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Abstract

Recently, large-scale pre-trained speech en-
coders and Large Language Models (LLMs)
have been released, which show state-of-the-
art performance on a range of spoken language
processing tasks, including Automatic Speech
Recognition (ASR). To effectively combine
both models for better performance, continuous
speech prompts and ASR error correction have
been adopted. However, these methods are
prone to suboptimal performance or are inflexi-
ble. In this paper, we propose a new paradigm,
LegoSLM, that bridges speech encoders and
LLMs using the ASR posterior matrices. The
speech encoder is trained to generate Connec-
tionist Temporal Classification (CTC) posteri-
ors over the LLM vocabulary, which are used to
reconstruct pseudo-audio embeddings by com-
puting a weighted sum of the LLM input em-
beddings. These embeddings are concatenated
with text embeddings in the LLM input space.
Using the well-performing USM and Gemma
models as an example, we demonstrate that
our proposed LegoSLM method yields good
performance on both ASR and speech transla-
tion tasks. By connecting USM with Gemma
models, we can get an average of 49% WER
reduction (WERR) over the USM-CTC base-
line on 8 MLS testsets. The trained model also
exhibits modularity in a range of settings – af-
ter fine-tuning the Gemma model weights, the
speech encoder can be switched and combined
with the LLM in a zero-shot fashion. Addi-
tionally, we propose to control the decode-time
influence of the USM and LLM using a soft-
max temperature, which shows effectiveness in
domain adaptation.

1 Introduction

With the advancement of self-supervised and semi-
supervised learning, large-scale pre-trained speech
and text models have been released in recent years
(Bommasani et al., 2021). Today, speech encoders
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are pre-trained on extensive datasets that cover a
wide range of spoken languages (Barrault et al.,
2023; Zhang et al., 2023; Pratap et al., 2024). These
models have achieved state-of-the-art performance
in various spoken language processing tasks, in-
cluding automatic speech recognition (ASR) and
automatic speech translation (AST). In the field
of natural language processing (NLP), large lan-
guage models (LLMs) aim to capture general world
knowledge in the network parameters through the
task of next-word prediction (Touvron et al., 2023;
Achiam et al., 2023). After being pre-trained on
vast text corpora, LLMs have demonstrated remark-
able capabilities in complex language understand-
ing tasks facilitated by prompt engineering.

Figure 1: Comparison of different connection methods:
ASR error correction (in green), speech prompts (in
orange), and the proposed LegoSLM (in red).

To enhance the performance of spoken language
processing tasks, several studies have focused on
integrating speech encoders with LLMs. In ASR
error correction (AEC), a cascaded system is built
where the decoded hypotheses from the ASR sys-
tem are given as input to the LLMs for correction
(Errattahi et al., 2018). Such a method does not
require deep access to the ASR system and has
the advantage of being modular. Previous work has
shown that an LLM trained on the outputs from one
ASR encoder can be reused to correct the outputs of
other speech encoders without any retraining (Ma
et al., 2023b). However, the AEC performance is
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constrained by the limited contextual information
accessible to LLM (Zhu et al., 2021).

Another popular approach to equipping LLMs
with speech processing ability is to prompt LLMs
with vectors transformed from the speech encoder
output (Verdini et al., 2024; Yu et al., 2024; Cappel-
lazzo et al., 2025). Usually, a mapping network is
inserted and trained to match the embedding space
of the speech and text modalities (Gaido et al.,
2024; Fang et al., 2025). By directly passing the
continuous encoder outputs, this approach largely
mitigates the information loss encountered in cas-
caded AEC systems. While speech prompts demon-
strate strong performance on various datasets, this
approach sacrifices some flexibility. The LLM is
bonded with a specific speech encoder and fails to
perform the task when prompted with outputs from
a different speech encoder.

In this paper, we present LegoSLM, a new
paradigm to bridge pre-trained speech encoders
and LLMs, as shown with the red line in Figure 1.
First, the pre-trained speech encoder is fine-tuned
with Connectionist Temporal Classification (CTC)
loss using the same vocabulary as the LLM. After-
ward, we multiply the output CTC posteriors with
the LLM embedding table to reproduce pseudo-
speech embeddings as the LLM input. Compared
to traditional AEC methods, where the ASR hy-
potheses are decoded and passed, much more infor-
mation is preserved with our proposed approach.
At the same time, our approach maintains flexibil-
ity. The CTC posteriors, as opposed to the con-
tinuous ASR outputs, are acquired, which helps
to protect the speaker’s privacy. Moreover, after
fine-tuning the LLM weights, new speech encoders
can be plugged in a zero-shot fashion. Using the
USM (Zhang et al., 2023) and Gemma (Team et al.,
2024) models as an example, we design comprehen-
sive experiments to study the system performance
on ASR and AST tasks. Experiments on ASR
demonstrate that LegoSLM outperforms AEC and
achieves performance comparable to the speech
prompt method, where the encoder weights are kept
frozen. On AST, the proposed LegoSLM model
shows improved performance over all baseline sys-
tems.

2 Related Work

Modular ASR Approach Within the domain of
E2E ASR systems, (Dalmia et al., 2023; Botros
et al., 2023) focus on building modular architec-

tures. Similar to our proposed method, their meth-
ods train a decoder network that embeds the CTC
posteriors generated by the speech encoder and out-
puts refined ASR hypotheses. This design allows
encoders and decoders trained in different setups
to be seamlessly combined. In contrast to these ap-
proaches, our work employs a decoder-only Trans-
former model instead of using an encoder-decoder
architecture. Notably, our method connects a pre-
trained speech encoder with LLM, rather than train-
ing the decoder weights from scratch. By leverag-
ing the extensive world knowledge acquired during
the LLM’s pre-training, we aim to enhance the over-
all system performance. Furthermore, we introduce
several novel extensions of LegoSLM.

ASR Error Correction AEC is a widely used
post-processing approach to enhance the overall
performance of an ASR system. It takes the ASR
hypotheses as input and is trained on the reference
text to automatically detect and correct recognition
errors (Mani et al., 2020). Since it only requires de-
coding hypotheses from the ASR system, AEC can
be applied to API-based services without requiring
in-depth access (Ma et al., 2023b). Several stud-
ies leverage ASR N-best lists as input instead of
using the top-1 hypothesis, as these provide richer
information and have been shown to enhance the
system performance (Zhu et al., 2021; Ma et al.,
2023a). Recent works build AEC models using
powerful LLMs to leverage their superior language
understanding and reasoning capabilities (Ma et al.,
2023c; Chen et al., 2023; Li et al., 2024).

LLM with Speech Prompts The success of
LLMs in text processing has driven their appli-
cation to other modalities, such as vision (Wang
et al., 2024) and speech (Tang et al., 2024). In
the speech domain, a mapping network can be
used to bridge speech encoders and LLMs, which
transform the outputs from the speech encoder into
acoustic prompts that are compatible with the LLM
text embedding space (Verdini et al., 2024; Hono
et al., 2023). Various designs for the mapping
network exist, and even a basic projection layer
has demonstrated strong performance in aligning
both modalities (Fathullah et al., 2024; Ma et al.,
2024), while other works employ more sophis-
ticated, alignment-aware connectors (Tan et al.,
2024). As outputs from the speech encoder can
be quite long, some approaches propose to reduce
the sequence length by stacking multiple vectors
or employing a CTC-based compressor (Wu et al.,
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2023; Dong et al., 2024; Hono et al., 2024).

3 Methodology

Our LegoSLM method involves two steps: (1)
Obtain the speech encoder: Add a CTC head to
the SSL speech encoder and fine-tune the model.
The output vocabulary includes all tokens from the
LLM vocabulary plus a blank token. (2) Adapt the
LLM: The speech encoder is frozen, and the LLM
is adapted using ASR CTC posteriors. This mod-
ular design decouples the speech encoder and the
LLM, enabling greater flexibility and simplifying
the embedding alignment process.

3.1 Structure of Speech Encoder
Given input audio features X1:T , the pre-trained
speech encoder transforms them into a sequence of
hidden representations h1:T ′ ,

h1:T ′ = speech_encoder(X1:T ) (1)

We add an output layer Wo ∈ R(|V |+1)×d to the
speech encoder and fine-tune the model using CTC
loss (Graves et al., 2006) on supervised ASR train-
ing data. The vocabulary V matches that of the
LLM, and d denotes the dimensionality of each
encoder output ht. The CTC output space com-
prises |V | + 1 tokens, including a special <blk>
token. In the experimental section, we show that
our approach remains effective when the speech
encoder is trained on a much smaller vocabulary
than the LLM. The final model outputs are denoted
as o1:T ′ ,

zt = Wo · ht

ot = softmax(zt)
(2)

The CTC loss function is given by:

LCTC(y1:N ,o1:T ′) = − log
∑

π∈A(y)

T ′∏

t=1

o
(πt)
t (3)

where A(y) represents the set of all valid align-
ments of generating the target sequence y from the
input sequence X. Each πt is either a subword to-
ken from the LLM vocabulary or the special blank
symbol. The probability of generating the symbol
πt at time t is denoted as o(πt)

t .

3.2 The LegoSLM Connection Method
The architecture of the LegoSLM system is illus-
trated in Figure 2, where the generated CTC pos-
teriors o1:T ′ are utilized to integrate the speech

Figure 2: Depiction of the proposed LegoSLM method.
The speech embeddings are reconstructed using ASR
CTC posteriors and the LLM embedding table.

encoder with the LLM. In the adaptation, we freeze
the model weights of the speech encoder and only
fine-tune the LLM. To generate speech representa-
tions st that are aligned with the text embedding
space, we compute a weighted sum of the LLM
embedding table E from the CTC posteriors o1:T ′ ,

st = E · ot =
|V |∑

i=0

o
(i)
t · ei (4)

These computed speech embeddings are concate-
nated with the text embeddings for processing in
subsequent layers.

Compared to the speech prompt method, we also
use continuous vectors to represent information
from the original utterance. However, the text em-
beddings are used as codebooks for speech embed-
ding reconstruction, which implicitly matches the
two modalities. In this paper, we showcase the ap-
plication of the LegoSLM architecture in ASR and
AST tasks. For ASR, LLM is trained to generate
transcriptions based on the CTC posterior outputs
from the speech encoder. For AST, the speech en-
coder is trained to generate posteriors over tokens
of the source language, which are used by the LLM
to produce translations in the target language.

3.3 Discussion of the CTC Blank Token
CTC network outputs a special token <blk> for use
in the alignment process, which is not part of the
LLM vocabulary. In the experiments, we map it to a
new LLM embedding vector e<blk> that is randomly
initialized. Usually, the blank tokens occur more
frequently than the non-blank symbols in the CTC
decoding result and tend to have sharper posteriors
(Graves et al., 2006). As the <blk> token carries
limited content information about the utterance,
we introduce a model variant that suppresses its
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probability in the zt distribution, thereby enhancing
the representation of more meaningful tokens.

ẑ<blk>
t = z<blk>

t − log(blk_downscale) (5)

The default value of blk_downscale is set to 1 in
the experiments. In a model variant LegoSLM*,
we increase blk_downscale to 1e4, and further in-
creasing it does not lead to improved performance.
The ablation study of alternating blk_downscale
values is presented in Appendix B.1.

3.4 Zero-shot System Combination

Figure 3: Illustration of the zero-shot system combina-
tion test where speech encoders and LLMs trained in
different setups are seamlessly combined.

An advantage of the LegoSLM architecture is
that it enforces the modularity between the speech
encoder and the LLM since only CTC posteriors
are passed to the LLM. After training the system,
the LLM can accept outputs from a different speech
encoder as long as the model also operates on the
same CTC vocabulary. This property is useful in
real-life applications, where, for example, the ASR
encoder needs to be updated with more training
data or adapted to a new domain. In the experi-
ments, we conduct the zero-shot system combina-
tion test, as illustrated in Figure 3. Specifically, we
fine-tune the LLM weights based on outputs from
the original speech encoder. Then during evalu-
ation, we plug in a separately-trained speech en-
coder to the LLM decoder and evaluate the system
performance without updating any model weight.

3.5 AM/LM Spectrum Control
Following the previous section, when we seam-
lessly combine the speech encoder and LLM
trained in different setups, the capabilities of these
models may differ. In traditional phonetic-based
systems, the acoustic model (AM) and the language

model (LM) are trained individually and combined
during decoding. To achieve better recognition per-
formance, a scaling parameter is often introduced
to adjust the influence of the two models in the
system combination (Young et al., 2002). A similar
strategy is employed for integrating external lan-
guage models into E2E ASR systems (Toshniwal
et al., 2018). Nevertheless, for work that empow-
ers LLM with speech ability, how to control the
weighting of the speech encoder and the LLM has
not been thoroughly explored in previous studies.
To address this research question, we propose to
use a temperature parameter τ > 0 in the CTC
softmax layer for influence control,

o
(i)
t =

exp(z
(i)
t /τ)

∑|V |+1
j=1 exp(z

(j)
t /τ)

(6)

When τ > 1, the CTC probabilities become flatter,
allowing greater flexibility for the LLM in the gen-
eration process. Conversely, when τ < 1, the CTC
probability distribution becomes sharper, granting
the speech encoder more certainty.

3.6 Model Variants
In the LegoSLM method, the CTC probability
distribution over the entire vocabulary is utilized.
Nonetheless, most probability is distributed to the
top token predictions, following a long-tail distri-
bution. Therefore, retaining only the top K predic-
tions at each frame’s output is expected to preserve
most of the information. In the following, two
model variants are introduced: combining the top-
K CTC predictions with softmax (LegoTopS) and
with a projection layer (LegoTopP).

In the LegoTopS approach, a vector it is com-
puted that corresponds to the indices of the top-K
values in the speech encoder output zt. Accord-
ingly, we reconstruct the speech embeddings s̃1:T ′

by computing a weighted sum of the associated
LLM input embeddings using the top-K predic-
tions as multipliers,

it = argmax_k(zt)

s̃t = E[it] · softmax(zt[it])
(7)

With the LegoTopP variant, LLM token embed-
dings associated with the it predictions are concate-
nated and mapped to the original embedding di-
mension using a linear projection layer. This layer
is randomly initialized and jointly trained with the
LLM weights in the adaptation. Different values of
K are tested in the experimental section.
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4 Experimental Setup

4.1 Models

To demonstrate the effectiveness of our proposed
LegoSLM framework, we design experiments on
both ASR and AST tasks. The Universal Speech
Model (USM) (Zhang et al., 2023) with 300M
parameters is used as the speech encoder in our
experiments. The model is pre-trained on multi-
lingual YouTube data with the BEST-RQ loss in
an unsupervised fashion (Chiu et al., 2022). We
build a USM-CTC model by adding a CTC layer
to the USM encoder and fine-tune the model on
various datasets to simulate scenarios with vary-
ing amounts of available labeled ASR data. For
the LLM decoder, we experiment with the Gemma
2B model (Team et al., 2024). The pt_f32 and
it_f32 checkpoints are used separately in the ASR
and AST experiments. The former model is only
trained to predict the next token, while the latter
one is further trained with instruction tuning. In
the LegoSLM training, we freeze the USM-CTC
model and only adapt the LLM weights. The de-
tailed training setup and hyperparameters can be
found in Appendix A.2.

4.2 Baselines

To evaluate the performance of the proposed
method, several baseline approaches are compared:
USM-CTC: Since the USM is trained with CTC
loss, we can decode it on the test set and compute
the WER for the speech encoder solely. In the ex-
periment section, we show the beam search results
with a beam size of 10.
Speech Prompts (SP): For the speech prompt
method, we test a simple yet effective mapping
network to bridge the speech encoder and the LLM
– training a linear layer in between for dimension
match (Fathullah et al., 2024). Our preliminary
experiments suggest that Gemma tends to halluci-
nate when its weights are frozen, likely because the
Gemma model was trained without any speech in-
puts. Hence, in the U+P+G setup, we update weights
of USM, the projection layer, and the Gemma
model. We also train with the P+G setup, where
only the projection layer and the Gemma model are
tuned. Moreover, as indicated by preliminary ex-
periments, stacking multiple speech embeddings to
reduce the input length does not yield performance
improvements. Consequently, speech outputs from
each frame are fed as individual LLM inputs.
ASR Error Correction (AEC): For AEC, the ASR

N-best list generated by the beam search on USM-
CTC is collected and fed as input to train the LLM
decoder. Following (Ma et al., 2023a), top n-best
ASR hypotheses are concatenated in order as the
model input, separated by <sep> tokens in between
to denote the sentence boundaries.

4.3 Dataset

For ASR experiments, we train USM-CTC mod-
els and the corresponding Gemma models in four
different settings: three English-only ASR systems
and a multilingual system built for 8 languages.
The mls-en model is trained on the en-us part of
the MLS (Pratap et al., 2020) dataset. Public repre-
sents the combination of the MLS en-us subset and
the SpeechStew dataset (Chan et al., 2021), which
is a collection of multiple public ASR datasets. The
model with the lbs label is only trained on the Lib-
riSpeech training set (Panayotov et al., 2015). In
the multilingual setup, model multi learns from
MLS training data of all 8 languages. To evaluate
the model performance, WER results on the En-
glish test set from MLS and the test_other set from
LibriSpeech are calculated, denoted as MLS_en and
LBS_other. For speech translation, we conduct ex-
periments on the public CoVoST 2 dataset (Wang
et al., 2021). We use the same USM-CTC models
in the multi ASR experiments and train Gemma
models separately on three translation directions:
fr→en, de→en, and en→de. All datasets are pub-
licly available for research purposes, and their use
in this paper aligns with their intended purpose.
The detailed information of all datasets is listed in
Appendix A.1.

5 Results

5.1 Experiments on ASR

Table 2 lists the ASR performance for models
trained on MLS en-us data. For the speech prompt
method, the best performance can be observed
on both sets when all components, including the
USM model weights, projection layer, and Gemma
weights, are jointly fine-tuned. Since the USM
weights are kept frozen in the LegoSLM adaptation
phase, our proposed method is more comparable
to the P+G setup. For AEC, n = 1 leads to mi-
nor performance improvement on the MLS_en set
and degradation on the LBS_other set. The results
indicate that relying solely on the top-1 ASR hy-
pothesis limits the LLM’s ability to correct errors
effectively. To achieve better performance, we feed
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Model (multi) en de nl fr es it pt pl Avg.

Baseline: USM-CTC 9.5 12.7 18.2 14.5 10.2 23.0 22.5 32.1 17.8

+G
em

m
a SP (U+P+G) 4.9 5.6 11.3 4.5 4.2 10.1 12.6 8.7 7.8

SP (P+G) 5.5 6.1 12.2 5.4 4.9 11.6 12.7 11.7 8.8
AEC (n=10) 8.2 9.5 14.5 9.2 8.0 19.1 19.1 22.9 13.8

Ours: LegoSLM* 5.7 5.1 12.1 5.8 5.1 12.4 13.6 12.7 9.1

Table 1: WER results for models trained on the multilingual MLS data across 8 languages.

ASR N-best lists as input, which include highly
probable transcription alternatives. Increasing n
leads to better performance, and when the 10-best
list is used, the best performance of 13% WERR
can be seen on the MLS_en set.

Model (mls-en) MLS_en LBS_other

Encoder: USM-CTC 8.9 6.8

+G
em

m
a

SP (U+P+G) 5.2 4.8
SP (P+G) 5.5 5.2

AEC (n=1) 8.9 8.0
AEC (n=5) 8.0 6.5
AEC (n=10) 7.8 5.7

Ours: LegoSLM 6.1 5.5
Ours: LegoSLM* 5.6 5.2

Table 2: WER results for speech prompts, ASR error
correction, and the proposed LegoSLM method. Models
are trained on the MLS en-us data. Results with * reduce
the predicted probability of the <blk> token.

Our proposed LegoSLM method achieves a
WER of 6.1 on the MLS_en test set. Here, we
use the probability predicted in the CTC layer out-
put directly. With the LegoSLM* setting, the logit
of the <blk> token is decreased by log(1e4) to
reduce its influence. Results indicate that decreas-
ing the weight of <blk> when reconstructing the
speech embeddings leads to notable performance
improvement, contributing to a total WERR of
37%. The LegoSLM models largely outperform
AEC and are more cost-effective when generating
features. In the AEC approach, the input length
increases proportionally with n, leading to training
inefficiencies. Additionally, generating the ASR N-
best list involves running a beam search, whereas
LegoSLM only uses the plain probability distribu-
tion. LegoSLM* also achieves comparable perfor-
mance with the SP (P+G) setting. These findings
suggest that using CTC posteriors as an intermedi-
ate representation preserves most of the informa-
tion compared to the continuous ASR outputs. The
WER decomposition is listed in Table 11.

Table 1 presents ASR performance on the mul-

tilingual LibriSpeech dataset, where the model is
jointly trained on speech data from eight languages.
The projected speech prompts, ASR error correc-
tion, and LegoSLM* achieve average WERRs of
50%, 22%, and 49%, respectively. As indicated
by the results, our proposed method demonstrates
strong performance in the multilingual setup. Nev-
ertheless, the performance gap of LegoSLM* with
the SP (P+G) method widens for languages with
less training data, such as Polish with 104h of
speech data. Additional results on LibriSpeech and
public English datasets, provided in Appendix B.2,
further validate the effectiveness of our approach.

5.2 Zero-shot System Combination

Table 3 evaluates the modularity of various con-
nection methods. In this setup, the Gemma model
is initially trained using outputs from the USM-
CTC encoder that is developed on the MLS en-us
dataset. This is the same model setting in Table 2.
During the evaluation, this trained Gemma model is
utilized without additional training to integrate out-
puts from other speech encoders. As shown in the
table, the continuous speech prompt method fails
to transfer across setups, as the output spaces from
different speech encoders are incompatible, caus-
ing the LLM to underperform. For the cascaded
AEC method, the trained Gemma model shows ef-
fectiveness in refining the transcriptions from other
speech encoders, though the performance gains
over the USM-CTC baseline remain limited.

The LegoSLM models maintain strong perfor-
mance across different USM encoders, achieving
WERRs of 32% to 37% compared to baseline CTC
decoding results. For the USM-CTC model trained
on LibriSpeech, reducing the weight of the <blk>
token leads to performance degradation, likely
due to the distributional differences between Lib-
riSpeech and the MLS en-us dataset. As a result,
using the original probability distribution eases
the transfer process. These experiments highlight
LegoSLM’s modularity, a valuable property in real-
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Model multi public lbs

Encoder: USM-CTC 9.5 10.7 12.8
+G

em
m

a
(m

ls
-e

n)

SP (U+P+G) 200.0 165.2 218.6
SP (P+G) 195.9 169.3 181.8

AEC (n=1) 9.6 10.0 12.2
AEC (n=5) 8.8 9.2 11.0
AEC (n=10) 8.3 8.6 10.7

Ours: LegoSLM 6.7 7.2 8.1
Ours: LegoSLM* 6.4 7.0 8.8

Table 3: Experimental results of zero-shot system com-
bination on the MLS_en test set. The Gemma model
is trained in the mls-en setup while we plug in USM
encoders trained from multi, public, and lbs setups.

life applications where the LLM does not require
retraining when the ASR encoder is replaced.

5.3 Experiments on AM/LM Spectrum

Figure 4: Effect of changing the temperature value in
LegoSLM. The speech encoder and LLM are trained
on different setups. Top: USM-CTC (lbs) + Gemma
(mls-en). Bottom: USM-CTC (mls-en) + Gemma (lbs).

In the context of zero-shot system combination,
the encoder and decoder may exhibit varying levels
of capability when trained on different data. In the
following experiments, we utilize the temperature
value τ in the CTC softmax to adjust the emphasis
given to the speech encoder and LLM in the genera-

tion. Figure 4 demonstrates the impact of selecting
different temperature values during softmax com-
putation. In the first setup, the USM model was
trained on LibriSpeech, while the Gemma decoder
was fine-tuned on MLS-en. Since the decoder is
more robust in this scenario, the model shows the
best performance at τ = 1.1, granting the LLM
greater freedom during decoding. In contrast, for
the setup depicted in the figure below, the optimal
temperature value is approximately 0.6, empha-
sizing the role of the USM-CTC encoder in the
system combination. These results highlight the ef-
fectiveness of temperature control in balancing the
contributions of the encoder and decoder, leading
to improved overall ASR performance. Detailed
WER results and a case study illustrating the effects
of temperature values can be found in Appendix C.

5.4 Model Variants

Model K MLS_en LBS_other

LegoSLM* - 5.6 5.2

LegoTopP*
3 6.2 5.9
5 6.1 6.7

10 6.0 7.5

LegoTopS*
1 7.0 6.6

10 5.8 5.5
100 5.6 5.3

Table 4: Ablation of the LegoSLM* approach where we
only keep the top-K token predictions at each frame.

In Table 4, we analyze the impact of constrain-
ing the LLM input to be the top-K tokens derived
from the CTC posteriors at each frame. Results
at K = 10 indicate that using a softmax-based
approach to combine LLM text embeddings out-
performs the projection-based method, emphasiz-
ing the importance of incorporating ASR scores.
At K = 100, the performance of LegoTopS* is
comparable to LegoSLM*, indicating robustness
across varying input sizes. Notably, due to the long-
tail distribution of the CTC outputs, retaining only
the top token predictions preserves the most rele-
vant information, leading to minimal performance
degradation compared to using the probability dis-
tribution generated on the full vocabulary. This
method also has a speed advantage, as softmax over
the entire vocabulary is no longer required. In the
extreme case of K = 1, which corresponds to uti-
lizing CTC greedy decoding results without token
merging or blank removal, the ASR performance
drops substantially. This highlights the importance
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of leveraging alternative predictions for the LLM
to generate accurate ASR hypotheses.

CTC Vocab Model MLS_en LBS_other

256K USM-CTC 8.9 6.8
(matched) Ours: LegoSLM* 5.6 5.2

16,384 USM-CTC 10.0 7.5
(different) Ours: LegoSLM* 5.6 5.2

Table 5: WER results for LegoSLM* systems trained on
MLS en-us data. The Gemma model uses a vocabulary
of 256K tokens, and we test both cases when USM-CTC
uses a matched and a different vocabulary.

Previous experiments were conducted under the
assumption that the speech encoder and the LLM
share the same vocabulary. However, this con-
straint may be difficult to meet in practical ap-
plications. Table 5 further evaluates the system’s
performance when the vocabularies remain differ-
ent. Specifically, the USM-CTC model is trained
with a vocabulary size of 16K, while the Gemma
model operates with 256K tokens. To handle this
mismatch, an additional input embedding table is
introduced to the LLM. This table is randomly ini-
tialized and jointly trained alongside the other LLM
parameters. These 12M additional parameters ef-
fectively map the ASR output logits to the LLM’s
input space. Baseline results from CTC decoding
indicate that the USM-CTC system performs better
when trained with a fine-grained vocabulary. How-
ever, after fine-tuning using the LegoSLM* method,
ASR performance becomes comparable, highlight-
ing the robustness of our approach even when the
ASR and LLM vocabularies are not aligned.

5.5 Experiments on Speech Translation
Table 6 presents the experimental results of the
speech translation task, which requires the model
to comprehend the semantics of the utterance in the
source language and generate accurate transcrip-
tions in the target language. In the Oracle setup,
a text translation system is trained using ASR ref-
erences as input, serving as an upper bound for
performance evaluation. For the other approaches,
the USM-CTC model learns from the multilingual
LibriSpeech data to perform speech recognition
in the source language. The Gemma decoder is
tuned on CoVoST 2 to generate translation in the
target language, given outputs from the speech en-
coder. When the training data is limited, aligning
the speech encoder outputs with the LLM text em-
bedding space becomes challenging, leading to the

underperformance of the speech prompts method.
Nevertheless, the cascaded AEC systems exhibit
strong performance, as utilizing the transcription
in the source language assists the LLM in under-
standing the utterance’s meaning, thus reducing the
complexity of the task. The LegoSLM* method
further boosts system performance by mitigating
information loss compared to AEC, achieving the
best results across all AST configurations.

Model fr→en de→en en→de

Oracle 36.5 30.1 31.8

SP (U+P+G) 11.3 9.8 15.7
SP (P+G) 9.7 7.5 13.4

AEC (n=1) 18.7 16.7 18.6
AEC (n=5) 20.7 18.2 19.8
AEC (n=10) 21.5 18.7 20.3

Ours: LegoSLM 23.8 18.9 20.3
Ours: LegoSLM* 25.8 21.1 21.1

Table 6: BLEU scores (↑) for speech translation per-
formance on CoVoST 2 test sets. Oracle fine-tunes the
Gemma model using ASR reference texts as input.

For the AST task of translating English utter-
ances into German text, we test the modularity of
the system by swapping the USM encoder. As
shown in Table 7, after training the Gemma model
on the AST data, it becomes possible to seamlessly
integrate a different USM-CTC encoder trained on
another ASR set. For the LegoSLM method, we re-
port the best BLEU score achieved with the optimal
temperature value. This method demonstrates supe-
rior performance across three setups, with the AEC
system using a 10-best list delivering comparable
speech translation performance.

Model mls-en public lbs

SP (U+P+G) 3.5 3.0 2.8
SP (P+G) 3.1 2.9 4.0

AEC (n=1) 19.5 21.4 17.7
AEC (n=5) 20.6 22.2 18.3
AEC (n=10) 20.9 22.3 18.4

Ours: LegoSLM (best) 20.9 22.4 18.7

Table 7: BLEU scores of the zero-shot system combina-
tion on the en→de AST test set.

Table 8 presents two examples from the AST
test set. The speech translation results produced us-
ing the continuous speech prompt approach fail to
accurately convey the sentence meaning, whereas
the proposed LegoSLM* method generates transla-
tions that closely align with the reference text.
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Type Text

ASR-REF La France est un grand pays, nous en sommes convaincus.

AST-REF France is a big country, we are convinced about it.

SP (U+P+G) France is a conquered country, we are getting rid of it.

LegoSLM* France is a great country, we are convinced of it.

ASR-REF Nous avons décidé, au contraire, de renforcer la progressiv-
ité de l’impôt sur le revenu.

AST-REF We have decided, on the contrary, to strengthen the progres-
siveness of the income tax.

SP (U+P+G) We had decided to give flexibility to companies.

LegoSLM* On the contrary, we have decided to strengthen the income
tax.

Table 8: Case analysis on the fr→en AST test set.

6 Conclusions

In this work, we propose a novel approach to com-
bine a pre-trained speech encoder and LLM. Ex-
tensive experimental results show that LegoSLM
achieves competitive performance compared to
prior approaches. Since CTC posteriors are used
to bridge the two modules, after training the LLM,
the ASR encoder can be switched in a zero-shot
manner. Additionally, we propose using the tem-
perature value in softmax to adjust the relative em-
phasis placed on the speech encoder and the LLM
components. Furthermore, several model variants
are introduced and evaluated. The results presented
in this paper indicate that LegoSLM has potential
for broader applications, such as speech summa-
rization and spoken language understanding.

7 Limitations

This study serves as an initial exploration of how
the CTC posteriors from a speech encoder em-
power LLMs to handle the speech modality. In this
paper, we present experiments using the USM and
Gemma models to demonstrate the effectiveness of
our approach. We generate posteriors from a CTC-
based speech encoder, given its efficiency and its
popularity in the speech pre-training field. Never-
theless, our approach can be extended to speech
encoders with other architectures such as RNN-
T or LAS models. Moving forward, we aim to
expand our analysis to other large-scale founda-
tion models to draw broader conclusions. In this
work, we employ fine-tuning to adapt the LLM
weights. However, alternative parameter-efficient
tuning methods, such as LoRA, are commonly used
for adapting LLMs. While this is not addressed in
the current version, we anticipate observing similar
performance trends with these methods.

8 Risks and Ethics

There are no known ethical concerns or risks asso-
ciated with the findings of this work.
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A Training Details

A.1 Dataset Details
For speech recognition, MLS (Pratap et al., 2020),
LibriSpeech (Panayotov et al., 2015), and Speech-
Stew (Chan et al., 2021) datasets are used in our ex-
periments. The LibriSpeech corpus consists of 960
hours of English read speech data, collected from
the LibriVox project. Later on, MLS was released,
which is a multilingual version of LibriSpeech at
a larger scale. It is also derived from audiobooks
and contains data from 8 languages, with 44.5K
hours of English data and 6K hours of speech over
the other 7 languages. Speechstew is a large-scale
multi-domain ASR dataset created by mixing vari-
ous public datasets: AMI, Broadcast News, Com-
mon Voice, LibriSpeech, Switchboard/Fisher, and
WSJ.

The standard CoVoST 2 (Wang et al., 2021) cor-
pus is used for training and evaluation in the speech
translation experiments. It is a diversified transla-
tion set based on the Common Voice project (Ardila
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Task Data Split #Utts Hours

ASR
MLS

en-us 10,808K 44,660
de-de 469K 1,966
nl-nl 374K 1,554
fr-fr 258K 1,076
es-es 220K 917
it-it 59K 247
pt-br 37K 161
pl-pl 25K 104

LibriSpeech - 281K 960

SpeechStew - 4,452K 4,730

AST CoVoST 2
fr→en 207K 180
de→en 127K 119
en→de 289K 364

Table 9: Statistics of the training datasets.

et al., 2020). For each language pair, the speech
from the source language and the text reference
in the target language are provided. The original
data contains translations from 21 languages into
English and translations from English into 15 lan-
guages. In this paper, we design experiments in 3
translation directions. The number of utterances
and hours of speech data are listed in Table 9.

A.2 Training Details

The USM-CTC models are fine-tuned from the
pre-trained USM BERT-RQ checkpoints on mul-
tiple ASR training sets. The encoder contains 2
layers of subsampling convolution layers and 24
Conformer layers, with a model dimension of 768.
In the fine-tuning, a linear layer with softmax is
added to the USM encoder. The model is trained
with CTC loss to make predictions for each frame
in a vocabulary of 256K. During the training, the
learning rate increases linearly to a maximum of
3e-5 in 5K steps and decays exponentially to 5e-5.
USM-CTC is trained for 200K steps with a batch
size of 192 on the training set. For the LLM used
in our experiments, Gemma 2B has 18 Transformer
layers with a model dimension of 2048. The vocab-
ulary consists of 256K tokens, which is the same
one used in the USM-CTC training. In the Gemma
fine-tuning, a learning rate of 1e-4 with the cosine
decay strategy is applied. Models are trained for
5000 steps on LibriSpeech and CoVoST 2 with a
batch size of 512. The mls-en, multi, and public
models are trained for 25K, 40K, and 40K steps
accordingly, with a batch size of 1024. For better
generalization, SpecAugment (Park et al., 2019)
and a dropout rate of 0.1 are applied in training.
All models are trained and tested on TPU pods.

For ASR training, no prompt is applied in the in-
put prefix. In the AST training, several prompts are
used interchangeably: 1. Translate the {src} speech
into {tgt} text: 2. Translate this {src} audio into
{tgt} text: 3. Convert this {src} audio recording into
{tgt} text: 4. Transform this {src} audio into {tgt}
text: 5. Generate a {tgt} text version of this {src}
audio: 6. Extract the spoken content from this {src}
audio and present it in {tgt} text: 7. Turn this {src}
audio into {tgt} text: 8. Rewrite this {src} audio in
{tgt} text: 9. I need this {src} audio translated into
{tgt} text: 10. Can you translate this {src} audio
recording into {tgt} text? 11. What would this {src}
audio sound like in {tgt}? 12. Translate the audio
into {tgt} text:. In the evaluation, the first prompt is
applied to all test utterances. We also experimented
with using random decoding prompts and observed
no significant sensitivity to the input.

B ASR Performance

B.1 Additional Experiments on MLS en-us

blk_downscale dev test

1.0 5.4 6.1
100 5.2 5.9
1e4 5.0 5.6
1e6 5.1 5.8
1e8 5.1 5.7
1e10 5.1 5.7
1e34 5.1 5.6

Table 10: Ablation study of the blk_downscale param-
eter on the MLS en-us dev and test sets.

As shown in Table 10, we selected the optimal
blk_downscale value of 1e4 based on the lowest
WER achieved on the MLS en-us development set.
This value was used consistently throughout all
experiments in the paper.

Model (mls-en) WER Sub Del Ins

Encoder: USM-CTC 8.9 6.7 1.4 0.8

+G
em

m
a

SP (U+P+G) 5.2 3.6 0.8 0.7
SP (P+G) 5.5 4.0 0.8 0.7

AEC (n=1) 8.9 6.1 1.3 1.5
AEC (n=5) 8.0 5.5 1.2 1.3
AEC (n=10) 7.8 5.3 1.2 1.3

Ours: LegoSLM 6.1 4.4 0.9 0.7
Ours: LegoSLM* 5.6 4.0 0.9 0.7

Table 11: WER decomposition of different ASR models
trained on the MLS en-us data.

The USM-CTC and Gemma models in this sec-
tion are developed using the MLS en-us data. Table
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11 shows the WER breakdown on the test set in
terms of substitution, deletion and insertion errors.
Compared to the USM-CTC baseline, our proposed
LegoSLM reduces all types of recognition errors,
in particular substitution errors.

Model WER Decoding Time RTF

SP (P+G) 5.5 59.8 0.13
Ours: LegoSLM* 5.6 60.8 0.14

Table 12: Comparison of WER and decoding efficiency
on the MLS en-us test set, including decoding time
(seconds) and real-time factor (RTF).

To assess decoding efficiency, we evaluated mod-
els on the MLS en-us test set, which comprises
15.55 hours of speech data, using 128 TPU pods
for decoding. Our experiments demonstrate that
the proposed LegoSLM approach achieves com-
parable performance to methods relying solely on
continuous speech encoder outputs. Notably, the
embedding reconstruction step introduces negligi-
ble overhead at inference.

Model Log Perplexity Token Accuracy
Init Final Init Final

SP (U+P+G) 116.2 0.1 0.0 97.8
SP (P+G) 116.2 0.1 0.0 97.7

AEC (n=1) 1.4 0.2 82.1 96.4
AEC (n=5) 1.0 0.1 87.3 97.3
AEC (n=10) 1.0 0.1 87.4 97.4

Ours: LegoSLM 5.9 0.1 25.9 97.7
Ours: LegoSLM* 4.8 0.1 25.2 97.7

Table 13: Average log perplexity (↓) and average token
accuracy (↑) results on the dev set. “Init” and “Final”
refer to the statistics gathered before the training starts
and after the training process is completed.

The teaching-forcing practice is adopted in train-
ing where outputs from the speech encoder, as well
as the correct sentence history, are given to the
LLM to predict the next token. Under this setup,
we compute the log perplexity of generating the
reference text and the accuracy of the LLM in pre-
dicting the next tokens on the dev set, as presented
in Table 13. Before training begins, AEC achieves
the best performance on both tasks, as LLM can
leverage information from ASR hypotheses during
generation. SP performs poorly on both tasks since
LLM struggles to interpret the continuous outputs
from the speech encoder without training. The
proposed LegoSLM methods show strong perfor-
mance, suggesting that LLM can effectively extract

information from the reconstructed speech embed-
dings. As a result, LegoSLM reduces the adapta-
tion complexity compared to the speech prompt
method. After the adaptation, all models achieve
quite low perplexity and high accuracy on the dev
set.

dropout specaug freeze_emb MLS_en

7.0

✓ 6.7

✓ 5.7

✓ ✓ 5.6

✓ ✓ ✓ 5.8

Table 14: WER results on the MLS en-us test set with
different training setups for LegoSLM*.

In Table 14, we conduct an ablation study on var-
ious training configurations for LegoSLM* trained
on the MLS en-us data. For the default experimen-
tal setting in this paper, we apply a dropout rate of
0.1 to the LLM and use SpecAugment, where two
frequency masks with 44 bins and two time masks
with a ratio of 0.1 are set. This setup achieves a
WER of 5.6 on the test set. The ablation results
reveal that omitting these techniques leads to a sub-
stantial drop in model performance. Additionally,
we test a setup where the LLM embedding layer
is frozen during adaptation. The model achieves
comparable performance to fine-tuning all parame-
ters, indicating that freezing the embedding table
does not adversely affect the model’s capability to
integrate the speech modality.

B.2 Experiments on Other Datasets
Table 2 and Table 1 train both English and multi-
lingual ASR models on the MLS data. As listed
below, we further present the WER results of mod-
els trained on the LibriSpeech corpus and a public
English dataset in Table 15 and Table 16. Here, 1K
hours and 49K speech data are used in the training,
respectively. The results consistently demonstrate
that LegoSLM achieves strong performance regard-
less of the training data size.

Additionally, we compare the performance of
LegoSLM* to state-of-the-art speech language
models on the Librispeech test_other set. Results
in Table 17 demonstrate our model’s strong perfor-
mance, achieving competitive results comparable
to foundation speech models such as SpeechT5
(Ao et al., 2022) and Whisper large-v2 (Radford
et al., 2023). Notably, it outperforms LLM-based
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Model (lbs) MLS_en LBS_other

Encoder: USM-CTC 12.8 8.2
+G

em
m

a

SP (U+P+G) 8.5 5.6
SP (P+G) 10.1 6.8

AEC (n=1) 16.6 10.8
AEC (n=5) 14.3 8.3
AEC (n=10) 13.7 7.7

Ours: LegoSLM 11.0 7.2
Ours: LegoSLM* 10.5 7.0

Table 15: WER results for models trained on Lib-
riSpeech.

Model (public) MLS_en LBS_other

Encoder: USM-CTC 10.7 7.2

+G
em

m
a

SP (U+P+G) 5.1 3.4
SP (P+G) 5.6 4.4

AEC (n=1) 9.6 7.5
AEC (n=5) 8.7 6.0
AEC (n=10) 8.3 5.6

Ours: LegoSLM 5.9 4.8
Ours: LegoSLM* 5.7 4.6

Table 16: WER results for models trained on public data
consisting of SpeechStew and MLS en-us split.

systems such as SALMONN (Tang et al., 2024),
SALM (Chen et al., 2024), Whisper-Vicuna13B
(Dong et al., 2024), and HuBERT-LLaMA2 (Yu
et al., 2024). However, our approach currently un-
derperforms the Qwen2-Audio model, which bene-
fits from multi-task training across diverse speech
processing tasks.

Model LBS_other

SpeechT5 (Ao et al., 2022) 5.8
Whisper large-v2 (Radford et al., 2023) 4.9
SALMONN (Tang et al., 2024) 4.9
SALM (Chen et al., 2024) 4.8
Whisper-Vicuna13B (Dong et al., 2024) 5.2
HuBERT-LLaMA2 (Yu et al., 2024) 5.2
Qwen2-Audio (Chu et al., 2024) 3.6

Ours: LegoSLM* 4.6

Table 17: Comparison of WER results with other speech
language models on the LBS_other set.

18184



C Full Results of AM/LM Spectrum Control

USM/Gemma Dataset Split Temperature (τ )
1e-4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1e4

mls-en / lbs
MLS_en dev 8.9 7.8 7.8 7.8 7.9 8.1 8.5 9.1 10.3 12.3 16.4 23.7 318.2

test 9.4 8.6 8.6 8.6 8.7 8.9 9.4 10.0 11.3 13.5 16.8 23.9 319.5

LBS_other dev 7.5 6.4 6.3 6.3 6.3 6.5 6.8 7.0 7.6 9.1 11.5 16.2 683.9
test 7.3 6.3 6.2 6.3 6.2 6.4 6.8 7.2 7.9 9.1 11.6 16.6 679.5

lbs / mls-en
MLS_en dev 10.7 8.5 8.2 7.9 7.7 7.5 7.2 7.2 7.2 7.5 8.0 8.9 320.6

test 11.7 9.5 9.1 8.8 8.6 8.3 8.1 8.0 8.1 8.4 9.0 10.1 322.0

LBS_other dev 8.3 6.8 6.7 6.7 6.3 5.9 6.0 6.0 5.8 6.1 6.7 7.4 234.8
test 8.8 7.0 6.7 6.7 6.5 6.5 6.4 6.4 6.3 6.7 7.2 8.0 240.6

public / lbs
MLS_en dev 10.4 9.0 8.9 8.8 8.8 9.0 9.3 9.9 11.2 14.2 19.7 34.0 318.2

test 11.3 9.9 9.8 9.8 9.9 10.1 10.4 11.2 12.8 15.4 22.0 36.9 319.5

LBS_other dev 7.9 6.6 6.7 6.6 6.7 6.6 6.8 7.1 7.7 9.0 11.5 16.8 683.3
test 8.0 6.8 6.8 6.7 6.7 6.7 6.9 7.3 7.8 9.0 11.0 15.4 679.1

lbs / public
MLS_en dev 11.1 8.7 8.2 8.0 7.6 7.3 7.1 6.9 7.1 7.4 8.0 9.1 212.3

test 12.1 9.6 9.2 8.7 8.4 8.0 7.8 7.6 7.8 8.1 8.8 9.9 212.6

LBS_other dev 8.3 6.3 6.1 5.8 5,7 5.6 5.4 5.4 5.5 5.6 6.3 7.1 130.0
test 8.3 6.5 6.2 6.0 5.7 5.6 5.5 5.5 5.7 5.9 6.5 7.4 131.4

Table 18: WER results of zero-shot system combination for LegoSLM with various temperature values applied in
the CTC softmax layer. In each setup, the USM-CTC and Gemma models are trained from different data.

Table 11 presents the detailed WER results across four ASR setups when different temperature values
τ are used in the generation. In a normal softmax distribution, the temperature value is set to 1.0, allowing
equal influence from the speech encoder and LLM. As indicated by the WER results, manipulating the
value of τ leads to improved model performance compared to using the default value of 1.0. When the
speech encoder is trained on more data, the optimal τ falls below 1.0, generating a sharper probability
distribution and thus representing more certainty in the speech embeddings. Conversely, when the LLM
learns from more data, using a larger τ results in a more uniform distribution of the CTC posteriors,
allowing the LLM more freedom in the generation. We also evaluate the extreme cases by setting τ to
1e−4 and 1e4. The first experiment closely resembles the USM-CTC baseline, while the second results in
hallucination in the LLM generation. When τ is approaching infinity, speech embeddings become average
vectors of the LLM embedding table and fail to convey meaningful information about the utterance.

Figure 5: Effect of changing the temperature value in LegoSLM on the CoVoST 2 en→de speech translation task.
For each experimental configuration, the speech encoder and LLM are trained under different setups and combined
in a zero-shot fashion. Left: USM-CTC (public) + Gemma (multi). Right: USM-CTC (lbs) + Gemma (multi).

Figure 5 depicts the influence of τ on speech translation tasks, where we can observe a similar trend
that adjusting the temperature value results in improved BLEU scores on the CoVoST 2 test set.
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Table 19 demonstrates the influence of the temperature value with two examples from the MLS_en
test set. For the first example, the optimal τ falls around 0.4 to 0.8, and for the second example, the
optimal τ is in the range of 0.2 to 0.9. When τ is set to 0.5, fewer recognition errors can be observed
compared to using τ equal to 1.0. By increasing τ to 1.5, the speech embeddings become less informative
to LLM, leading to more erroneous hypotheses. In this case, the LLM leverages more of the stored world
knowledge to complete the sentence. For instance, the second example generates coffee in the decoding
hypothesis at τ = 1.5, which is semantically close to beef tea from the ASR reference. In the extreme
case of 1e4, the speech embeddings contain no valid information about the input utterance, causing the
LLM to hallucinate and output repeating the united states of america in the output.

Source τ Transcription

ASR-REF - so among primitive men the weakest and stupidest went to the wall while the toughest and shrewdest
those who were best fitted to cope with their circumstances but not the best in another way survived

LegoSLM

1e-4 so among primitive men the weaker and stupid went to *** war while were tough and shrewders those
who were best pitted to cope with their circumstances but not the best in another way survived

0.5 so among primitive men the weakest and stupidest went to *** war while the tough and shrewder those
who were best fitted to cope with their circumstances but not the best in another way survived

1.0 so among primitive men the weak and stupid ones went to *** war while the sagacious and shrewd ones
those who were best fitted to cope with their circumstances but not the best in another way survived

1.5 some of the most primitive men were the most weak and stupid of us went through our ordeal while the
more sophisticated and shrewder ones those who were best fitted to cope with the new circumstances
got out of the best and most enduring way survived

1e4 and the united states of america the united states of america the united states of america the united
states of america the united states of america the united states of america ...

ASR-REF - at last however the beef tea was ready and valerie poured it into a cup which she stood in a bowl of cold
water to cool it and then she hurried up with it to the child’s room

LegoSLM

1e-4 at last however the victorytea *** was ready and val poured it into a cup which she stood in a bowl of
cold water to cool it and then she hurried up with it to the taos room

0.5 at last however the victory tea was ready and valeria poured it into a cup which she stood in a bowl of
cold water to cool it and then she hurried up with it to the taffrail room

1.0 at last however the victory tea was ready and valeria poured it into a cup which she stood in a bowl of
cold water to cool and then she hurried up with it to the tars tarkas room

1.5 at last however the **** coffee was ready and valeria poured it into a cup which she stood in a bowl of
cold water to cool ** and then she hurried upstairs **** ** to the tchinovniks room

1e4 and the united states of america the united states of america the united states of america the united
states of america the united states of america the united states of america ...

Table 19: A case analysis of LegoSLM for ASR performance on the MLS_en test set. The USM-CTC model is
trained on MLS en-us data and Gemma is trained on LibriSpeech. Recognition errors are highlighted in red color.
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