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Abstract
Current approaches to embodied AI tend to
learn policies from expert demonstrations.
However, without a mechanism to evaluate
the quality of demonstrated actions, they are
limited to learning from optimal behaviour, or
they risk replicating errors and inefficiencies.
While reinforcement learning offers one alter-
native, the associated exploration typically re-
sults in sacrificing data efficiency. This work
explores how agents trained with imitation
learning can learn robust representations from
both optimal and suboptimal demonstrations
when given access to constructive language
feedback as a means to contextualise differ-
ent modes of behaviour. We directly provide
language feedback embeddings as part of the
input sequence into a Transformer-based pol-
icy, and optionally complement the traditional
next action prediction objective with auxiliary
self-supervised learning objectives for feedback
prediction. We test our approach on a range
of embodied Vision-and-Language tasks in our
custom BABYAI-XGEN environment and show
significant improvements in agents’ composi-
tional generalisation abilities and robustness,
suggesting that our data-efficient method al-
lows models to successfully convert suboptimal
behaviour into learning opportunities. Overall,
our results suggest that language feedback is
a competitive and intuitive alternative to inter-
mediate scalar rewards for language-specified
embodied tasks.

1 Introduction

Embodied AI presents a significant advancement in
artificial intelligence, emphasising the importance
of physical embodiment and the resulting ability
to interact directly with the environment to accom-
plish goals. By perceiving and reasoning about
the effect of their actions on their surroundings,
embodied AI systems gain access to rich learn-
ing signals, which enable more robust and context-
aware models of the world (Deitke et al., 2022).
For such systems to be useful across real-world de-
ployment scenarios, they must be able to translate

language instructions into meaningful sequences of
actions. Embodied agents that understand language
not only unlock an additional learning modality,
but also enable richer, situational representations
of behaviour by grounding language into additional
sensory modalities such as vision. This facilitates
the creation of language-guided pixel-based poli-
cies for Embodied AI (e.g., Team et al., 2024).

While imitation learning (IL) methods are com-
monly used to train such agents, it is typically
assumed that the underlying demonstration data
reflects optimal or near-optimal behaviour (Min
et al., 2022). This presents three key limitations.
First, models trained exclusively on optimal tra-
jectories may learn that there is exactly one valid
solution for a given task. Second, such models
never encounter recoverable errors and their correc-
tions. Third, IL lacks mechanisms to evaluate the
quality of actions when faced with multiple valid
behavioural modes for the same observation. In
contrast, reinforcement learning (RL) algorithms
explicitly incorporate feedback in the form of scalar
rewards to distinguish between varied, more or less
optimal behaviours (Levine et al., 2020; Sutton,
2018). However, the associated exploration in RL
also means that it is typically less sample-efficient
than IL. This is exacerbated for sparse rewards,
which is typically the case in embodied AI.

In this work, we investigate to what extent
Transformer-based IL policies can benefit from
the inclusion of suboptimal demonstrations in the
training data when the effect of actions is contextu-
alised with constructive language feedback, turning
mistakes into learning opportunities. We focus on
this family of models due to their ability to bet-
ter represent multimodal inputs and long input se-
quences that are common in Embodied AI tasks,
and to align our work with the foundational ar-
chitecture and training regimen used for current
Vision-Language-Action (VLA) models in robotics
(Black et al., 2024; Kim et al., 2024; Nvidia et al.,
2025; Shukor et al., 2025). We test whether our
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Figure 1: Our method leverages both optimal and suboptimal trajectories for a given task instance by contextualising
modes of behaviour with feedback signals. We leverage different types of feedback and additional self-supervised
auxiliary tasks to learn highly generalisable and robust representations of behaviour in a data-efficient manner.

approach can yield improved generalisation capa-
bilities of language-guided IL policies, while si-
multaneously ensuring sample-efficient learning.

We introduce a training regime where we sys-
tematically augment the training data with subop-
timal variations of the base demonstrations. The
use of language feedback is intuitive in the light of
possible real-world deployment scenarios for em-
bodied AI, and mirrors the modality of language
instructions. In addition, we test if language feed-
back is a competitive substitute or suitable comple-
ment for shaped scalar rewards when conditioning
IL on feedback. We further test the efficacy of a
self-supervised auxiliary task in the form of feed-
back prediction. The motivation for introducing
the feedback prediction objectives is two-fold: 1.
To encourage more robust representations of ac-
tions, and 2. To give the model the ability to tap
into an internal world model of the consequences
of actions when no feedback is provided at infer-
ence. To allow us to test fine-grained compositional
generalisation capabilities systematically, we de-
velop BabyAI-XGen, a modified version of the
BabyAI (Chevalier-Boisvert et al., 2018) environ-
ment, bridging the gap between procedural genera-
tion and granular control over task configurations
and environment parameters.

Our findings indicate that Transformer-based
IL policies that are trained from scratch with lan-
guage feedback-conditioned suboptimal demon-

strations generalise significantly better in compo-
sitional tasks than a baseline trained only on op-
timal trajectories, by turning mistakes and ineffi-
cient strategies into learning opportunities. We find
this effect is consistent across different amounts of
training data. Notably, we observe that language
feedback and scalar rewards provided with similar
frequency yield comparable performance, offering
practical flexibility depending on which signal is
easier to provide. While combining language feed-
back and scalar rewards does not significantly im-
prove task success rates, it does improve robustness
to input perturbations during inference, indicating
their complementary strengths. The same is ob-
served for the auxiliary prediction task. Lastly, we
present further evidence for the sample efficiency
of our method by demonstrating that an online RL
baseline trained with PPO (Schulman et al., 2017)
and using the same reward function achieves near-
random generalisation performance when trained
on equivalent numbers of data points.

In summary, the contributions of this work are
as follows:

• We present FOSSIL (Feedback on Suboptimal
Samples in Imitation Learning), a framework
that leverages feedback to unlock the learning
potential in suboptimal demonstrations for IL.

• We release BabyAI-XGen, a modified version
of BabyAI for the procedural generation of cus-
tom tasks for compositional generalisation.
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• We define a range of evaluation settings to as-
sess compositional generalisation, robustness
to perturbations and data efficiency, and present
results that suggest that language feedback and
shaped scalar rewards can be equally effective.

2 Related work

Language-guided embodied AI. We consider
our work in the context of language-guided em-
bodied AI, specifically, mobile manipulation tasks.
Compared with manipulation-only tasks (Jiang
et al., 2023; Mees et al., 2022, etc.), and navigation-
only tasks (Anderson et al., 2018), the combination
of navigation and object interaction creates addi-
tional degrees of freedom for behaviour to devi-
ate from the optimal solutions, and hence, more
meaningful opportunities to provide feedback can
arise. Existing datasets (Gao et al., 2022; Puig et al.,
2018; Shridhar et al., 2019, 2020; Yenamandra
et al., 2023) tend to annotate planner-generated tra-
jectories with language instructions, which means
that agents are trained to rely on optimal behaviour,
while suboptimal behaviour is seen as something
to mitigate, not leverage (Min et al., 2022).

Language as feedback. Previous work uses
LLMs as judges (Pang et al., 2024; Wu et al., 2024),
trains models to provide language feedback (Zhong
et al., 2024) or leverages LLMs to increase the
diversity of language feedback (Xi et al., 2024a)
for a range of tasks. In contrast, we investigate
how to utilize language feedback systematically to
contextualise different modes of behaviour, rather
than on the quality or generation mode of the feed-
back. While definitions of feedback in previous
work range widely, it broadly falls into two cate-
gories: 1) general language hints (Lin et al., 2023)
or foresight (Xi et al., 2024a)—which often takes
the form of granular instructions—and 2) hindsight
feedback (Xi et al., 2024a). We focus on a form
of hindsight feedback. To reduce the number of
confounding variables, we procedurally populate a
multi-part template which reflects both a judgment
of the action and, importantly, an explanation of
the judgment. Our work is also in juxtaposition to
previous work that derives a reward function from
language, e.g. by computing the similarity between
observations and subgoals described in language
(Adeniji et al., 2023; Du et al., 2023). Instead,
we use the language feedback embeddings directly
as input into a Transformer-based (Vaswani et al.,
2017) policy, following work by McCallum et al.

(2023) and Xi et al. (2024a). While both are an-
tecedents to our work, they only compare language
feedback with rewards corresponding to the binary
failure / success scenarios typically associated with
embodied AI tasks, and disregard the interplay of
the language feedback with the optimality of the
trajectories in the training data, which consists ei-
ther of demonstration datasets (Xi et al., 2024a) or
randomly generated trajectories (McCallum et al.,
2023). In contrast, we facilitate a fair comparison
of language feedback and rewards by aligning their
frequency, and systematically construct datasets
composed of both optimal and suboptimal trajec-
tories. Another important strength of our work is
that, differently from Xi et al. (2024a), we focus on
purely pixel-based policies rather than studying en-
vironments where agents have access to symbolic
state representation 1.

Self-supervised auxiliary tasks for grounded
representations. While predicting the observa-
tions and rewards resulting from actions is inherent
to world models (Du et al., 2023; Hafner et al.,
2019, 2020, 2023; Zhang et al., 2024), where this
ability is commonly referred to as latent imagina-
tion, the utility of predicting tokens other than ac-
tions as self-supervised auxiliary tasks (Jaderberg
et al., 2016) in IL is still under-explored. Results
from work on other multi-modal tasks, such as
multi-modal translation (Elliott and Kádár, 2017)
or guessing games (Suglia et al., 2020), suggest
that such training objectives are a promising avenue
for learning well-grounded multi-modal representa-
tions. We adapt this approach for IL for embodied
instruction following tasks.

Compositional generalisation in embodied AI.
Previous work, such as VIMA (Jiang et al., 2023)
for tabletop manipulation, predominantly inves-
tigates Systematicity, or the ability of models to
systematically recombine known components and
rules to novel combinations (Hupkes et al., 2019).
However, other dimensions of compositional gen-
eralisation, such as Productivity, remain under-
explored in the context of embodied agents and
interactive environments. In lieu of existing suit-
able settings, we design a multi-dimensional frame-
work to evaluate the compositional generalisation
abilities of models trained with our method, and fa-
cilitate this with our BABYAI-XGEN environment.

1In Xi et al. (2024a)’s setup, only one environment over
four uses pixel-based representations.

18079



Figure 2: Input and output tokens for a model condition-
ing action generation on initial instructions and language
feedback, with the option to predict language feedback
at the next time step. mi=instructions, fi=language
feedback, ri=returns-to-go/rewards, oi=observations,
ai=actions.

3 Method

Inspired by Decision Transformers (Chen et al.,
2021) and Uni[MASK] (Carroll et al., 2022), we
model different types of IL as sequential decision
problems, with the option to condition action gen-
eration on relevant additional tokens corresponding
to data elements that may accompany state-action
pairs, such as instructions, scalar rewards and/or
language feedback. All our models share the same
base architecture, consisting of an autoregressive
Transformer backbone with a simple action predic-
tion head, with optional additional heads to predict
tokens for auxiliary tasks. Figure 2 illustrates an
example configuration using our flexible architec-
ture. The token masks for all models used in our
experiments and additional possible configurations
can be found in Appendix B. We further deviate
from the original Decision Transformer and previ-
ous work applying Decision Transformer to sim-
ilar domains (Xi et al., 2024a) by using Llama2
(Touvron et al., 2023) as our reference backbone
architecture2 to facilitate faster training and infer-
ence, as well as support learning from entire trajec-
tories, rather than sub-trajectories of limited con-
text lengths. Language inputs are encoded using a
frozen pretrained Sentence-BERT language model
(Reimers and Gurevych, 2019), which allows us to
condense sentences of arbitrary length into com-
pact vector representations. Image observations are
encoded into a single token using a simple CNN
network trained concurrently with the policy. We
provide full implementation details in Appendix B.

2Since we override the configuration, we do not use
Llama2’s pretrained weights.

Training Objectives and Loss Functions. We
follow previous work on Decision Transform-
ers (Chen et al., 2021) and learn to predict ac-
tions in the environment as a next token predic-
tion task by minimising cross-entropy loss of the
actions. Beyond the standard cross-entropy loss
for action prediction, we incorporate auxiliary self-
supervised training objectives that involve predict-
ing feedback signals at the next time step. Specif-
ically, we use additional regression heads with
MSE loss to predict scalar reward values and lan-
guage feedback embeddings at t+1. These auxil-
iary losses are balanced with the primary action
prediction loss through learnable weighting param-
eters. This multi-objective approach encourages
the model to develop richer representations of ac-
tion consequences, as it must anticipate not only
appropriate actions but also the feedback those ac-
tions will generate, enabling better understanding
of behaviour and context. Note that the predicted
feedback tokens are used exclusively to compute
auxiliary losses and are not fed back into the model
as input. Implementation details for all losses and
the loss balancing are provided in Appendix B.

4 Experimental framework

4.1 Evaluation settings

We refer to the framework proposed by Hupkes
et al. (2023) and study generalisation in embodied
Vision-and-Language tasks along two main axes:
(1) compositional generalisation and (2) robustness.
For compositional generalisation, we consider sce-
narios of Systematicity and Productivity. For ro-
bustness, we analyse the robustness of models’ goal
representations, their robustness to external pertur-
bations and adversarial or missing feedback, and
the efficiency of the obtained solutions. We fur-
ther test whether the ability to generalise composi-
tionally is associated with the ability to effectively
leverage the available samples, and investigate gen-
eralisation performance at different proportions of
the training data, comparing our method with the
IL and an online RL baseline.

4.2 Environment: BabyAI-XGen

We develop BabyAI-XGen3 to fill the gap in em-
bodied environments capable of supporting rigor-
ous compositional generalisation research and fa-
cilitate our evaluation settings. BabyAI-XGen is

3We make the full environment code and all task configu-
rations available at github.com/sabraaap/fossil.
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the result of various key modifications to BabyAI’s
(Chevalier-Boisvert et al., 2018) backend, aimed at
giving users control over a comprehensive range of
environment parameters, allowing them to config-
ure missions corresponding to distinct train and test
scenarios. We outline all configuration parameters
and their intended use in Appendix D.

We choose BabyAI as our starting point since,
despite its apparent simplicity, it remains a popu-
lar and challenging testbed for embodied agents
that understand and learn from natural language
instructions (Gu et al., 2024; Huang et al., 2024;
Lu et al., 2024, etc.). Out of a range of candidate
grid world environments that support language (Lin
et al., 2023; Wang and Narasimhan, 2021; Zholus
et al., 2022), only BabyAI fulfils all desiderata
required to facilitate our training and evaluation
settings: partial observability, pixel observations,
navigation with obstruction, multiple types of ob-
ject interactions, the ability to chain together tasks,
as well as objects which can be defined along sev-
eral attribute axes. Furthermore, AgentBoard (Ma
et al., 2024) and AgentGym (Xi et al., 2024b), two
recent LLM agent benchmarks, include BabyAI
and rate its difficulty on par with more visually real-
istic 3D environments such as ALFWorld (Shridhar
et al., 2020). Note that both benchmarks target text-
only models and rely on the symbolic observations,
while we use the pixel observations of the partial,
egocentric views for a more challenging setting that
requires vision and language. Importantly, BabyAI
is highly reproducible, extensible and scalable, as
it does not depend on an external game or physics
engines, which makes the procedural generation of
training data lightweight and reliable.

Using BabyAI-XGen, we define new level con-
figurations to directly isolate and study different
types of compositional generalisation. We focus on
variations of Pickup and PutNext tasks, since these
require navigation and interaction. To make the
setting even more challenging, we enforce a range
of stricter settings, including shorter timeouts and
a guarantee that missions for a given level con-
sistently require the same skill set, such as under-
standing locations or temporal order in instructions,
or navigating to a goal object located in a differ-
ent room. This addresses a limitation associated
with mission generation mechanism in the original
BabyAI suite, which samples missions post-hoc
based on the sampled objects, making it impossible
to ensure that all missions for a given level strictly
require the skill set attributed to that level. In con-

optimal: p(r) = 0
0/7 steps incorrect

suboptimal: p(r) = 0.4
4/14 steps incorrect

planner generated action
random action—sampled with p(r)

Figure 3: Optimal trajectories generated by a planner,
and suboptimal trajectories obtained by replacing plan-
ner actions with random actions, which the planner must
correct if necessary. The given p(r) is exemplary.

trast, we sample missions and construct the objects
in the scene around them.

4.3 Training dataset generation

We generate two types of trajectory datasets for
each task used in our multi-task training setup: one
with ~12K optimal paths using BFS planning, and
another composed of ~4K optimal and ~8K subop-
timal paths with mistakes and inefficiencies4. For
suboptimal trajectories, we uniformly sample from
the action space and replace the planner action with
probability p, where the subsequent planner action
corrects any suboptimal behaviour. The process is
depicted in Figure 3.

4.4 Feedback augmentation

We generate language feedback and scalar rewards
according to the same underlying heuristics, by
building on the rule-based feedback oracles pro-
posed by McCallum et al. (2023). This approach
ensures consistent, reliable and accurate feedback
generation, which is essential for our controlled
study of how different feedback modalities affect
learning from suboptimal trajectories. Our rule-
based feedback generation pipeline leverages priv-
ileged information about environment states and
task objectives to provide comprehensive cover-
age of relevant feedback scenarios. This system-
atic approach allows us to isolate the effects of
feedback modality and quality without introducing
variability from potential inconsistencies in model-
generated feedback (Xi et al., 2024a).

4All datasets and the code for generating trajectories are
publicly available at huggingface.co/fossil-eai/datasets. and
github.com/sabraaap/fossil, respectively.
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Task feedback We extend the oracle for “task
feedback” from McCallum et al. (2023) to return
not only positive language feedback for desired in-
teractions with goal objects that lead to the agent
completing a subgoal, but additionally negative lan-
guage feedback on undesired interactions with dis-
tractor objects, and increase diversity and informa-
tiveness of our template-based feedback following
Xi et al. (2024a). The template, including represen-
tative examples, is illustrated in Appendix F.

Affordance feedback We adopt the “rule feed-
back” oracle from McCallum et al. (2023) without
any changes. This feedback triggers when agents
attempt actions that have no visible effect on the
environment due to its affordances—such as trying
to move through closed doors, open walls, or stack
objects (which is not permitted in the environment).

Shaped Rewards. We apply reward shaping to
BabyAI’s original binary reward function and de-
rive intermediate scalar rewards by leveraging the
success and action failure detection mechanisms in
the feedback oracles. Note that while our rewards
may appear dense relative to the original binary
rewards, they are comparably sparse in the context
of typical RL problems (Bellemare et al., 2013;
Cobbe et al., 2019; Tassa et al., 2018; Wydmuch
et al., 2018, etc.). Preliminary results showed that
conditioning only on the original binary rewards is
equivalent to foregoing return-to-go conditioning
altogether. For further details, refer to Appendix F.

4.5 Baselines and variants

Following the Uni[MASK] approach (Carroll et al.,
2022), we use the same base architecture for all our
models. All model configurations are illustrated in
Appendix B. We obtain IL baselines (where feed-
back is NONE) by masking all additional tokens
except the one-off mission instructions. We un-
mask relevant additional tokens to achieve variants,
specifically returns-to-go for variant SCALAR or
language feedback for LANG, as well as both for
COMBO, and optionally predict the scalar reward
or language feedback. For comprehensive details
on training see Appendix G.

5 Results

5.1 Compositional Generalisation

Systematicity. We test if models can generalise
to unseen combinations of goal colour and shape

at test time. Table 1 shows that performance us-
ing language feedback is comparable to the per-
formance with scalar rewards when the model is
trained to predict its own feedback, while combin-
ing language feedback and scalar rewards slightly
surpasses the performance achieved with either
feedback modalities when trained with the auxiliary
feedback prediction objective. The performance
of models trained with suboptimal trajectories and
some form of feedback is more than four times
higher than for the IL baselines.

Productivity. In the context of our embodied set-
ting, we define productivity as the ability to extrap-
olate to unseen values of mission or environment
parameters. We isolate dimensions of composi-
tionality in the mission in the form of categorical
variables such as goal attributes, while in the envi-
ronment, we identify compositionality w.r.t numer-
ical variables, specifically the room dimensions or
the number of obstacles. Note that while for com-
positionality in the mission, we use the language
feedback and scalar rewards corresponding to the
task feedback oracle, we measure compositional-
ity in the environment in the context of affordance
feedback.

The results in Table 1 indicate that language feed-
back is most effective when extrapolating to unseen
goal colours, more complex layouts or higher num-
bers of obstacles. In these cases, language feedback
performs roughly on par with the scalar rewards. In
contrast, language feedback is less effective when
tested on object locations that never appeared in
the training data. We hypothesise that the models
struggle to correctly ground language describing
spatial relations and therefore, language feedback
hinders more than it helps. We also test whether
models trained on simple sequential instructions
can extrapolate to more complex, compound in-
structions with multiple connectors. Specifically,
models must understand the different connectors
between two sequences (‘and’, ‘then’, or ‘after’),
which only occur in isolation in the training data.
Surprisingly, learning from multiple trajectories per
mission task improves performance of the baseline
on unseen sequence tasks. It is conceivable that
seeing successful sequences connected by ‘and’ in
different orders helps the model learn differences
between order-agnostic coordinating conjunctions
from temporal adverbs and subordinating conjunc-
tions (‘then’ and ‘after’). However, we find that
language feedback only provides comparable ben-
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Feedback
Enhancement Systematicity Productivity

ST FP Color-Shape Color† Location† Sequence† Layout∗ Obstacles∗ All

NONE
× × 16.9 13.5 4.9 10.0 70.3 82.2 33.1
✓ × 15.1 14.1 2.8 44.4 75.1 83.1 39.1

SCALAR
✓ × 69.6 68.0 19.7 69.8 80.6 87.3 65.8
✓ ✓ 69.4 68.8 21.3 71.9 80.0 85.6 66.2

LANG
✓ × 68.0 66.5 13.8 59.1 80.9 88.3 62.8
✓ ✓ 69.7 69.1 14.6 66.1 79.2 85.9 64.1

COMBO
✓ × 70.3 66.6 17.7 67.3 78.0 83.9 64.0
✓ ✓ 71.7 68.6 20.3 69.5 78.5 81.6 65.0

Table 1: Success rates (%) across different dimensions of compositional generalisation: Systematicity (combinatorial
interpolation to novel combinations) and Productivity (extrapolating to unseen values). We average the performance
across multiple tasks, each requiring both navigation and object interaction/manipulation. A breakdown of tasks per
generalization setting can be found in Table E.1 in the appendix. †compositionality in the mission, ∗compositionality
in the environment. ST=suboptimal trajectories, FP=feedback prediction.

efits to scalar rewards when are trained with the
auxiliary feedback prediction task.

5.2 Robustness
Representations of subgoals. We see evidence
that models trained with language feedback or
scalar rewards learn more robust representations
of how to solve individual subgoals. We find that
models trained without any form of feedback par-
tially complete many tasks but rarely complete all
subgoals required for task success, whereas those
trained with feedback signals and several more or
less optimal solutions for a given task appear to
be significantly more successful at fully complet-
ing tasks, as illustrated in Figure 4a. Equipping
models with language feedback and requiring them
to learn how to predict their own feedback can
further reduce the number of tasks that are only
partially completed. Unlike the scalar rewards, lan-
guage feedback reflects whether actions lead to
subgoal success or to task success. Therefore, lan-
guage feedback-conditioned models which are also
trained to predict their own feedback can develop
a more nuanced understanding of the difference
between partial and full task completion.

Robustness to lack of optimal data. To simulate
scenarios where optimal trajectories are categori-
cally not available, we further test to what extent
our method allows us to rely exclusively on sub-
optimal trajectories. Table 2 illustrates how, when
we omit the optimal trajectories, the advantage of
the models that have access to some form of feed-
back becomes even clearer. We note the most pro-
nounced relative performance drop for the baseline
trained without step-level feedback (NONE), while

Feedback ST + OT ST only Drop

NONE 15.1 12.1 -19.9%
SCALAR 69.6 62.3 -10.5%
LANG 68.0 61.2 -10.0%
COMBO 70.3 65.6 -6.7%

Table 2: Relative drop in success rate (%) when using
only suboptimal trajectories (ST) vs suboptimal + op-
timal trajectories (ST+OT). Results are averaged for
in-distribution Pickup and PutNext missions.

removing the optimal data has the least impact on
the COMBO model trained on scalar and language
feedback. This suggests that the step-level feed-
back effectively enables trajectory stitching from
different suboptimal solutions.

Robustness to external perturbations. We sim-
ulate external perturbations, such as hardware fail-
ure, using a variant of sticky actions (Machado
et al., 2017). However, rather than delaying exe-
cution by k steps, we simply randomly replace the
current action with the sticky action. As a result,
we can test the agent’s ability to recover without
inflating the number of steps taken on the environ-
ment. Figure 4b shows that models trained with
suboptimal trajectories but without any form of
feedback (NONE W/ ST) to contextualise mistakes
are more the most adversely affected by external
perturbations, with performance dropping to un-
der 70%. For models trained on language feed-
back, it is paramount to be able to predict feedback
(LANG + FP), as this allows them to robustly an-
ticipate the outcome of a given action, even if it is
not the action that was originally predicted. This
means the model can retain 75% of the original
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Figure 4: Comparison of success rates under various robustness evaluation settings. We report robustness results on
in-distribution data and average over Pickup and PutNext tasks. From left to right: a) representations of subgoals,
b) external perturbations, c) adversarial feedback, d) missing feedback. b)-d) correspond to alternative inference
scenarios. ST=suboptimal trajectories, FP=feedback prediction.

performance, making it equally as robust to ex-
ternal perturbations as models trained with scalar
rewards (SCALAR and SCALAR + FP). Contextu-
alising the language feedback with scalar rewards
(COMBO + FP) can further aid recovery, lead-
ing to the most robust model variant, which retains
78% of the original performance when faced with
external perturbations.

Robustness to adversarial or missing language
feedback. We test the sensitivity of models
trained with language feedback to scenarios where
feedback is either unhelpful or adversarial, or en-
tirely unavailable. We simulate the adversarial case
by providing random English sentences at random
time steps. Figure 4c-d show that in these settings,
the performance of models trained with language
feedback collapses. While we consider this a posi-
tive sign that models do not simply learn to rely on
spurious correlations (Parekh et al., 2024), it is ulti-
mately desirable for them to be effective and safe in
a range of deployment scenarios. Our experiments
further reveal that when models are trained on both
language and the corresponding scalar rewards and
additionally required to learn to predict the result-
ing language feedback for their actions (COMBO
+ FP), they retain 70%–80% of their original per-
formance. We attribute this effect specifically to
the combination of scalar rewards as context and
the ability to anticipate feedback, as in isolation,
these augmentations do not provide any tangible
benefits. For additional adversarial test scenarios,
refer to Appendix H.

Solution efficiency. We normalise the path
lengths of successful episodes by the correspond-
ing oracle path lengths and use this as a proxy for
how efficient solutions were. Table 3 shows that
all models, including the baseline that only learns
from optimal trajectories, on average favour solu-

Enhancement ON Path Lengths

Feedback ST FP Mean Min Min (train)

NONE
× × 220.9% 94.1% 91.7%
✓ × 253.8% 75.0% 89.5%

SCALAR
✓ × 244.1% 69.2% 86.2%
✓ ✓ 239.1% 69.2% 89.5%

LANG
✓ × 240.8% 69.2% 89.5%
✓ ✓ 233.6% 75.0% 89.5%

COMBO
✓ × 245.4% 69.2% 86.2%
✓ ✓ 236.1% 75.0% 89.5%

Table 3: Oracle-normalised path lengths of success-
ful episodes for in-distribution missions, averaged over
Pickup and PutNext tasks. <100% corresponds to more
efficient solutions, and >100% to less efficient solutions.
ST=suboptimal trajectories, FP=feedback prediction.

tions that are less efficient than the oracle paths.
At the same time, all models are able to find more
optimal paths than the oracle5, including for mis-
sions seen during training. As expected, including
suboptimal trajectories but no feedback makes so-
lutions the least efficient, while only learning from
optimal trajectories results in the highest path effi-
ciency. The results indicate that when models are
trained with language feedback and the auxiliary
feedback prediction task, they are able to learn the
most efficient solutions from suboptimal data.

5.3 Data efficiency and data scaling

We compare the performance on a representative
compositional generalisation setting (Systematic-
ity) for all models, as well as a PPO (Schulman
et al., 2017) baseline6 when training on 25%, 50%
and 100% of the data used in our experiments. The
results in Figure 5 suggest that the models con-

5While the BFS-planner oracle always yields successful
paths that are near-optimal but not guaranteed to be optimal.

6We adopt implementation and hyper-parameters in the
original BabyAI benchmark, as detailed in Appendix C.
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Enhancement Proportion of data

Feedback ST FP 25% 25%→50% 50%→100%

NONE
× × 13.1 +0.6 +3.3
✓ × 11.6 +3.0 +0.5

SCALAR
✓ × 53.6 +10.0 +6.0
✓ ✓ 55.0 +9.6 +4.9

LANG
✓ × 50.7 +9.5 +7.8
✓ ✓ 52.0 +7.7 +10.0

COMBO
✓ × 53.4 +4.6 +12.2
✓ ✓ 49.9 +11.1 +10.8

Table 4: Change in success rate (%) when doubling the
amount of training data. ST=suboptimal trajectories,
FP=feedback prediction.

Figure 5: Change in success rate on Systematicity tasks
as the amount of training data increases, averaged over
Pickup and PutNext tasks. ST=suboptimal trajectories

textualising suboptimal training trajectories with
any form of feedback are not only more data ef-
ficient than either IL from optimal trajectories or
PPO, they also show much stronger scaling prop-
erties. It appears that the COMBO variant shows
the strongest late-stage scaling, which suggests that
this setting may require more data to outperform
settings using single feedback types.

6 Conclusion

The continued popularity of language modelling
objectives for LLMs sparked great interest in re-
visiting IL techniques for embodied agents (e.g.,
Ehsani et al., 2024). However, these are limited
due to their inability to exploit suboptimal trajecto-
ries for learning more generalisable and robust be-
haviour. In this paper, we demonstrate the potential
of language feedback as an efficient and intuitive
feedback mechanism for IL when the dataset either
contains or consists entirely of suboptimal trajecto-
ries, and show its potential as a viable alternative to

scalar rewards for tasks specified in language. We
define an experimental setup based on a highly con-
figurable 2D grid-world environment for learning
from pixel-based, partial observations, which we
designed expressly to assess performance along dif-
ferent axes of compositional generalisation (Hup-
kes et al., 2019). We show that models trained with
both optimal and suboptimal data and feedback ex-
hibit superior compositional generalisation abilities
and increased robustness. We find that language
feedback is not only a suitable alternative for scalar
rewards for harnessing the learning potential of
suboptimal samples, but also shows how we can in-
crease robustness of models trained with language
feedback with auxiliary feedback or by combining
the strengths of both approaches. We are optimistic
that our findings will inform future work on LLM-
based policies and that language feedback can play
a role in different fine-tuning regimes and for align-
ment with human preferences.

Limitations

Environment complexity. This work is con-
ducted in BabyAI-XGen, a grid-world environment
that, while providing controlled experimental con-
ditions, falls short of the visual realism, continuous
action spaces, and physics fidelity of real-world
robotic tasks. We chose this environment to en-
able precise control over a range of compositional
generalization factors, and to ensure reliable trajec-
tory generation, which would be difficult to achieve
in more complex 3D environments. However, the
central principle of learning from suboptimal tra-
jectories contextualized with feedback is domain-
agnostic, and future work should explore scaling to
more realistic environments where optimal trajec-
tories may be even harder to obtain.

Limited model architecture. Our approach uses
a relatively small Transformer backbone (~90M
parameters) trained from scratch, which may not
reflect the capabilities of larger foundation mod-
els. This choice was made to avoid confounding
factors from pre-trained knowledge and ensure fair
comparison across feedback conditions. Future
work should investigate how pre-trained language
models and the corresponding larger architectures
might better leverage feedback signals, particularly
for more complex reasoning about multi-step er-
rors and corrections (Chiyah-Garcia et al., 2024),
keeping in mind that careful scaling of training data
to match the increased model capacity will likely
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be required, as our current dataset size could lead
to overfitting or suboptimal utilization of larger
architectures.

Synthetic feedback generation. We generate
feedback programmatically using environment in-
ternals rather than studying feedback quality or gen-
eration mechanisms. This approach enables con-
trolled experimentation without confounding fac-
tors from inconsistent or incorrect model-generated
feedback while minimising computational over-
heads. However, future work should explore
the development of more sophisticated step-level
feedback generation mechanisms involving VLM-
based systems.

Cost and practicality of feedback collection.
While our results demonstrate the effectiveness of
language feedback, practical deployment faces im-
portant cost considerations. We focused on system-
atic feedback generation to isolate the core research
question of whether feedback can transform sub-
optimal data into useful learning signals. However,
for many embodied domains, step-level scalar re-
wards and language feedback will likely require
human annotation or sophisticated reward models,
with language feedback potentially incurring higher
costs than scalar rewards. Future work should sys-
tematically evaluate these tradeoffs across differ-
ent domains and explore efficient feedback collec-
tion strategies, particularly for interactive domains
where language feedback is inherently more in-
tuitive than scalar scores—such as collaborative
robotics requiring natural human-robot communi-
cation, interactive tutoring systems where explana-
tory feedback aids learning, and multi-agent coor-
dination tasks where agents need to understand and
communicate about errors and corrections.

Potential Risks and Ethical Considerations

We believe our work on enhancing embodied AI
through constructive language feedback holds sig-
nificant promise for developing more robust and
adaptable robotic systems. By enabling agents to
learn from a wider range of demonstrations, includ-
ing suboptimal ones, we move closer to creating
AI that can effectively operate in complex and un-
predictable real-world environments. However, the
ability of AI agents to learn from and act upon
language feedback also introduces important eth-
ical considerations and potential risks. As these
systems become more sophisticated and integrated

into our lives, ensuring their safety, reliability, and
fairness becomes paramount. For instance, if lan-
guage feedback is biased or malicious, an embod-
ied AI agent could learn and perpetuate harmful
behaviors or make decisions with unintended nega-
tive consequences in real-world scenarios. Aware
of this potential issue, we have designed our exper-
imental setup with robustness in mind and defined
specific scenarios where we are challenging mod-
els with unexpected actions or adversarial language
instructions. As shown in our experiments, mod-
els trained to predict feedback are more resilient
to these perturbations, offering a more compelling
solution for future applications.

Due to these reasons, we also decided to focus on
a controllable environment where action execution
can be simulated without major repercussions on
the world and the humans within it. However, we
also acknowledge that, due to this reason, the mod-
els trained in this setting might be biased towards
simulation environments and might not directly
generalize to real-world environments.
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A Further background on related work

Language-guided embodied AI An exception
to the customary approach of creating embodied
AI datasets from planner-generated trajectories is
TEACh (Padmakumar et al., 2021), which was col-
lected from pairs of human annotators collaborat-
ing to complete tasks in the simulated environment.
A proportion of TEACh trajectories contain ineffi-
ciencies and corrections, typically resulting from
miscommunication between the (Min et al., 2022).
However, any such occurrences of suboptimal be-
haviour in TEACh are incidental rather than sys-
tematic, and the dataset does not include multiple
example trajectories for the same task instance.

Language as feedback For the purpose of our
study, we consider language feedback from an or-
acle that is external to the agent itself, and there-
fore does not directly apply to cases where agents
self-improve through an internal process of self-
reflection (Madaan et al., 2024; Yao et al., 2022).

Compositional generalisation As has been ar-
gued in Kirk et al. (2021), many of the categories of
compositional generalisation originally introduced
by Hupkes et al. (2019) for language are applicable
for agents in interactive environments; we focus
on two of the five categories: Systematicity and
Productivity and test to what extent learning from
multiple solutions and suboptimal behaviour can
translate into increased Systematicity and Produc-
tivity in agents that have access to different feed-
back signals. For details on the remaining three
categories, we refer the reader to the original def-
initions in Hupkes et al. (2019). In the context
of embodied agents and interactive environments,
Systematicity pertains to the ability to systemati-
cally recombine known components and rules to
novel combinations (Hupkes et al., 2019; Kirk et al.,
2021). Kirk et al. (2021) refer to this as combinato-
rial interpolation, as the agent needs to interpolate
to values of environment parameters which it has
seen independently but not in combination. Pro-
ductivity, which Hupkes et al. (2019) define as the
ability of models to generate to output sequences
that exceed the length of the sequences seen during
training, is loosely equivalent to extrapolation in
(Kirk et al., 2021), according to which the values
for a single or multiple environment parameters
fall outside the ranges seen during training; as the
resulting environments tend to be more complex,
agents are typically required to generate longer tra-

Parameter Value

vocab_size 1
hidden_size 768
intermediate_size 3072
num_hidden_layers 768
num_attention_heads 12
num_key_value_heads 12
hidden_act SiLU
max_position_embeddings 2048
initializer_range 0.02
rms_norm_eps 1e-6
use_cache True
pad_token_id None
bos_token_id 1
eos_token_id 2
pretraining_tp 1
tie_word_embeddings False
rope_theta 10000.0
rope_scaling None
attention_bias False
attention_dropout 0.0
mlp_bias False
head_dim None

Table B.1: Configuration of our Llama-style backbone.
Most values are taken from the huggingface implemen-
tation (Meta and Hugging Face, 2024). Values we over-
ride are highlighted in italics.

jectories than those present in the input. In the case
of language-guided embodied tasks, we can define
compositionality with respect to the language of
the mission instructions or the complexity of the
environment.

B Method details

Transformer backbone. Unlike the Decision
Transformer, which uses a scaled-down GPT-2
model(Radford et al., 2019) at its core, we adapt
architecture from Llama2 (Touvron et al., 2023)
to serve as our Transformer backbone, which al-
lows us to leverage innovations such as the RoPE
(Rotary Position Embedding) positional encodings,
Grouped-Query Attention (GQA), and longer con-
text lengths to facilitate learning from entire tra-
jectories, rather than sub-trajectories of limited
context lengths, as well as more efficient training.
Specifically, we use the Flash Attention implemen-
tation of Llama from Huggingface. Note that we
do not use the original Llama2 configuration or
weights; instead we use the model dimensions cor-
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(a) Input and output tokens of the models used in our experi-
ments. For instance, models using scalar feedback condition
action generation on instructions and returns-to-go, and op-
tionally predict rewards of the next time step.

(b) Further possible models supported by our flexible token
masking scheme.

Figure B.1: We use a flexible token masking scheme
inspired by Carroll et al. (2022) to achieve different con-
figurations from the same base model to mask unused
tokens, where mi=instructions, fi=language feedback,
ri=returns-to-go/rewards, oi=observations, ai=actions.

responding to those use for the Base size of Octo
(Team et al., 2024), a pretrained Transformer-based
robot policy, and randomly initialise weights. We
give an overview of the configuration of the Llama-
style backbone in Table B.1

Flexible token masking. Similar to Carroll et al.
(2022), we devise a flexible masking scheme to fa-
cilitate conditioning on different additional tokens
while keeping the model architecture constant and
reusing the same datasets for different feedback
options. Supported additional tokens range from
one-off language instructions, to scalar rewards,
language feedback, and their combination. Tokens
are either masked out for the whole sequence if
irrelevant for a given test case or only for those
time steps they were not provided for. Figure B.1a
illustrates the masking schemes used for our mod-
els used in this study, while Figure B.1b highlights
additional use cases of our masking schemes. For
instance, we can accommodate arbitrary combina-
tions of feedback prediction objectives, and option-
ally repeat the mission instructions at every step

Token embeddings. While our design is delib-
erately modular and supports a range of image
and text encoder options, we opt for sentence-
level text embeddings from a fully frozen Sentence-
BERT (Reimers and Gurevych, 2019) correspond-
ing to the pre-trained general purpose model
all-mpnet-base-v2, for the mission instructions
and language feedback (where applicable) to allow
us to condense long text inputs into compact vec-
tor representations corresponding to a single token,
and a custom CNN image encoder (see Table B.2)
proposed for pixel-based RL experiments in Min-
iGrid and BabyAI by (Willems, 2023), which we
train concurrently with the policy, and which con-
denses the image input into one token. Compress-
ing the multi-modal input modalities into a single
token per timestep most closely aligns with the in-
put into the Transformer backbone is constructed
in Decision Transformers. We project language em-
beddings using a projection layer similar to LlaVa
(Liu et al., 2023), where f(Xt) is the text encoder,
and W is the projection matrix which maps the text
features into the target embedding space with the
dimensionality of the Llama-style backbone (Equa-
tion (1)). The image embeddings are projected
using a simple projection layer in keeping with the
implementation of the CNN used for BabyAI.

Ht = W · Zt, with Zt = f(Xt) (1)
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Block Operation In Ch. Out Ch. Kernel

Conv Block 1 Conv2D 3 16 (2, 2)
ReLU 16 16 –

Pooling MaxPool2D 16 16 (2, 2)

Conv Block 2 Conv2D 16 32 (2, 2)
ReLU 32 32 –

Conv Block 3 Conv2D 32 64 (2, 2)
ReLU 64 64 –

Output Flatten 64 – –

Table B.2: Architecture of the custom CNN used to em-
bed image observations adopted from (Willems, 2023).

We embed the discrete actions and timesteps
using Embedding layers. After adding the
timestep embeddings to the token-specific embed-
dings, the token embeddings for each timestep
are interleaved to form flattened sequences,
(m1, r1, f1, o1, a1, ... ,mT , rT , fT , oT , aT ), where
T is equal to the number of steps of the trajec-
tory. The interleaved token embeddings are then
normalised and passed as input to the Llama-style
backbone, along with the corresponding attention
mask, where we mask out unused tokens. Note
that, unlike in the original Decision Transformer,
we leverage an additional level of position embed-
dings for each token in the flattened sequence in
the Llama-style backbone.

Prediction heads and losses. We follow previ-
ous work on Decision Transformers (Chen et al.,
2021) and learn to predict actions in the environ-
ment as a next token prediction task by minimis-
ing cross-entropy loss of the actions. We consider
this as our main loss function for the training of
the agent’s policy. We consider several auxiliary
losses aimed at predicting property tokens at the
next timesteps. We define auxiliary losses for a
range of property tokens including image tokens,
reward tokens, and feedback tokens. Our losses are
inspired by the latent imagination method by Elliott
and Kádár (2017). For each loss, we leverage the
hidden state ht associated with the timestep t of our
Transformer backbone to predict the embedding of
the property token at the next timestep pt+1 via a
dedicated prediction head P . We report below the
details of each loss.

Action token prediction. For the action predic-
tion, we treat this as a classification task over the
discrete action space. We assume the target to be

the action at+1. We define a prediction head Pa

as a linear layer that takes the hidden state ht and
outputs unnormalized logits over the action vocab-
ulary. We use the cross-entropy loss as follows:

La = −
T∑

t=1

log(p(at|ht−1)) (2)

Feedback token prediction. For the feedback
prediction, we assume that our embedding repre-
sentation for the feedback is the Sentence-BERT
representation ft+1 associated with the feedback in
position t+ 1. We define a prediction head Pf as
a linear layer with GELU activations. We use the
MSE loss as follows:

Lf = MSE(Pf (ht), ft+1) (3)

Reward token prediction. For the reward pre-
diction, we assume the target to be the reward Gt+1

associated with the reward in position t + 1 (see
Appendix E for details). We define a prediction
head Pr as a linear layer with SIGMOID activation.
We use the MSE loss as follows:

Lr = MSE(Pr(ht), Gt+1) (4)

Image token prediction. For the image predic-
tion, we follow a similar definition to Elliott and
Kádár (2017), but instead of the MSE loss, we
calculate the loss based on the Cosine similarity
between the image embedding the it+1 produced
by the CNN encoder for the timestep t + 1, and
the image embeddings predicted by the prediction
head consisting of a linear layer Pi with RELU
activation. We use a Cosine loss as follows:

Li = 1− cos(Pi(ht), it+1) (5)

In our experiments, we found this loss did not
improve performance consistently compared to
the baseline (see Appendix G). We leave for fu-
ture work exploring more specific training regimes
which can better leverage this loss following work
in self-supervised representation learning (Caron
et al., 2021; Jaderberg et al., 2016).

Weighted average loss. Due to the difference in
magnitude between the different losses, we learn
via SGD a loss-specific weight to balance the con-
tribution of each auxiliary loss. We compute the
final loss as a weighted average of the different
losses used by a certain model configuration.
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Name Type Params

Embed returns Linear 1.5K
Embed images Custom CNN 10.5K
Embed actions Embedding 5.4K
Embed timesteps Embedding 444K

Project image embeddings Linear 30.7M
ReLU

Project language embedding Linear 1.2M
Linear
GELU

Normalise embeddings LayerNorm 1.5K

Backbone LlamaModel 113M

Predict actions Linear 4.6K
Predict feedback emb. Linear 590K

GELU
Predict image emb. Linear 590K

ReLU
Predict rewards Linear 769

Sigmoid

Table B.3: Model architecture, for a total parameter
count of ∼146M. Optional modules in italics. Note
that we pass only the instructions through the language
embedding projection layers for models that don’t use
language feedback. Details on the CNN and the Llama
backbone are provided separately.

C PPO baseline

The PPO baseline is trained on the equivalent
amount of data as our multi-task IL models but
only on single tasks (e.g. Pickup or PutNext).
This corresponds to ~9K, ~18K and ~36K tra-
jectories, and evaluated only on the equivalent
evaluation task. We train five PPO models cor-
responding to the same global seeds used for our
other models, and average their performance. Note
that Chevalier-Boisvert et al. (2018) find that solv-
ing the comparable PickupLoc and PutNext tasks
from the original BabyAI suite using symbolic
observations requires ~1.4-1.6M and ~2.2-2.7M
training episodes, respectively. Our findings show
that the generalisation performance of the PPO
baseline when trained on only up to 36K trajecto-
ries, corresponding to less than ~2.5% of data, is
marginally below random performance. We use
the hyper-parameters and acrhitecture correspond-
ing to the implementation from the GitHub reposi-
tory published for Chevalier-Boisvert et al. (2018)7,
but use the pixel-based observations and the corre-
sponding image encoder.

Figure D.1: An illustration of selected controllable pa-
rameters in our version of BabyAI.

D Environment details

BabyAI (Chevalier-Boisvert et al., 2018) builds
on top of MiniGrid to procedurally generate so-
called missions in abstract 2D grid worlds, where
a mission is defined as the combination of a set of
mission instructions and initial environment state
(Chevalier-Boisvert et al., 2018).8 The discrete
action space consists of navigation and manipula-
tion actions (left, right, forward, pickup, drop,
toggle) and an optional done action. As we do not
require the agent to indicate when it has finished a
task, we constrain the action space to exclude the
done action, which reduces the number of possible
actions to |X| = 6. By default, BabyAI environ-
ments are partially observable, and observations
are symbolic representations of a top-down view of
the grid. BabyAI approximates an egocentric agent
perspective by masking out tiles in the grid that are
currently not in the agent’s field of view because
they are hidden behind walls or behind the agent.

7github.com/mila-iqia/babyai
8We use a similar definition to describe the more generic

term of task instance.
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Since we desire models to learn from pixels, we use
an RGB image wrapper to map partial observations
into pixel space.

The 19 original levels in BabyAI were designed
to be used as a multi-task benchmarking suite and
for curriculum learning, and evaluates agents on a
range of skills. Besides understanding action lan-
guage and goal object attributes, agents need to
be able to navigate single rooms and multi-room
mazes, unblock the path to doors, and guess to un-
lock doors during navigation. Additionally, some
levels test the agent’s understanding of spatial or
temporal language: the agent may have to identify
goal objects as specified by a location descriptor
(e.g., ‘pick up the blue key on your left’), or to
understand composite instructions, whereby mul-
tiple instruction clauses are chained together in a
sequence that may or may not require the instruc-
tions to be executed in a specific order (e.g., ‘pick
up the green ball after you pick up the purple box’).

As BabyAI was not designed with composi-
tional generalisation in mind, it does not expose the
means to control environment parameters such that
ptrain ̸= ptest. Additionally, due to the mechanism
by which instructions and objects are sampled to
procedurally generate missions, not all missions
for a given level will test the skill introduced by
the level. From initial experimentation, we find
that understanding location language and compos-
ite instructions, as well as unblocking or unlocking
doors, and even maze navigation are not strictly re-
quired for all missions of those levels meant to test
the respective skill. While we assume that this is a
deliberate design choice allowing a phasing in of
skills for curriculum learning, it limits the level of
control that can be exerted over the parameters of
the environment further, and hinders the systematic
evaluation of different skills.

As Kirk et al. (2021) argue, environments should
be controllable and possess a structured parame-
ter space to constitute a suitable test bed for most
forms of compositional generalisation. As is the
case with BabyAI, controllability is typically not
supported for environments that facilitate procedu-
ral generation. Previous work attempting to use
BabyAI for compositional generalisation (McCal-
lum et al., 2023) achieves different training and
test distributions by generating a large number of
BabyAI missions and filtering for those with the
desired goal object attributes. This approach scales
poorly to larger datasets and beyond one or two pa-
rameters. We devise a more scalable approach and

build on top of the BabyAI-MiniGrid ecosystem
to develop BABYAI=XGEN, a version of BabyAI
which gives users full control over a comprehensive
range of environment parameters by simply pass-
ing a config object with the desired configuration
when instantiating an environment with gym.make.
We provide an exhaustive list of controllable pa-
rameters in Table D.1, and illustrate a selection of
parameters in Figure D.1. As BabyAI is now inte-
grated into Gymnasium (Towers et al., 2024), we
will release BABYAI-XGEN following Apache 2.0
License.

E Dataset details

For the suboptimal trajectories, we use p1 = 0.5
and p2 = 0.75 to replace planner actions with ran-
dom actions and achieve different degrees of sub-
optimality (see Equation (6). While we refer to the
planner generated trajectories as optimal, we ac-
knowledge that BFS does not guarantee optimality;
however, BFS is efficient and there is no explo-
ration.

At =

{
a, with prob. 1− ρ,

x ∼ U(A), with prob. ρ
(6)

We construct a range of multi-task datasets with
an equal number of trajectories per task, where
the number of training tasks ranges from three for
the experiments for compositionality in language,
to nine for the experiments testing composition-
ality in the environment. We list the of the train-
ing and evaluation tasks, along with details on the
configurations used to instantiate the tasks, in Ta-
ble E.1. As (Kirk et al., 2021) note, a model that
has seen a wide range of possible values for a pa-
rameter during training will be able to perform
better on unseen values at test time than a model
whose training data contained only one possible
value for the parameter. We therefore ensure that
we include examples of multiple possible parame-
ter values in the training data. Likewise, we expose
models to missions requiring skills of various de-
grees of difficulty, whereby harder skills build on
top of harder skills (Goto < Pickup < PutNext).
For mazes, we assume a similar relationship be-
tween single rooms and mazes (where single room
< maze), and open, closed and locked doors (where
open doors < closed doors < locked doors).
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Parameter Description

room_size The number of cells in a room
num_rows How many rooms a maze should have (in the y dimension)
num_cols How many rooms the maze should have (in the x dimension)
remove_walls Whether to combine multiple maze rooms by removing walls

num_objs The total number of objects in a given room or maze (including goals and distrac-
tors/obstacles)

duplicate_goals Whether to include multiple duplicate instances of the goal object, or only one
unique goal object; affects article usage in instructions (e.g., “pickup the blue key”
vs “pickup a blue key”)

dists_unique Whether all distractor objects should be unique
dists_include_similar Whether to include distractor objects that share attributes with goal objects; adds a

distractor for each specified goal object attribute (color, shape, location)
avoid_overlapping_goals Whether to avoid sampling goal objects with overlapping attributes

only_objs Permissible object attributes as lists of (color, shape) combinations for distrac-
tors and goals

only_locations Similar to only_objects but for lists of location
exclude_objects Disallowed object attributes as lists of (color, shape) combinations
exclude_locations Similar to exclude_objects but for lists of location

distinguish_by Whether to refer to goal objects by color, shape and/or location in instructions;
False means never use that attribute, True enables random usage unless specified
in strict

action_kinds The action language available in mission instructions: can be one or multiple of
goto, open, pickup, or putnext

instr_kinds Whether to generate single instructions (action) or sequential instructions (and,
before, after), or combinations

seq_complexity Number of single instructions in sequences: low (two), medium (three), high, or
combinations

multiple_locations Controls location language for multiple goal objects: True, ’strictly’, or False

unblocking Controls path unblocking requirements: False, True, or ’strictly’ (maze-only)
explicit_unlocking Whether goal doors need unlocking as additional goal condition (maze-only)
implicit_unlocking Similar to unblocking, but for unlocking doors along goal path
all_doors_open Whether all maze doors start open (maze-only)
goal_room_same_as_start Controls goal object placement relative to start room: False, True, or ’strictly’

(maze-only)

verify Optional verification settings: ’use_done_action’ or ’strict’ mode

Table D.1: Configuration parameters for maze generation and mission instructions

Figure F.1: We extend the task feedback oracle in McCallum et al. (2023) and provide positive and negative task
feedback with templates. We sample exclamations from predefined options, the rest is specific to mission and action.
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Compositionality in Instructions

Train Datasets Test Datasets Important Configurations

Systematicity
GoToColorType GoToColorTypeUnseen Train: Excludes yellow balls from goals and

distractors
PickupColorType PickupColorTypeUnseen Test: Yellow balls as goals only, with similar

distractors maintained
PutNextColorType PutNextColorTypeUnseen1

PutNextColorTypeUnseen2

Productivity (color)
GoToOnlyColor GoToOnlyColorUnseen Train: Excludes yellow objects from goals

and distractors
PickupOnlyColor PickupOnlyColorUnseen Test: Yellow objects as goals only, with sim-

ilar distractors maintained
PutNextOnlyColor PutNextOnlyColorUnseen1

PutNextOnlyColorUnseen2

Productivity (location)
GoToLoc GoToLocUnseen Train: Excludes ’left’ location from goals
PickupLoc PickupLocUnseen Test: Only includes ’left’ location for goals
PutNextLoc PutNextLocUnseen

PutNextLocUnseen2

Productivity + Systematicity (seq)
PickupEasySeqAnd PickupMediumSeqBefore Train: Only obstacles as distractors, with

low sequence complexity
PickupEasySeqBefore PickupMediumSeqAfter Test: Only obstacles as distractors, with

medium sequence complexity
PickupEasySeqAfter

Compositionality in Environment

Productivity
Pickup PickupN16 Base: Only includes obstacles as distractors
PickupMaze1X2 PickupMaze2X3 Regular: Goal in different room, all doors

open
PickupMaze1X2Blocked PickupMaze2X3Blocked Blocked: Goal in different room, requires

moving obstacles
PickupMaze1X2DoorsClosed PickupMaze2X3DoorsClosed Closed: Goal in different room, doors ini-

tially closed
PickupMaze1X2DoorsLocked PickupMaze2X3DoorsLocked Locked: Goal in different room, requires

finding and using keys
PickupMaze2X2 PickupMaze3X3
PickupMaze2X2Blocked PickupMaze3X3Blocked
PickupMaze2X2DoorsClosed PickupMaze3X3DoorsClosed
PickupMaze2X2DoorsLocked PickupMaze3X3DoorsLocked

Table E.1: Overview of environment configurations used to generate our multitask training datasets and test
environments. Note that for our robustness experiments (see §5.2), we use the training configurations but instantiate
the test environments with unseen seeds.
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F Feedback details

To provide granular language feedback and denser
scalar rewards for all conceivable tasks in our cus-
tom BabyAI, we extend the rule-based feedback
oracles proposed in McCallum et al. (2023).

Task feedback. In line with (Xi et al., 2024a),
we increase the informativeness of the language
feedback compared with McCallum et al. (2023)
and construct the feedback string according to an
updated template, increasing diversity by sampling
from a range of predefined options when populating
the generic parts of the feedback template shown
in Figure F.1.

Affordance feedback. We adopt the rule feed-
back oracle from McCallum et al. (2023) with-
out any changes, but will refer to such language
feedback, which is triggered when agents execute
actions that have no visible effect on the environ-
ment due to its affordances, as affordance feed-
back. Such ‘failed’ actions include, for instance,
the agent trying to move forward through a closed
door, trying to open a wall, or attempting to put an
object on top of another object (which is not per-
mitted in BabyAI). A number of examples of task
feedback and affordance feedback are provided in
the appendix.

Shaped rewards. We leverage the success and
action failure detection mechanisms in the feedback
oracles to return intermediate scalar rewards. These
shaped rewards replace the default reward function
in BabyAI, which only provides a sparse reward
signal in the form of terminal, binary rewards as
shown in Equation (7), where γ is the discount
factor, n the number of steps the agent took, and
NT the step budget for a given task in BabyAI.

R(T ) =

{
1− γ · n

NT
if task success

0 otherwise
(7)

. This was informed by initial experiments showed
only marginal differences between the IL case and
return-to-go conditioning with the original binary
rewards (see Table F.1), as the returns-to-go are
identical for every timestep except the last. Fur-
thermore, they are identical for all training trajec-
tories, since we are not including trajectories for
failed episodes. According to the revised reward
function, agents receive a fraction of the terminal
reward based on the total number of subgoals in the
task each time they complete a subgoal; for each

Model Success Rate (%)

NONE 12.7
SCALAR (BINARY) 13.7
SCALAR (SHAPED) 69.5

Table F.1: Success rate (%) when using no feedback
(NONE), sparse returns-to-go (SCALAR (BINARY)) and
dense returns to go (SCALAR (SHAPED))

failed action, we assign a small negative reward.
The negative action failure rewards can be com-
bined with a binary terminal reward, or the dense
subgoal rewards.

Note that the target return during testing is set to
the terminal reward (G = 1.0).

R(G) =

{
1
|G| if subgoal achieved

0 otherwise
(8)

R(F ) =

{
−0.01 if failed action

0 otherwise
(9)

R(T ) =

{
1 if task success

0 otherwise
(10)

G Experimental framework

Baselines and variants. Our flexible architec-
ture as described in §3 serves as the basis for all
our baselines and variants; we simply unmask addi-
tional token modalities for scalar feedback (returns-
to-go) and/or language feedback and optionally
predict additional tokens, specifically the scalar re-
wards and language feedback. For all model types,
we initialise five models using different random
seeds. We use the same hyperparameters across
models in the same model family, that is, mod-
els that use the same feedback signal; note that
preliminary hyperparamter-focused experiments,
show that slightly different batch sizes and learn-
ing rates are best for the baseline, the variant using
language feedback, and the variants using scalar
rewards. The hyperparameter choices can be found
in Table G.1. Note that rather than sub-trajectories
of a given context length, all models use the full
trajectory as context; trajectories are padded to the
length of the longest trajectory in the batch. De-
spite trying different model sizes following Team
et al. (2024), we report results of the BASE size for
all our model variants.
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Hyperparameter Value
Optimizer AdamW
Weight Decay 0.0001
Gradient Clip Threshold 0.25
Learning Rate 1e-5*
Batch Size 32*
Max training epochs 20
Early stopping min delta 0.01
Early stopping monitor action loss (val)
Early stopping mode min
Early stopping patience 2 epochs
Total trajectories seen 33,684 **
Examples per optimizer step 128

Table G.1: Hyperparameters using during model train-
ing. *For the variant with the language feedback
(LANGUAGE), we use lr=2.5e-5, and for the variants us-
ing scalar feedback (SCALAR and COMBINED), we use
lr=5e-5 and a batch size of 64. **For the experiments
testing compositionatily in the environment, models will
have seen 110,052 trajectories. Note that the length of
the trajectories varies quite significantly, and we refrain
from providing an estimate for the number of transitions
seen.

Computing infrastructure and computational
budget. We trained and evaluated all models us-
ing up to six NVIDIA A40 GPUs with 48GB,
with runs taking around 3-8 hours when training
on multi-task datasets with three tasks, and ap-
proximately 25 hours when training on multi-task
datasets spanning nine tasks. Evaluation runs took
between 1.5 and 7.5 hours, depending on the com-
plexity and number of evaluation tasks, as well as
the quality of the obtained models9. In a total, the
required compute budget for this work given the
hardware used is 2,000 GPU hours.

H Further experimental details and
results

All results are averaged across 128 missions per
evaluation task and 5 different model seeds. Note
that we use designated evaluation configurations
for our compositional generalisation experiments;
for all other experiments, we instantiate the envi-
ronments according to the training configurations
but with unseen seeds to ensure that agents have to
generalise to unseen task instances, while disentan-
gling the results from skills required for composi-

9Models with poor performance took longer to evaluate
than models with fair or good performance, as performance
translates into the number of evaluation episodes that lasted
for the maximum number allowed steps

Figure H.1: Comparison of success rates under addi-
tional adversarial language feedback evaluation settings.
We average performance on in-distribution Pickup and
PutNext tasks. From left to right: a) replace feed-
back with random sentences, d) replace feedback with
lorem ipsum sentences. ST=suboptimal trajectories,
FP=feedback prediction

Figure H.2: Comparison of success rates when inter-
actions with non-goal objects are allowed vs. when
they lead to early termination (task failure). We av-
erage performance on in-distribution Pickup and Put-
Next tasks. Note this refers to the inference scnenario.
ST=suboptimal trajectories, FP=feedback prediction.

tional generalisation.

External perturbations. We adapt sticky actions
from Machado et al. (2017), who introduced this
setting to introduce non-deterministic behaviour in
the Atari Learning Environment (Bellemare et al.,
2012). At every time step, instead of the agent’s
current action, the environment executes the agent’s
previous action again with a probability defined by
stickiness parameter ζ. Concretely, at time step t
the agent chooses an action a and takes a step in
the environment with action At. The full equation
is given in the appendix.

At =

{
a, with prob. 1− ζ,

at−1, with prob. ζ.
(11)

11 According to this, sticky actions may be exe-
cuted for k consecutive time steps with a probabil-
ity of (1− ζ)kζ.

Adversarial feedback. We test in total three ad-
versarial scenarios, whereby we: 1) provide ran-
dom English sentences at random timesteps, or
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replace language feedback with 2) random Lorem
Ipsum sentences, or 3) random English sentences.
Note that for English sentences, we avoid sampling
words which occur in the actual language feed-
back. We consider case 1), the results for which are
reported in §5.2, the most adversarial scenario, as
feedback is neither semantically relevant nor timely.
A similar setting to 2) and 3) has been explored
in Parekh et al. (2024), who perturb instructions
into Gobbledygook Words. Instead, we explicitly
choose adversarial feedback that is similar to the
actual feedback. We show cases 2) and 3) in Fig-
ure H.1, and can identify no noticeable difference
for the baseline and the models trained on both
language feedback and scalar feedback between
the two cases, and only minimal difference for the
models trained only on language feedback. We
note that the performance of the most robust model
is slightly worse when feedback is missing (see
Figure 4d), compared with the adversarial cases.

Solution Efficiency. We calculate our oracle-
path normalised path lengths as shown in Equation
Equation (12), where L∗

i is the number of steps in
the expert demonstration for a given task instance,
and L̂i the number of steps it took the model to
complete the task, averaged across all successful
episodes. This is inspired by the path-weighted suc-
cess rate in Shridhar et al. (2019), which combines
the overall success rate with the efficiency of suc-
cessful paths. We choose to disentangle these two
aspects of success and provide them as separate
metrics, specifically success rate and partial suc-
cess rate across all evaluation episodes, and oracle-
path normalised path lengths only for successful
episodes.

pon =
1

N

N∑

i∈S

L∗
i

L̂i

(12)

Strict Task Success. As an additional setting, we
test whether models trained with language feed-
back learn behaviours that see them unnecessarily
interacting with distractor objects to elicit feedback,
which may be undesirable during deployment and
results in less efficient solutions. Using the strict
evaluation setting, which terminates episodes early
as failed when the agent interacts with (picks up)
distractor objects. Figure H.2 shows that when eval-
uating models in strict mode, performance does not
deteriorate noticeable for models trained with ac-
cess to feedback signals, while the performance of
the baseline drops to 70% of the original perfor-

Model Success Rate (%)

NONE 14.1
NONE (FP) 14.4

Table H.1: Success rate (%) of the baseline trained
without any additional feedback (NONE) signal with
and the auxiliary task of predicting the next image (FP).

mance when trained only on optimal trajectories,
and 65% when trained on both optimal and subop-
timal trajectories, which indicates that the baseline
exhibits more inefficient trial-and-error behaviour
at inference.

Image prediction loss. We find that models that
can predict the embedding of the next image ob-
servation, which could be considered visual feed-
back, do not tend to outperform models that only
predict the next action (see Table H.1). We hypoth-
esize that this is in part due to the abstract nature
of the grid world and the birds eye view, where
there is little variation in the observations, with the
background and objects being represented as solid
colour blocks. Since objects take up at most one
cell and in combination with the discrete actions,
object interactions will never change more than 2
cells (or 3% of the visible pixels assuming an 8x8
room) when the agent is moved forward by one
cell, or 1 cell when an object disappears or reap-
pears as a result of a pickup or drop action, and can
be as minimal as a few pixels when the triangle of
the agent is rotated 90 degrees as a result of a left
or right navigation action. Conversely, due to the
partially observable nature of the environment and
the discrete nature of the action space, navigation
actions, particularly turning left or right, may result
in a considerable part of the environment abruptly
changing from visible to obscured or vice versa,
whereby the cells that are not visible to the agent
will simply be masked out. A more realistic ob-
servation space with a first person view and more
fine-grained actions may be a better fit for testing
the potential of leveraging the next observation as
visual feedback similar to human learning.

Model scale. To validate our architectural
choices, we conduct experiments examining how
model capacity affects performance across dif-
ferent feedback modalities. We train models of
varying sizes—tiny (~10M), small (~30M), and
base (~90M) parameters—while keeping training
data constant. The results, shown in Table H.2,
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Feedback Tiny (~10M) Small (~30M) Base (~90M)

NONE 11.9% 14.5% 12.7%
SCALAR 64.7% 68.4% 69.6%
LANG 60.9% 67.6% 67.7%
COMBO 67.6% 69.1% 70.4%

Table H.2: Success rate (%) across different model sizes,
showing plateauing beyond a certain capacity threshold.

demonstrate that performance plateaus beyond
a certain capacity threshold across all feedback
conditions. These findings indicate that BabyAI-
XGen presents fundamental challenges that can-
not be addressed through increased model capac-
ity alone. The performance bottleneck appears to
stem from the compositional generalization require-
ments rather than insufficient model capacity. Be-
yond the tiny-to-small transition, additional param-
eters provide diminishing returns, suggesting that
the core challenge lies in learning compositional
reasoning patterns rather than requiring larger rep-
resentational capacity. This behavior aligns with
the lottery ticket hypothesis (Frankle and Carbin,
2018), which demonstrates that overparameterized
networks contain sparse subnetworks achieving
comparable performance, indicating that much ad-
ditional parameter space remains unused for the
specific task requirements. In our compositional
generalization setting, the fundamental difficulty
lies in developing reasoning capabilities for novel
task combinations rather than memorizing com-
plex patterns that would benefit from increased
capacity. Our approach prioritizes isolating the
fundamental mechanisms of learning from subop-
timal trajectories with feedback. While pretrained
language models represent an important direction
for future work—particularly regarding how pre-
training might qualitatively affect feedback process-
ing—our current architecture provides sufficient
capacity to demonstrate the effectiveness of our
approach while maintaining experimental clarity
and avoiding confounding factors from pretrained
knowledge.

I Reproducibility

To meet the high reproducibility standards in the
ML research community, a fully reproducible train-
ing and evaluation framework is available via
github.com/sabraaap/fossil. This includes imple-
mentations for all experiments carried out. Models
were trained using PyTorch (Ansel et al., 2024)
and Lightning (Falcon and The PyTorch Lightning

Team, 2024), and dependencies were tracked us-
ing Poetry. Experiments were managed via Hydra
configuration files (Yadan, 2019), and all configura-
tions, commands, hyperparameters, and seeds used
are available and signposted clearly in the provided
codebase.

Environment. We register BabyAI-XGen, our
controllable environment based on BabyAI devel-
oped for generalisation research, as a Gymnasium
environment and provide several predefined config-
uration objects to reproduce not only the environ-
ments used to generate our datasets and evaluate
our models, but also blueprints for versions of the
existing BabyAI level suite. This can be accessed
at github.com/sabraaap/fossil.

Training data. All training data has been made
available via Hugging Face Datasets repositories
huggingface.co/fossil-eai/datasets. In addition,
training data can be regenerated using the dataset
generation scripts which is available in the provided
codebase at github.com/sabraaap/fossil.

Model checkpoints. All model checkpoints
are provided on the Hugging Face Hub at
huggingface.co/fossil-eai/models to facilitate fur-
ther experiments and explorations.
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