM-based Java-to-
C# translation, underscoring the need for a system-
atic framework. Suppose the Java code in Fig-
ure 2(a) has already been translated. If a new
method is later added to the Java FrameBuffer class,
re-translating the updated code with an LLM is

18188

https://anonymous.4open.science/r/TransRepo-bench
https://anonymous.4open.science/r/TransRepo-bench

(YFacilitating Maintainability
Input Tested LLM Translated Result

D source
<[>| Repo
Target
Skeleton

»LLM »

Translated Extracted
Target Relevant
Repo Methods

N </>Method1]
Method2]

-
<> Method3;

»!
! Target Unit Test 3 | Failed x

Improving Usability

@ Enhancing Testability
Evaluation System

Output Score

Unit Test 2 [Failed x

i Skeleton —
\ Testing Environment

o Reflection with Reported Errors

Figure 3: Framework of Our Evaluator.

likely to produce an inconsistent interface com-
pared to the previous version. This can invalidate
existing unit tests due to mismatched signatures
or missing targets. The root cause is the lack of
fine-grained incremental translation, where even
minor changes may require re-generating the entire
class or related components.

Lack of Parallel Corpora. Repository-level trans-
lation struggles with misaligned source and target
files, complicating cross-language verification. For
example, validating the C# code translated from
Java code (Figure 2(a)) is challenging without ex-
isting ground truth. One solution is translating
high-coverage Java tests into C#, but preserving
intent, coverage, and reliability remains difficult.
How to translate a set of unit tests once and use
them to evaluate multiple independent translations
by LLMs—or to compare translations generated by
different models—is also a significant challenge.

Lack of a Fine-Grained Evaluation Metric. Re-
lying on coarse metrics (e.g., whether a repository
builds) limits developers’ ability to diagnose trans-
lation issues. For instance, if Draw is mistranslated
by calling getIndex instead of GetIndex, the com-
pilation will fail, making it impossible to evalu-
ate correctly translated functions like GetPixels.
This binary pass/fail approach obscures partial suc-
cesses and forces manual debugging. Granular met-
rics—such as module-level correctness or function
fidelity—would help pinpoint errors, streamlining
debugging and refinement.

2.2 Solution: Standardizing Code Repository
Translation with Fine-Grained Evaluation

Figure 3 illustrates our solution. To align transla-
tion with testing and enable fine-grained evaluation,
we introduce a target repository “skeleton” during
translation. This guides LLMs to focus on accurate
dependencies and interfaces. The skeleton is incre-
mentally populated with partial results, allowing

execution-based assessment of translation quality.

Facilitating Maintainability. Figure 2(b) illus-
trates a “target C# repository skeleton” in our
framework. Unlike the fully translated Java code in
Figure 2(a), this skeleton defines interfaces while
leaving method bodies mostly empty. This ap-
proach improves maintainability: the C# skeleton
enables incremental updates by aligning interfaces
first, avoiding full re-translation.

Enhancing Testability. Building unit tests on
these skeletons significantly improves testability.
Because the structural and interface definitions in
both repositories match, any unit tests originally de-
signed for the Java code can be adapted to validate
the C# skeleton. Provided the translated C# code is
inserted into the appropriate skeleton methods, it
can be reliably evaluated by the unit tests.

Improving Usability. The framework’s fine-
grained control improves usability by enabling tar-
geted verification. If Draw is mistranslated and fails
to compile, unit tests for GetPixels and GetIndex
can still run within the skeleton (Figure 3). This
ensures their correctness despite errors elsewhere.
Unlike coarse build-or-fail metrics, skeleton-based
testing reveals partial successes, streamlining de-
bugging and evaluation.

3 TRANSREPO-BENCH Benchmark

As shown in Figure 3, users receive the source
repository and target skeleton, guiding LLMs to
generate a complete target repository. Correct-
ness is verified using the target’s unit tests within
the testing environment. This section presents the
benchmark content, details TRANSREPO-BENCH ’s
construction, and introduces our fine-grained eval-
uation design.

3.1 Benchmark Overview

Each TRANSREPO-BENCH translation task in-
cludes a source repository and its evaluation setup,

18189

Source

Repositories
(TTTTTTTTTTT [l (TTTTTTTTITT 1
\ Extraction ! i Separation]
Source Skeletons SouCE

Unit Tests

LLM Translator

\
'
i
[1. Curate Source-Target Library Mapping] :
1
1
1
|

the mapping

[2. Translate skeletons and unit tests with]
’

Initial Translated
Target Skeletons

Initial Translated
Target Unit Tests

i Automated Static Fixing and
q Manual Fixing

Target Skeletons Target Unit Tests

Figure 4: Benchmark construction workflow from ex-
traction to final target skeletons and unit tests via map-
ping, translation, and fixing.

structured as <source repository, target skeleton,
target unit tests, testing environment>. While we
currently focus on Java-to-C# translation in our
experiments, the proposed test-anchored skeleton
methodology is language-agnostic and can general-
ize to other language pairs such as Python-Rust.

As shown in Figure 2, the translation task input
includes Java source repositories for translation
and a target repository skeleton, which serves as an
interface “contract” for evaluation. This skeleton
retains the original file structure, dependencies, and
static values but replaces all functions with trivial
implementations (e.g., a single return statement)
to ensure successful compilation. The evaluation
setup consists of unit tests for the target repository
and the required testing configuration files.

TRANSREPO-BENCH includes 13 tasks for trans-
lating code repositories. Appendix A.1 provides
details on repository features like class, method,
and line counts, plus test coverage. The data high-
lights diverse complexities, from small repositories
to large ones with extensive methods and coverage,
ensuring robust evaluation.

3.2 Benchmark Construction

This section details the benchmark construction
process (Fig. 4). We first describe source dataset
collection (§3.2.1), then outline skeleton extraction
and translation (§3.2.2). Next, we explain unit test
acquisition (§3.2.3) and conclude with testing envi-
ronment setup (§3.2.4). Overall, the construction

process required approximately 340 person-hours
of manual and semi-automated effort.

While users of TRANSREPO-BENCH do not
need to construct skeletons manually, building new
benchmarks based on our framework does involve
generating new skeletons and tests. This process—
described below—includes manual validation and
test environment setup, which ensures high-quality
evaluation infrastructure.

3.2.1 Source Repository Collection

The source dataset is curated from open-source
GitHub projects meeting these criteria: (1) 100+
stars, (2) a testing workflow, and (3) locally passing
tests. We chose a mature and well-tested collection
of repositories from java-design-patterns, a Java
library featuring comprehensive design pattern im-
plementations and reliable test execution.

3.2.2 Skeleton Extraction and Translation

Repository skeletons are structural templates that
preserve the complete architecture of a repository
while replacing all method implementations with
minimal, compilable stubs. Formally, for a repos-
itory R with classes C' = {c1, ca, ..., ¢, }, a skele-
ton S(R) maintains: (1) all class declarations and
inheritance hierarchies, (2) complete method sig-
natures including parameters and return types, (3)
field declarations and static members, (4) package/-
namespace structures, and (5) import/using state-
ments.Function bodies return type-matching place-
holders (e.g., return @; for int, return null;
for objects). Constructors are left empty, and
static blocks retain only assignments.

The skeleton construction follows a systematic
process. First, we parse source files using Tree-
sitter to generate abstract syntax trees (ASTs).
Next, we traverse the ASTs to extract structural
elements—classes, methods, fields, and their re-
lationships. We then replace method bodies with
type-appropriate default returns: primitive types
return default values (0, false), reference types re-
turn null, void methods have empty bodies, and
constructors preserve only essential field initializa-
tions. This process ensures compilable code while
removing all business logic, enabling fair compari-
son across different LLM translations by providing
identical structural baselines.

Skeletons are translated into the target language
using GPT-40, but most initially fail to compile,
requiring manual fixes. As shown in Appendix A.1,
“Skeleton Fix Time” quantifies this effort, averaging

18190

105 minutes per repository. To ensure correctness,
two experienced engineers manually verified the
structural and functional equivalence between Java
and C# skeletons across all 13 repositories over 72
person-hours. This validation focused solely on
structural consistency—no manual code translation
occurred, with all translation performed by LLMs.

Our framework assigns three roles to skeletons:
(1) for benchmarking, we provide pre-built skele-
tons to ensure consistent comparisons across dif-
ferent LLMs, requiring no user effort; (2) for cre-
ating new benchmarks, users need to build new
skeletons for target languages, either manually or
semi-automatically using our provided tools; and
(3) in real-world translation scenarios, skeletons are
optional but significantly improve structure preser-
vation, support incremental translation, and enable
systematic unit testing.

3.2.3 Unit Test Translation

We translate source repository unit tests into the
target language using GPT-40 and adapt them to
the NUnit framework. However, most initially fail
to compile due to API differences and naming con-
ventions, requiring manual fixes to ensure correct
validation. To verify semantic consistency, we exe-
cuted Java tests on the Java skeleton and translated
C# tests on the C# skeleton, confirming identical
pass/fail results across both versions. The unit tests
achieve 96.14% Java code coverage using JaCoCo
and 94.8% C# line coverage with Coverlet, ensur-
ing comprehensive validation of translated code.

3.2.4 Testing Environment Construction

We establish a testing environment by defining a
Docker image with necessary dependencies and
build tools. For each repository, we create a YAML
build configuration file for the translated C# project,
adapted from the original Java build file. This pro-
cess involves mapping Maven/Gradle dependencies
to NuGet packages and adjusting build scripts for
the .NET ecosystem.

While GPT-40 assists in converting build config-
urations, manual refinement ensures functionality.
To reduce manual effort and enhance framework
usability, we provide supporting resources: static
repair scripts for common skeleton and test issues,
automated configuration generators for C# projects,
and dependency mapping tables for common Java-
to-C# library conversions. These tools significantly
improve efficiency, though some manual interven-
tion remains necessary for complex cases.

Model Build Rate (%) Unit Test Pass Rate (%)

Iterationl Iteration2 Iteration3 | Iterationl Iteration2 Iteration3
GPT-4-turbo 60.54 66.31 50.00 15.59 18.16 11.25
GPT-40 58.17 57.34 57.34 17.97 14.32 16.03
GPT-40-mini 49.31 41.13 44.98 10.16 12.03 12.03
GPT-ol-mini 50.00 59.18 52.06 17.35 17.35 15.70
DeepSeek-v3 52.88 71.14 71.14 16.06 17.56 17.56
DeepSeek-r1 59.83 72.13 73.32 15.59 19.83 19.83
Claude-3.5 54.92 51.64 44.26 15.66 15.13 10.01
Qwen-plus 59.32 59.53 56.73 17.31 18.08 16.68

Table 1: Build rates (%) and Unit test pass rates (%) for
different repositories across various models.

3.2.5 Framework Generalization

Although our implementation focuses on Java-to-
C# translation due to their mature unit testing
ecosystems (JUnit/NUnit), the methodology gen-
eralizes to any language pair meeting two criteria:
(a) availability of test framework mappings, and
(b) existence of behavioral validation mechanisms.
The core language-agnostic components—skeleton
guidance, file-level LLM translation, and unit test
evaluation with dependency resolution—transfer
directly to other language pairs.

3.3 Fine-Grained Evaluation Metrics Design

To refine user-translated code evaluation, we use
unit tests for scoring. Prior attempts to translate en-
tire repositories often failed at compilation, prevent-
ing test execution. Pan et al. (Pan et al., 2024) re-
port 77.8% of large-model translation failures stem
from compilation errors, obscuring correct trans-
lations and hindering evaluation. To mitigate this,
we extract and execute test-relevant code within a
guaranteed-compilable skeleton. Translated func-
tions are inserted, then built and tested using dotnet
build and dotnet test, ensuring granular scoring
unaffected by unrelated errors.

Our evaluation uses two metrics: build success
rate, the fraction of compilable unit tests, and
unit test success rate, the fraction of passing tests
among those that compile. We average these scores
across libraries for an overall performance measure.
The core challenge is extracting relevant source
code for each test. We instrument Java source code
at the function level to track invoked code, then
map it structurally to the corresponding C# code,
ensuring accurate test execution.

4 Evaluation

We first analyze LLM performance on our bench-
mark, then highlight our framework’s effectiveness
in using repository skeletons for translation and
fine-grained evaluation.

18191

Build Success Rate (%) ‘ Unit Test Pass Rate (%)

Repo Name GPT ‘ DeepSeek ‘ Others ‘ GPT ‘ DeepSeek ‘ Others

ol-mini 4o-mini 4o 4-turbo ‘ v3 rl ‘ Claude Qwen ‘ ol-mini 4o-mini 40 4-turbo ‘ v3 rl ‘ Claude Qwen
promise 44.4 44.4 44.4 0.0 444 444 44.4 44.4 222 11.1 222 0.0 11.1 333 11.1 11.1
table-module 100.0 76.2 952 100.0 | 100.0 100.0 | 76.2 100.0 4.8 4.8 4.8 9.5 9.5 9.5 4.8 9.5
double-buffer 57.1 57.1 57.1 57.1 857 929 57.1 100.0 71.4 57.1 57.1 57.1 714 856 57.1 429
decorator 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 333 0.0 0.0 0.0 0.0
producer-consumer 0.0 0.0 0.0 100.0 | 100.0 100.0 | 100.0 0.0 0.0 0.0 0.0 333 333 333 333 0.0
double-dispatch 70.8 12.5 70.8 45.8 958 958 12.5 100.0 12.5 0.0 12.5 12.5 333 333 0.0 16.7
partial-response 100.0 100.0 100.0 100.0 | 60.0 70.0 | 100.0 60.0 20.0 0.0 20.0 20.0 0.0 20.0 20.0 0.0
converter 90.0 80.0 100.0 100.0 | 100.0 100.0 | 100.0 100.0 20.0 0.0 20.0 20.0 20.0 200 20.0 20.0
caching 80.0 100.0 100.0 50.0 50.0 50.0 50.0 90.0 40.0 0.0 10.0 0.0 10.0 10.0 0.0 40.0
unit-of-work 100.0 100.0 100.0 100.0 | 100.0 100.0 | 100.0 100.0 50.0 50.0 50.0 30.0 50.0 50.0 50.0 50.0
game-loop 77.8 88.9 778 100.0 | 83.9 100.0 | 100.0 77.8 333 333 55.6 11.1 333 333 333 333
type-object 88.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bytecode 81.8 81.8 100.0 9.1 100.0 100.0 | 81.8 81.8 27.3 9.1 27.3 9.1 182 182 27.3 27.3
Average 68.52 57.00 65.03 66.31 ‘ 71.14 73.32 ‘ 63.23 65.70 ‘ 22.42 1272 21.50 18.15 ‘ 22,32 26.65 ‘ 19.76 19.29

Table 2: Build rates (%) and Unit test pass rates (%) for different repositories across grouped models.

4.1 Model Performance on
TRANSREPO-BENCH

We evaluate the performance of state-of-the-art
LLMs on the task of translating code repositories
from Java to C#. Next, we conduct a failure analy-
sis based on the experimental results.

4.1.1 Model Selection

We evaluated eight state-of-the-art LLMs for code
repository translation: GPT-40, GPT-40-mini,
GPT-4-turbo, Qwen-plus-1220, Claude-3.5-sonnet-
20240620, DeepSeek-v3, DeepSeek-r1, and GPT-
ol-mini. GPT-4o0 variants are efficient, general-
purpose models. Qwen-plus-1220 and Claude-3.5-
sonnet balance general and specialized reasoning.
DeepSeek-v3 focuses on code understanding and
transformation, while DeepSeek-r1 is a compact,
efficient model with strong reasoning. GPT-ol-
mini is lightweight and well-rounded, optimized
for structured thinking.

4.1.2 LLMs Performance

Table 1 compares LLLM performance over three
iterations using Build Rate and Unit Test Pass Rate.
DeepSeek-v3 improves consistently, achieving the
highest Build Rate (71.14%) and a competitive
Unit Test Pass Rate (17.56%) in Iteration 3. GPT-4-
turbo starts strong (60.54%) but declines to 50.00%,
with its Unit Test Pass Rate dropping to 11.25%.
GPT-40 remains stable at 57.34% Build Rate, with
minor fluctuations in Unit Test Pass Rate (16.03%).
GPT-40-mini and Claude-3.5 underperform, with
declining Build Rates and inconsistent trends.
DeepSeek-r1 outperforms DeepSeek-v3, achiev-
ing the highest Build Rate (73.77%) and Unit Test
Pass Rate (19.83%) in Iteration 3. GPT-ol-mini
also improves, peaking at 59.18% Build Rate and

maintaining a solid 15.7% Unit Test Pass Rate.
Overall, DeepSeek-r1 is the most robust, followed
by DeepSeek-v3, while other models struggle to
maintain performance.

The results indicate that iterative refinement may
not improve performance due to error accumula-
tion, as early mistakes can amplify when models
fail to distinguish helpful feedback from noise.

Build Rates. Table 2 shows DeepSeek-
rl (73.32%) and DeepSeek-v3 (71.14%) lead-
ing, followed by GPT-o1-mini (68.52%), GPT-4-
turbo (66.31%), and Qwen-plus (65.70%). GPT-
40 (65.03%) and Claude-3.5 (63.23%) perform
slightly lower, with GPT-40-mini (57.00%) trailing.
DeepSeek-r1’s strong performance suggests robust
translation capabilities.

Unit Test Pass Rates. DeepSeek-r1 (26.65%)
leads, followed by DeepSeek-v3 (22.32%), GPT-
ol-mini (22.42%), and GPT-40 (21.50%). Claude-
3.5 (19.76%) and Qwen-plus (19.29%) perform
slightly lower, with GPT-40-mini (12.72%) at the
bottom. DeepSeek-rl and GPT-ol-mini show
stronger runtime behavior preservation.

4.1.3 Failure Analysis

Figure 5 shows error distribution and reduction
over three iterations, demonstrating iterative refine-
ment. The most frequent category, Runtime Errors,
dropped from 439 in Iteration 1 to 428 in Iteration
3, reflecting ongoing improvements. Other com-
mon errors, including CS@246 (missing type/names-
pace), CS1061 (missing member), and CS@103 (un-
defined variable/name), also declined, indicating
effective correction. For instance, CS0106 fell from
23 to 16, and CS1061 from 23 to 17. The incon-
sistent decrease in CS@103 and CS0246 may result
from newly introduced variables or dependencies

18192

Error Count

Iteration 2 Iteration 3

Iteration Progress

Iteration 1

Error Types
B Runtime Error CS1016: The modifier is not valid for this item
€S1061: Object does not contain a definition N CS0103: The name does not exist in the current context

BN CS0246: The type or namespace name could not be found Others

Figure 5: Changes in Error Proportions

Repo Build Score (%) Unit Test Score (%)
RepoTransBench ~ Ours ‘ RepoTransBench ~ Ours
bytecode 100 44.4 81 222
caching 0 95.2 0 4.8
converter 0 57.1 0 57.1
decorator 0 0.0 0 0.0
double-buffer 0 0.0 0 0.0
double-dispatch 0 70.8 0 12.5
game-loop 0 100.0 0 20.0
partial-response 0 100.0 0 20.0
producer-consumer 0 100.0 0 10.0
promise 0 100.0 0 50.0
table-module 0 77.8 0 55.6
type-object 0 0.0 0 0.0
unit-of-work 100 100.0 30 273

Table 3: Comparison of RepoTransBench and FineEval
evaluation methods on each repository.

lacking definitions. The total error count fell from
747 to 619, showing improved resolution of syntac-
tical and logical errors. Common failure patterns
are detailed in Appendix A.2.

4.2 TRANSREPO-BENCH Effectiveness

This section aims to validate (1) the fineness of our
evaluation mechanism, (2) the necessity of incorpo-
rating skeletons in the translation process, and (3)
the fulfillment of the three mentioned requirements.

4.2.1 Validating Evaluation Fineness

Our evaluation provides a finer, more comprehen-
sive assessment of repository translation. Unlike
RepoTransBench (Wang et al., 2024), which evalu-
ates entire projects without skeletons, our method
scores components individually, preventing single
errors from invalidating correct translations. As
Table 3 shows, RepoTransBench scores 0 on most
tasks, successfully evaluating only two of thirteen.
In contrast, our approach assigns scores even when
compilation fails, achieving 100% success for unit
test-related segments. This fine-grained evaluation
recognizes partial successes rather than dismissing
them due to isolated errors.

I Total Tests
[Tests that Cannot Find All Dependencies

Number of Tests

Repository

Figure 6: Missing Dependencies in Unit Tests Due to
the Absence of Skeletons

Iteration Time Build Rate (%) Unit Test Pass Rate (%)

With Skeletons ~ Without Skeletons ‘ With Skeletons ~ Without Skeletons

Tterationl 58.17 33 17.97 33
Iteration2 57.34 33 14.32 33
Iteration3 57.34 33 16.03 33

Table 4: Comparison of Build Rate and Unit Test Pass
Rate of GPT-40 with and without Skeleton

Iteration Time Build Rate (%) Unit Test Success Rate (%)

Coarse-Grained Feedback ~ Ours ‘ Coarse-Grained Feedback Ours

Iteration-1 39.34 58.17 9.09 17.97
Iteration-2 50.00 57.34 13.94 14.32
Iteration-3 45.45 57.34 13.16 16.03

Table 5: Comparative Experiment on Coarse-Grained vs.
Our Fine-Grained Feedback for Usability Validation.

4.2.2 Proving Skeleton Necessity

The second experiment confirms that providing tar-
get repository skeletons is essential for translation.
Table 4 shows that omitting skeletons drastically
lowers build success and unit test pass rates. This
is due to unresolved inter-file dependencies and
interfaces, which hinder identifying functions un-
der test. As Figure 6 illustrates, missing skeletons
cause many unresolved dependencies, dropping all
build and test scores to zero. For some reposito-
ries, dependencies become completely unresolv-
able without skeletons, highlighting their crucial
role in enabling accurate evaluation.

4.3 Validating Three Key Requirements for
Repository-Level Translation

As proposed in Section 2.2, our Skeleton-Guided-
Translation meets three requirements. Testability
is validated through large model evaluation, so we
focus on maintainability and usability.
Maintainability. Our maintainability experiment
evaluates how Skeleton-Guided Translation helps
LLMs perform incremental Java-to-C# translation,
improving repo-level maintainability. It translates

18193

Build Success and Code Attributes Over Updates

Success| = - With Skeletoms
A =~ Withopt-Skeleton - 350
v

-\ -300

ot -250
2
g
e g
s 2002
’ £
7 <
P
Pad -150g
- o

Build Success
\,

A -100

- “ e baemem—= 50

: —*- # Added Classes

= —#- # Code Lines -0

2) 6 8 10
Cumulative Update Count

Figure 7: Build Success Rates for Incremental Transla-
tion with/without Skeleton

only necessary updates, avoiding redundant C#
changes. We assessed the bytecode repository by
measuring cumulative build success rates over ten
incremental tasks across five trials. The first ap-
proach updated the skeleton before translation; the
second translated directly without skeleton guid-
ance. Figure 7 shows that the skeleton-guided
method maintains successful builds even after eight
updates and 45 new functions, while the unguided
method fails around the third update. This demon-
strates the effectiveness of skeletons in supporting
incremental translation.

Usability. Table 5 compares coarse- and fine-
grained feedback for improving translated libraries.
Coarse feedback relies on holistic build and test
evaluations, while fine-grained feedback provides
targeted error insights. Results show that fine-
grained feedback consistently improves build rates
and unit test success, validating its effectiveness in
model-guided code refinement.

Summary. These experiments collectively estab-

lish that our method is superior in two key aspects:

* Our evaluation mechanism is more granular and
comprehensive, capturing the quality of transla-
tion even when partial failures occur.

* Skeletons are crucial for dependency resolution
and accurate evaluation.

* Our Skeleton-Guided-Translation meets three
key requirements for repository-level code trans-
lation: maintainability, testability, and usability.

5 Related Work

5.1 Code Translation

Code translation preserves semantics while convert-
ing languages. Rule-based compilers (e.g., Babel,
Roslyn) handle simple cases but fail on complex
constructs. Al-driven methods go further. Many

studies (Tang et al., 2023; Roziere et al., 2020; Roz-
iere et al., 2022; Yin et al., 2024; Yang et al., 2024;
Jiao et al., 2023; Jana et al., 2024; Di et al., 2024;
Tipirneni et al., 2024; Yan et al., 2023) focus on
short code from competitive programming (Puri
et al., 2021; Lu et al., 2021), educational platforms
(Yan et al., 2023; Ahmad et al., 2023), or custom
tasks (Liu et al., 2023; Chen et al., 2021). Some
(Pan et al., 2024; Eniser et al., 2024; Zhang et al.,
2023) tackle longer code (100+ lines) but with lim-
ited success. Novel training strategies (Roziere
et al., 2020; Roziere et al., 2022; Szafraniec et al.,
2023; Jana et al., 2024; Tipirneni et al., 2024)
may enhance our approach, alongside prompting
(Tang et al., 2023) and repair methods (Yin et al.,
2024). Adapting automated program repair (Xia
et al., 2023; Kong et al., 2024) could help with
translation-specific I/O errors. SYZYGY (Shetty
et al., 2025) translates C to safe Rust using LLM-
driven code generation and dynamic analysis. Bhat-
tarai et al. (Bhattarai et al., 2024) proposed a few-
shot retrieval-based translation method, while Tao
et al. (Tao et al., 2024) used an intermediary lan-
guage (Go) to aid translation.

AlphaTrans (Ibrahimzada et al., 2024) is a neuro-
symbolic framework for repository-level code
translation using program analysis and dynamic
testing. Shiraishi et al. (Shiraishi and Shinagawa,
2024) improved C-to-Rust translation with context-
aware segmentation, and Oxidizer (Zhang et al.,
2024) ensures functionality through feature map-
ping and unit tests. However, AlphaTrans struggles
with semantic alignment in test translation and rigid
syntax rules. Our method solves these by validat-
ing unit tests on both source and target skeletons
and using LLMs to translate skeletons directly.

5.2 Code Translation Benchmarks

Benchmarks are crucial for evaluating code trans-
lation. Early ones used small, manually curated
function pairs, while modern benchmarks cover
large datasets across diverse languages. AdvBench
(Robey et al., 2021) evaluates TransCoder on Java,
C++, and Python using BLEU, Exact Match (EM),
and Execution Accuracy. CodeNet (Puri et al.,
2021) provides 14 million samples in 50 languages
for training and evaluation. Task-specific bench-
marks like CodeXGLUE (Lu et al., 2021) ensure
functional correctness but often miss niche lan-
guages and system-level complexities. RustRe-
poTrans (Ou et al., 2024) first includes repository-
level Rust dependencies, revealing a 41.5%-56.2%

18194

performance drop, highlighting real-world chal-
lenges in dependency and cross-file handling.
RepoTransBench (Wang et al., 2024) bench-
marks repository-level translation with 100 repos-
itories and automated tests, addressing configura-
tion, resource handling, and test migration. How-
ever, our approach overcomes its limitations: (1)
No Skeleton Framework — Lacking skeletons, it
struggles with interface constraints, leading to mis-
alignments. Our skeleton-based method ensures
better control and adaptability. (2) No Test Verifica-
tion — It lacks robust test result checking, while we
validate unit tests on both source and target skele-
tons for reliable evaluation. (3) Coarse-Grained
Evaluation — It executes tests without isolating de-
pendencies, compounding errors. Our approach
isolates dependencies, enabling finer-grained as-
sessment and reducing error propagation.

6 Conclusions

We present Skeleton-Guided-Translation and the
TRANSREPO-BENCH benchmark to address the
challenges of evaluating LLLM-based repository-
level code translation. We provide the “skeletons”
that preserve file structures and interfaces, enabling
fair and consistent evaluation of different LLMs
with unified unit tests. Moreover, we offer fine-
grained evaluation through detailed error localiza-
tion, moving beyond simple pass/fail outcomes.

Our evaluation of TRANSREPO-BENCH , a set
of Java repositories covered by high-quality tests,
shows that even SOTA LLMs reach only 26.65%
accuracy. Using skeletons prevents partial errors
from affecting correct modules, providing a fine-
grained assessment of build success and test pass
rates. We also demonstrate the benefits of using
skeletons to maintain interface consistency, enable
fine-grained quality assessment, and support incre-
mental translation.

7 Limitations

This study primarily focuses on evaluating
repository-level translations between Java and C#
using Skeleton-Guided-Translation, and does not
confirm its generalizability to other language pairs
(e.g., C++, Python, Rust). . Moreover, the exper-
imental data is drawn from open-source projects
with relatively high test coverage. While this offers
some insight into how the approach might func-
tion in real-world scenarios, performance may de-
grade in extremely large or complex codebases with

highly customized dependencies. Additionally, in
order to maintain automation and control, we re-
quire the use of skeletons (and subsequent manual
fixes) in the evaluation process, which may not
fully capture more dynamic environments involv-
ing multi-user collaboration or frequent version up-
dates. Lastly, certain unit tests still required manual
patches before execution, somewhat limiting both
efficiency and objectivity. Future research might
explore automated repair techniques or adaptive
testing configurations to further enhance evaluation
reliability.

8 [Ethical Considerations

The proposed method can significantly facilitate
cross-language code migration and reuse but also
introduces ethical and societal considerations. First,
using large language models for automated code
translation raises potential concerns about over-
collection or misuse of proprietary software code,
underscoring the need to address intellectual prop-
erty and confidentiality agreements. Second,
model-generated translations may contain hidden
flaws or security vulnerabilities, and blindly deploy-
ing them into production risks exacerbating exist-
ing system vulnerabilities. Third, biases and metric
selection in both the model training and evaluation
processes may inadvertently cause disparities for
certain languages or developer communities. To
mitigate these issues, researchers and practitioners
should collect data responsibly, rigorously review
and test model outputs, and enforce thorough se-
curity and quality assessments before integrating
translated code into production environments.

References

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat
Chakraborty, and Kai-Wei Chang. 2023. Avatar: A
parallel corpus for java-python program translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 2268-2281, Toronto,
Canada. Association for Computational Linguistics.

Manish Bhattarai, Javier E. Santos, Shawn Jones, Ayan
Biswas, Boian Alexandrov, and Daniel O’Malley.
2024. Enhancing code translation in language mod-
els with few-shot learning via retrieval-augmented
generation. Preprint, arXiv:2407.19619.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen

18195

https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619
https://arxiv.org/abs/2407.19619

Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei
Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong,
Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng
Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen
Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guangpei
Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei
Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin Zhao,
Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xiany-
ing Zhu. 2024. Codefuse-13b: A pretrained multi-
lingual code large language model. In Proceedings
of the 46th International Conference on Software En-
gineering: Software Engineering in Practice, ICSE-
SEIP *24, page 418-429. ACM.

Hasan Ferit Eniser, Valentin Wiistholz, and Maria Chris-
takis. 2024. Automatically testing functional prop-
erties of code translation models. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 21055-21062. AAAI Press.

Ali Reza Ibrahimzada, Kaiyao Ke, Mrigank Pawagi,
Muhammad Salman Abid, Rangeet Pan, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2024. Repository-
level compositional code translation and validation.
Preprint, arXiv:2410.24117.

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham
Kishore, Aryan Mahajan, and Vijay Ganesh. 2024.
Cotran: An llm-based code translator using reinforce-
ment learning with feedback from compiler and sym-
bolic execution. In Frontiers in Artificial Intelligence
and Applications, volume 392, pages 4011-4018.
IOS Press.

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu,
Xiaodong Gu, and Beijun Shen. 2023. On the eval-
uation of neural code translation: Taxonomy and
benchmark. In Proceedings of the 38th IEEE/ACM
International Conference on Automated Software En-
gineering, pages 1529—1541. IEEE.

Mohammad Abdullah Matin Khan, M Saiful Bari,
Do Long, Weishi Wang, Md Rizwan Parvez, and
Shafiq Joty. 2024. Xcodeeval: An execution-based
large scale multilingual multitask benchmark for

code understanding, generation, translation and re-
trieval. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics, pages
6766-6805. Association for Computational Linguis-
tics.

Jiaolong Kong, Mingfei Cheng, Xiaofei Xie, Shangqing
Liu, Xiaoning Du, and Qi Guo. 2024. Contrastre-
pair: Enhancing conversation-based automated pro-
gram repair via contrastive test case pairs. Preprint,
arXiv:2403.01971.

Jiawei Liu, Chunqgiu Steven Xia, Yuyao Wang, and
Lingming Zhang. 2023. Is your code generated by
ChatGPT really correct? rigorous evaluation of large
language models for code generation. In Proceed-
ings of the 37th International Conference on Neural
Information Processing Systems, page 943. Curran
Associates Inc.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. CodeXGLUE: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks, vol-
ume 1.

Nicholas D. Matsakis and Felix S. Klock. 2014. The
rust language. In Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Lan-
guage Technology, HILT ’14. Association for Com-
puting Machinery.

Guangsheng Ou, Mingwei Liu, Yuxuan Chen, Xin
Peng, and Zibin Zheng. 2024. Repository-level
code translation benchmark targeting rust. Preprint,
arXiv:2411.13990.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,
Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in transla-
tion: A study of bugs introduced by large language
models while translating code. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, ICSE *24, page 1-13. ACM.

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam
Ramji, Ulrich Finkler, Susan Malaika, and Frederick
Reiss. 2021. CodeNet: A large-scale Al for code
dataset for learning a diversity of coding tasks. In
Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, vol-
ume 1.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio

18196

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1609/aaai.v38i19.30097
https://doi.org/10.1609/aaai.v38i19.30097
https://arxiv.org/abs/2410.24117
https://arxiv.org/abs/2410.24117
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.3233/FAIA240968
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.1109/ASE56229.2023.00114
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://arxiv.org/abs/2403.01971
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://arxiv.org/abs/2411.13990
https://arxiv.org/abs/2411.13990
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf

Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. Preprint,
arXiv:2009.10297.

Alexander Robey, Luiz F. O. Chamon, George J. Pap-
pas, Hamed Hassani, and Alejandro Ribeiro. 2021.
Adpversarial robustness with semi-infinite constrained
learning. Advances in neural information processing
systems.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Ad-
vances in Neural Information Processing Systems,
volume 33. Curran Associates, Inc.

Baptiste Roziere, Jie Zhang, Francgois Charton, Mark
Harman, Gabriel Synnaeve, and Guillaume Lample.
2022. Leveraging automated unit tests for unsuper-
vised code translation. In Proceedings of the 10th
International Conference on Learning Representa-
tions.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? In Advances in Neural Information
Processing Systems, volume 36. Curran Associates,
Inc.

Manish Shetty, Naman Jain, Adwait Godbole, Sanjit A.
Seshia, and Koushik Sen. 2025. Syzygy: Dual code-
test C to (safe) Rust translation using LLMs and
dynamic analysis. Preliminary version accepted at
LLM4Code 2025. arXiv preprint arXiv:2412.14234.

Momoko Shiraishi and Takahiro Shinagawa. 2024.
Context-aware code segmentation for c-to-rust trans-
lation using large language models. Preprint,
arXiv:2409.10506.

Marc Szafraniec, Baptiste Roziere, Hugh Leather,
Frangois Charton, Patrick Labatut, and Gabriel Syn-
naeve. 2023. Code translation with compiler repre-
sentations. In International Conference on Learning
Representations. In-Person Oral Presentation, Top
25% Paper.

Zilu Tang, Mayank Agarwal, Alexander Shypula, Bailin
Wang, Derry Wijaya, Jie Chen, and Yoon Kim. 2023.
Explain-then-translate: an analysis on improving pro-
gram translation with self-generated explanations. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023. Association for Computa-
tional Linguistics.

Qingxiao Tao, Tingrui Yu, Xiaodong Gu, and Beijun
Shen. 2024. Unraveling the potential of large lan-
guage models in code translation: How Far Are We?
In 31st Asia-Pacific Software Engineering Confer-
ence, APSEC °24. To appear.

Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy.
2024. Structcoder: Structure-aware transformer for
code generation. Preprint, arXiv:2206.05239.

Yanli Wang, Yanlin Wang, Suiquan Wang, Daya Guo,
Jiachi Chen, John Grundy, Xilin Liu, Yuchi Ma,
Mingzhi Mao, Hongyu Zhang, and Zibin Zheng.
2024. Repotransbench: A real-world benchmark
for repository-level code translation. Preprint,
arXiv:2412.17744.

Chungiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the
era of large pre-trained language models. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE).

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen,
and Wen Wang. 2023. CodeTransOcean: A compre-
hensive multilingual benchmark for code translation.
In Findings of the Association for Computational
Linguistics: EMNLP 2023. Association for Computa-
tional Linguistics.

Aidan Z. H. Yang, Yoshiki Takashima, Brandon Paulsen,
Josiah Dodds, and Daniel Kroening. 2024. Vert:
Verified equivalent rust transpilation with large
language models as few-shot learners. Preprint,
arXiv:2404.18852.

Xin Yin, Chao Ni, Tien N. Nguyen, Shaohua Wang, and
Xiaohu Yang. 2024. Rectifier: Code translation with
corrector via llms. Preprint, arXiv:2407.07472.

Hanliang Zhang, Cristina David, Meng Wang, Brandon
Paulsen, and Daniel Kroening. 2024. Scalable, vali-
dated code translation of entire projects using large
language models. Preprint, arXiv:2412.08035.

Jiyang Zhang, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. 2023. Multilingual code co-evolution using
large language models. In Proceedings of the 31st
ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2023. Association for Com-
puting Machinery.

A Appendix

A.1 Detailed Information of
TRANSREPO-BENCH

Repo Name Classes Methods Lines Unit Test Coverage Skeleton Fix Time (min)

36 789 93.70% 270
8 494 100.00% 70
16 489 98.30% 25
10 351 96.50% 60
8 372 96.40% 30
55 985 98.60% 90
5 382 90.10% 130
8 367 98.80% 100
63 1605 93.30% 270
16 460 98.30% 30
18 730 94.90% 60
20 704 96.20% 120
17 624 94.70% 150

o

promise
table-module
double-buffer
decorator
producer-consumer
double-dispatch
partial-response
converter
caching
unit-of-work
game-loop
type-object
bytecode

[P Ry IO S

s

ENE-NRUIFS

Table 6: Resulting Benchmark

Table 6 summarizes the key characteristics of
our benchmark repositories, highlighting their di-
versity, high test coverage, and moderate adapta-
tion costs. The selected repositories cover a wide

18197

https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://openreview.net/forum?id=cmt-6KtR4c4
https://openreview.net/forum?id=cmt-6KtR4c4
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2412.14234
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2409.10506
https://arxiv.org/abs/2207.03578
https://arxiv.org/abs/2207.03578
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://doi.org/10.18653/v1/2023.findings-emnlp.119
https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2410.09812
https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2412.17744
https://arxiv.org/abs/2412.17744
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2404.18852
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2407.07472
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://arxiv.org/abs/2412.08035
https://doi.org/10.1145/3611643.3616350
https://doi.org/10.1145/3611643.3616350

range of software design patterns, ensuring a com-
prehensive evaluation of translation performance.
The number of classes, methods, and lines of code
varies significantly across repositories, reflecting
different levels of complexity and structural diver-
sity.

Additionally, unit test coverage is consistently
high across the benchmark, demonstrating the ro-
bustness of the evaluation setup and ensuring that
translated code can be rigorously tested. The skele-
ton fix time, while necessary to adapt the repos-
itory skeletons for evaluation, remains moderate
across all repositories, indicating a reasonable ef-
fort in preparing the benchmark without excessive
overhead. Overall, this benchmark provides a well-
balanced dataset, offering diverse software struc-
tures, strong test coverage, and a practical adapta-
tion cost, making it suitable for assessing transla-
tion performance across different codebases.

A.2 Common Failure Patterns

We explore the most common failure patterns en-
countered during large model-based code transla-
tion, focusing on their underlying causes, how they
manifest in practice, and the strategies needed to
address them. By analyzing these recurring issues,
we aim to provide actionable insights for improv-
ing the accuracy and reliability of cross-language
code conversion processes.

Static Variable Misalignment. A common trans-
lation issue is inconsistent static variable naming.
For example:

stead, C# provides a Random class with similar func-
tionality. Translators must correctly identify equiv-
alent libraries and methods in the target language
or include necessary imports automatically.

Undefined Methods. Errors such as CS1061 oc-
cur when the translated code references methods or
properties that are undefined in the target language.
For instance:

_wizards[wizard]. SetWisdom (amount);

This snippet assumes a SetWisdom method in
the Wizard class, but the translator didn’t verify it.
Enhancing cross-referencing and generating warn-
ings can help resolve such semantic gaps.

Namespace and Duplicate Definitions. Another
common error (CS@101) occurs when namespaces
contain duplicate definitions due to repetitive code
generation. Consider the following Java snippet:

public class Candy
{

}

public Candy(string flavor) { }

If the translator generates multiple constructors
with identical signatures for this class in C#, the
compiler will flag a conflict, as C# enforces unique
member definitions within a namespace or class.
The solution involves ensuring that constructors or
methods with overlapping signatures are merged or
disambiguated during translation.

Runtime Logical Failures. Even after fixing com-
pilation errors, logical inconsistencies in the trans-
lation can still cause runtime issues. For example:

public void Stop (){
status = GameStatus. Stopped;

}

The C# code raised error CS@117 due to in-
correct translation of the enum member Stopped,
which should follow C#’s uppercase convention,
e.g., STOPPED. This mismatch stems from Java’s
mixed-case style. To prevent such errors, transla-
tors should apply capitalization-aware mappings.

Unresolved Names and Contextual Misinterpre-
tations. Translation errors often stem from missing
imports of contextual elements, causing errors like
CS0103 (“The name does not exist in the current
context”). For example:

private void Register (Weapon weapon, string
operation){
if (!_context.TryGetValue(operation ,
weaponsToOperate))

out var
{
}

weaponsToOperate . Add(weapon) ;
_context[operation] = weaponsToOperate;

weaponsToOperate = new List <Weapon>();

private int RandomlInt(int min, int max){
return ThreadLocalRandom. Current.Next(min, max +

1)

In this case, the C# compiler failed because
ThreadLocalRandom is not recognized in C#. In-

A null reference error occurs because the
_context dictionary was uninitialized. Such run-
time errors are hard to catch via static analysis,
underscoring the need for robust runtime testing to
detect logical flaws in translated code.

18198

