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Abstract

Automatic content moderation is crucial to en-
suring safety in social media. Language Model-
based classifiers are being increasingly adopted
for this task, but it has been shown that they
perpetuate racial and social biases. Even if
several resources and benchmark corpora have
been developed to challenge this issue, measur-
ing the fairness of models in content modera-
tion remains an open issue. In this work, we
present an unsupervised approach that bench-
marks models on the basis of their uncertainty
in classifying messages annotated by people
belonging to vulnerable groups. We use un-
certainty, computed by means of the confor-
mal prediction technique, as a proxy to analyze
the bias of 11 models against women and non-
white annotators and observe to what extent it
diverges from metrics based on performance,
such as the F} score. The results show that
some pre-trained models predict with high ac-
curacy the labels coming from minority groups,
even if the confidence in their prediction is low.
Therefore, by measuring the confidence of mod-
els, we are able to see which groups of annota-
tors are better represented in pre-trained models
and lead the debiasing process of these models
before their effective use.'

1 Introduction

Language models (LMs), including large language
models (LLMs), have been widely used in real-
world applications since their introduction due to
their ability to generate and understand human-like
text and have been adopted as street-level algo-
rithms (Alkhatib and Bernstein, 2019): technolo-
gies that are implemented to enforce the rules of
platforms based on user-generated content. In such
a sense, these technologies play the role of bureau-
crats, as they provide an interpretation of commu-
nity guidelines and decide accordingly which users’

'Code and data of our experiments are on https://gith
ub.com/aequa-tech/conformal-prediction-bias

behaviors must be removed and which not. Street-
level algorithms are widely present in social media
(Jiang et al., 2020), but their adoption is not limited
to this context. Toxicity classifiers such as the Per-
spective API (Hosseini et al., 2017) are used to filter
out unwanted texts from pretraining data, playing
a crucial role in the development of fair models.
Dignum (2023) highlights the over-reliance on data
of these technologies, leaving the power of what
the models know and how to address the problems
to those who produce and maintain the data. The
societal cost of doing that is high, and it has been
demonstrated that such technologies tend to per-
petuate social biases against vulnerable minorities,
whose opinion is less represented or excluded in
data (Kalluri, 2020).

In this paper, we investigate the presence of
biases towards underrepresented groups in hate
speech detection, using two datasets, Social Bias
Inference Corpus (Sap et al., 2020) and CREHate
(Lee et al., 2024), and across two dimensions: gen-
der and ethnicity. As bias, we refer to systematic
discrimination against a disadvantaged group of
people (Friedman and Nissenbaum, 1996), who
will suffer from representational harms because
systems tend to fail to recognize their existence
(Wang et al., 2022). We think that measuring the
uncertainty of models through the lens of annota-
tors with different sociodemographics could help
to identify social biases against vulnerable groups.

To this end, we exploit the conformal prediction
framework to assess the uncertainty and reliabil-
ity of model predictions. Unlike conventional ap-
proaches that prioritize accuracy, conformal predic-
tion provides a metric for evaluating the alignment
between model outputs and the confidence required
for fair decision-making. By identifying dispari-
ties, this framework offers a structured approach to
understanding biases, ultimately fostering fairness
and inclusivity in model design and evaluation.

Specifically, we formulate two research ques-
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tions.

RQ 1. Is a models’ uncertainty in automatic
content moderation a predictor of biases against
vulnerable groups to discrimination?

RQ 2. Can the fairness of models be as-
sessed using user representations based on un-
certainty?

Addressing these questions, we show that our
approach brings out general patterns of hidden
discrimination against non-white people but also
shows that some street-level algorithms are ex-
pected to be fairer than others.

The main contributions of this research are the
following: i. We introduce an unsupervised ap-
proach that leverages uncertainty to assess the fair-
ness of models’ predictions; ii. We provide a bench-
marking analysis of 11 NLP systems that exhibit
different levels of alignment with annotations pro-
vided by annotators belonging to vulnerable groups
to discrimination; iii. We demonstrate that rep-
resenting users through the uncertainty of model
predictions is effective to observe the tendency of
models to align with specific socio-demographic
groups.

2 Related Work

Unlike structured domains where uncertainty es-
timation is often a standard consideration, NLP
research has traditionally focused on maximiz-
ing accuracy-based evaluation metrics, such as £}
score and log-likelihood, underestimating the com-
putation of model uncertainty. Uncertainty mea-
sures reached, only recently, visibility in the NLP
community (Xiao and Wang, 2019; Vazquez et al.,
2024). NLP tasks, indeed, involve inherently am-
biguous data, where human label variation intro-
duces significant variability into annotated datasets.
And, in such cases, conventional evaluation metrics
fail to capture the full extent of model uncertainty,
potentially leading to overconfident and unreliable
predictions.

Bias detection. Scientific literature has revealed
important biases coming from data created and
annotated by specific segments of the population,
leading to the creation of non-neutral models (San-
turkar et al., 2023) and to the reinforcement of
social stereotypes (Caliskan et al., 2017). Vari-
ous techniques have been proposed to reveal bi-
ases and models’ viewpoints: evaluation of con-
textualized word embeddings (Basta et al., 2019;
Ethayarajh et al., 2019), specific evaluation frame-

works (Barikeri et al., 2021; Felkner et al., 2023),
questionnaires (Scherrer et al., 2023; Wright et al.,
2024), transformer-based recognizers (Benkler
et al., 2023), special prompts (Cao et al., 2023;
Tao et al., 2024), and interaction with users (Shen
et al., 2024; Kirk et al., 2024). Moreover, recent
theoretical frameworks (Uma et al., 2021; Frenda
et al., 2025) underline the need to take into account
various perspectives about linguistic and pragmatic
phenomena. Especially the detection of subjec-
tive phenomena (i.e., toxic language) proved to
be affected by different perceptions that reflect an-
notators’ backgrounds, beliefs, values, and identi-
ties (Sap et al., 2022; Fleisig et al., 2023). There-
fore, a content moderation system should be rep-
resentative of these different opinions, especially
if these opinions come from segments of the pop-
ulation that are actually targets of attacks online
(Kalluri, 2020). Focusing on toxic language detec-
tion, datasets like SBIC and CREhate with multi-
ple annotations and information about annotators
have been proposed and proved to be useful for
investigating biases (as we have done in this work),
building inclusive (Casola et al., 2023) and person-
alized models (Kocon et al., 2021), and providing
informative explanations about models’ decisions
(Mastromattei et al., 2022).

Confidence and multiple annotations. The
most common method to estimate confidence in
models is the logit-based method that assesses their
uncertainty using token-level probabilities employ-
able to LLMs (Geng et al., 2024) and other models
(Wu and Klabjan, 2021). In Frenda et al. (2023),
softmax-based measure of uncertainty has been em-
ployed to analyze the level of confidence of models
trained on the annotations of specific segments of
the population compared with a model trained on
majority voting decision, showing that the formers
tend to make a decision with less uncertainty than
the standard model. Similar results are reported by
Anand et al. (2024), where the use of Multi-Ground
Truths models, trained on instance-annotator label
pairs, improved confidence for samples character-
ized by substantial annotation disagreements. In
this last work, the confidence is computed as the
mean class probability for each data’s gold label
across the epochs.

Conformal Prediction in NLP. Differently from
previous works, we rely on conformal prediction
(Angelopoulos and Bates, 2023). This frame-
work offers a systematic way to account for model
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uncertainty, providing confidence measures that
can inform decision-making, improve model inter-
pretability, and mitigate biases in automated lan-
guage processing systems. One of its key strengths
is its ability to maintain robustness under distribu-
tion shifts, a property that has led to its widespread
adoption in fields such as time series analysis
(Shafer and Vovk, 2008; Papadopoulos, 2008). In
many real-world applications, models are trained
on datasets that may not fully capture the variabil-
ity and complexity of the data they encounter in
deployment. This discrepancy between training
and deployment distributions—commonly referred
to as distribution shift—can severely impact model
performance and reliability. Conformal prediction
helps mitigate this issue by providing statistically
rigorous uncertainty estimates that remain valid
even when the underlying data distribution changes
(Vovk et al., 2005). This adaptability makes it par-
ticularly useful in settings where data evolves over
time or where collecting perfectly representative
training samples is infeasible, like in our case. Fol-
lowing its success in domains like time series fore-
casting, conformal prediction has been employed
recently in NLP (Campos et al., 2024). Villate-
Castillo et al. (2025), for instance, used conformal
prediction in a framework of content moderation
based on model uncertainty in predicting toxicity
and disagreement among annotators. Differently
from our work, the authors do not focus on high-
lighting demographic-based biases in models to
detect hate speech.

3 Methodological Framework

Our methodology relies on conformal prediction,
a statistical framework used to quantify the reli-
ability of model predictions by assessing confor-
mity, or how well individual predictions align with
a set of labels (Angelopoulos and Bates, 2021).
We leverage this theoretical framework to design
two metrics for the analysis of bias in pre-trained
models with the specific aim to measure their un-
certainty against four socio-demographic groups
based on the intersection of gender and ethnicity:
white men, white women, non-white men, and non-
white women.

3.1 Uncertainty Divergence

We utilized the Brier Score as a core component
to implement a conformal prediction framework to
compare the average uncertainty of a model against

a given annotator and the gold standard label ob-
tained through majority vote.

For a single annotated text, and a set of possible
labels, Y, the Brier Score b(ty) for text t; can be
written as

b(tg, Y —pu(y | te)?* (D)

|y’ Z Oy tk

yey
where:

* 0y(t;) is the binary indicator (1 if the true
label is y, else 0).

* par(y | tx) is the model-predicted probability
for label y.

The Brier Score is directly used as a single con-
formity score to quantify the alignment of model
predictions with observed outcomes. A lower score
indicates better conformity, reflecting predictions
that are less uncertain and better calibrated.

Conformity delta. Since annotations often re-
flect the individual perspectives of annotators, be-
yond aggregated labels, we quantified prediction
uncertainty by introducing the concept of the Con-
formity Delta (A). This measures the variability
in the model’s confidence when predictions are
compared across individual and aggregated labels,
providing deeper insights into uncertainty and reli-
ability.

Leta € A = {ay, .., a;, } be a single annotator,
T ={t1,...,t,} denote the set of annotated texts,
and M represent an automatic annotation model
that outputs a probability distribution over labels
V.

For a text t;, € T, let the label provided by the
annotator a; be y, € Y, and given the ground-truth
label y 4 for the text ¢, obtained as the majority
score among a specific subset of annotators A C
A (e.g., the annotators belonging to a particular
demographic group), the uncertainty §(tx) for the
text ¢;, and the annotator a; is defined as

Oa; (tk) = b(tr, Ya;) — b(tr,ya), 2

This &, (t) measures the variability in model
confidence when predictions are evaluated against
individual versus aggregated labels. A high value
indicates significant disagreement or variability, of-
ten highlighting areas where annotators may have
diverging perspectives or where model predictions
fail to achieve consistency across groups.
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Let A 4 and A be defined as.

AA:{(Sai(tk)} aiEA, /{7:1,...,71 3)

Finally, we can also consider the fully disaggre-
gated A, being the set of all disaggregated labels:

AA:{5ai(tk)} aeA k=1....n 4

Uncertainty divergence. The combination of
Brier Score and Conformity Delta enables a nu-
anced assessment of model performance. While
the Brier Score captures the overall prediction qual-
ity, the Conformity Delta highlights cases where
individual annotators diverge significantly from
the consensus label. The specific delta sets A 4
and A 4 offer complementary advantages: A 4 al-
lows for targeted analysis of specific demographic
groups to identify group-specific biases, while A 4
provides a comprehensive view across all anno-
tators to capture the full spectrum of individual
variations.

This divergence may indicate areas where the
model struggles to generalize or where ground-
truth labels are inherently ambiguous. By identi-
fying such discrepancies, this approach enhances
interpretability and guides iterative model refine-
ment. This is particularly important in tasks like
abusive content moderation, where decisions can
amplify societal biases if models are not carefully
evaluated. Discrepancies in annotator labels, influ-
enced by cultural or personal factors, can lead to
biased training data. By systematically quantifying
uncertainty through the Conformity Delta, we can
identify areas of potential bias and ensure that Al
systems operate transparently and equitably.

In order to compute a potential correlation be-
tween the four socio-demographic groups of anno-
tators and their average conformity deltas, we intro-
duce the Uncertainty Divergence. For each group,
we convert the obtained conformity deltas in A 4
in a distribution with three categories: Conformity
dq; (tr) < 0, Conformity d,, (tx) = 0, Conformity
4, (tr) > 0. We compute the Kullback-Leibler di-
vergence (van Erven and Harremos, 2014), which
is defined as:

S Pl )

Dkr(P|Q) =
1€{<0,0,>0} Q(Z)

Where P is the distribution of conformity A as-
signed to all the disaggregated labels in the corpus
and () the group-based one. For each model, we re-
port the general uncertainty, under the label “total”,

defined as the average of the single uncertainties
across the whole dataset. This enables measuring
the general uncertainty of benchmarked models and
specific uncertainties against socio-demographic
groups.

3.2 Demographic Divergence.

To computationally represent annotators, we lever-
aged the concept of uncertainty derived from the
computation of Conformity Delta (Equation 3).
The uncertainty interval falls within the range
[—1,1]. Both ends of the scale indicate maximal
disagreement, where the model strongly favors a la-
bel different from the one chosen by the annotator,
albeit in opposite directions. A value of 0 indicates
perfect agreement, where the model aligns with the
annotator’s label.

Each annotator a € A is finally represented by
a 40-dimensional vector v, € R, where each
element v, [j] corresponds to the frequency of un-
certainty values ¢ for the texts annotated by a that
fall within the j-th bin Bin;. The number of bins
was selected based on empirical experimentation:
we varied the discretization granularity from 10
to 100 bins and observed the effect on clustering
with KMeans. While the inertia naturally increases
with higher-dimensional vectors due to geometric
dispersion, the incremental gain in resolution starts
to plateau around 40 bins, indicating that further in-
creasing the number of bins does not substantially
improve the discriminative power of the annotator
representation.

Given that, we can define the value of the j-th
element of the vector v, for the model M as

M

1
vM,. ] =7 > (A, () € Biny), (6)

tk€7:1i

where 7,, C T is the set of texts annotated by
a;, I(+) is the indicator function, which equals 1 if
the condition is true and 0 otherwise, and Bin; in
one of the 40 equally sized bins defined as:

Bin; = [71+%,71+%), j=1,...,40. (7)

The resulting vector v™, effectively character-
izes the annotator’s judgment patterns relative to
the model: high values in bins near 0 would indi-
cate an annotator who frequently agrees with the
model, high values in bins near -1 or 1 would in-
dicate an annotator who often strongly disagrees

18064



with the model, and overall the specific distribu-
tion across all 40 bins creates a unique “uncertainty
fingerprint” for each annotator.

This representation allows for subsequent clus-
tering of annotators based on similarities in their
uncertainty profiles, providing insights into dis-
tinct annotation behaviors and potential subgroups
within the annotator population.

Demographic Divergence. For a given model
M, we assess how much the demographic class
distributions vary across the four clusters. To quan-
tify this, we compute the Jensen-Shannon Diver-
gence (JSD) (Menéndez et al., 1997) (weighted
on the cluster size) across the distributions of de-
mographic classes in the clusters, treating the four
cluster distributions as components of a mixture
model. Let 7y, ..., my be the weights of the clus-
ters (where ||¢;|| is the number of annotators inside
the cluster ¢ and m; = ||¢;||/ Z?:1 |ci|]), and the
demographic probability distributions inside the
clusters are P, ..., Py, for each language model,
M, we define:

JSDr,, ms(Pr,.., P) =i mD(Pi | M) (8)

If the clustering, solely based on annotators’
uncertainty, does not show significant differences
in demographic distributions across clusters, the
model can be considered fair, as the uncertainty is
not influenced by annotators’ demographic charac-
teristics.

4 Experimental Setup

In our experimental setting, we provide two studies
that rely on the conformal prediction framework
to assess the presence of bias in pre-trained mod-
els against four socio-demographic groups based
on the intersection between gender and ethnicity:
white men, white women, non-white men, and non-
white women. The first study explores if the adop-
tion of uncertainty can be a predictor of biases
against vulnerable groups (RQ1) and leverages the
Uncertainty Divergence (Section 3.1). The second
study assesses models’ fairness in user representa-
tion (RQ?2) through the Demographic Divergence
metric (Section 3.2). We analyze the uncertainty
of 8 fine-tuned LMs and 3 LLMs in the classifica-
tion of hate speech. We adopt as a benchmark two
disaggregated corpora annotated for hate speech,
which include information about annotators, such
as gender and ethnicity. Therefore, we are able

to measure the uncertainty of each model against
specific communities of people.’

Pre-trained Models. In order to account for dif-
ferent generations of models, we considered for
our benchmark study a set of transformer-based
language models, including both fine-tuned LMs
and prompted LLMs in a zero-shot setting. For
fine-tuned LMs, we based our selection on NLP
community adoption metrics: we included all mod-
els with at least 1, 000 downloads on HuggingFace®
during November 2024. This criterion yielded 8
language models for our experiments, representing
a broad spectrum of training methodologies. As a
result, we identified 8 LMs for our experiment that
have been trained with a wide range of approaches:

* IMSyPP (Kralj Novak et al., 2022). A BERT-
based model (Devlin et al., 2019) trained on a
multilingual corpus of hate speech messages
gathered from Youtube and Twitter with dis-
aggregated annotations.

e HateBert (Caselli et al., 2021). A retrained
version of BERT based on RAL-E: a dataset
of posts from banned SubReddits.

* Dynabench (Vidgen et al., 2021). A model
trained on a dynamically annotated dataset in
which messages have been annotated through
a multi-step process.

 Twitter-Roberta-Base (Antypas and Camacho-
Collados, 2023). A BERT-based model
trained on a composition of 13 corpora an-
notated for hate speech, misogyny, and other
correlated phenomena.

* Refugees*. A model developed as a collab-
oration between UNHCR, the UN Refugee
Agency, and Copenhagen Business School.

e DistilRoberta (badmatrl1x, 2023a). A fine-
tuned version of ROBERTa on the badmatrl1x
dataset (badmatrl1x, 2023b)

* Pysentimiento (Perez et al., 2023). Trained on
the HatEval dataset (Garibo i Orts, 2019), the
model is part of a multilingual toolkit devel-
oped for the detection of hate speech, senti-
ment analysis, emotion, and irony.

2All the experiments have been run on a RTX 3070 TI with

the Hugging Face library transformers. We adopt the default
setup of each model as it is available on Hugging Face.

3ht’cps: //huggingface.co/
*henrystoll/hatespeech-refugees
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e MuRIL (Das et al., 2022). This is a fine-tuned
version of MuRIL on English abusive speech
dataset.

Furthermore, we selected 3 open-source LLMs
to replicate the experiment in a zero-shot setting.

* Mistral (Jiang et al., 2023) is one of the first
European LLMs developed by a start-up led
by former scientists of Facebook-Al.

¢ Olmo (Groeneveld et al., 2024) is the LLM
of AllenAl and is characterized by the careful
implementation of toxicity filtering strategies
from the pretraining corpora.

¢ Bloom (Scao et al., 2022) is the outcome of a
series of workshops that involved hundreds of
NLP scientists.

Corpora. For our experiment, we chose two ex-
isting disaggregated corpora annotated for hate
speech detection: the Social Bias Inference Corpus
(SBIC) and CREHate. The rationale for choosing
these resources is twofold: i. they represent two
different generations of perspectivist datasets; ii.
they significantly vary in their size and average
number of annotations per message.

SBIC (Sap et al., 2020) is the first disaggregated
corpus for hate speech detection that includes infor-
mation about annotators’ gender and ethnicity. The
dataset consists of 44, 671 messages collected from
multiple sources of previously annotated corpora
for the same phenomenon. SBIC is composed of
146, 254 annotations with an average of 3.2 annota-
tions per message. The number of individual labels
diverging from the gold standard label represents
the 4.9%

CREHate (Lee et al., 2024) is the latest disaggre-
gated corpus for hate speech detection. CREHate
is composed of 1, 580 messages from existing hate
speech corpora that were re-annotated. The dataset
includes 42, 546 annotations with an average of
26.9 annotations per message. The number of in-
dividual labels diverging from the gold standard
label represents the 9.7%

Further description of both corpora and annota-
tors is provided in Appendix A.

5 STUDY 1: Models Uncertainty towards
Socio-Demographic Groups

In this study we adopt Uncertainty Divergence (Sec-
tion 3.1) to compare models’ performance with

their uncertainty against texts labeled by annota-
tors belonging to four socio-demographic groups:
white men (w.m.), white women (w. f.), non-white
men (—w.m.), and non-white women (—w. f.).

We compute the F; score obtained with each
model against the total list of disaggregated la-
bels and the F} score against labels of a specific
group. This enables ranking the general perfor-
mance of each model and observing differences
between groups. Table 1 shows results of this anal-
ysis. As can be observed, the Refugees model
obtains the best F} score on both SBIC (0.57) and
CREHate datasets (0.55, shared with Olmo-7B).
The analysis broken down by groups shows a dis-
tinction on the gender axis. In 15 cases out of 22,
all models are better at predicting labels annotated
by women. In SBIC, models perform a higher F
annotation of non-white women; in CREHate white
women. A second pattern is about the performance
of LLMs. In both cases, a pattern based on race
emerges. Their predictions are better on non-white
people in SBIC, while the opposite is observable
for CREHate.

The results in Table 2 show that LLLM predic-
tions are more prone to uncertainty: 2 out 3 obtain
the highest average conformity A. Observing the
divergence of each group, it is possible to identify
a systematic lower uncertainty in the classification
of men’s labels: white in SBIC, non-white in CRE-
Hate.

The study shows that Uncertainty Divergence
might be a reliable metric to investigate social bi-
ases emerging in classification. The metric does not
correlate with the performance of models [RQ1].
Computing the T-Test (Kim, 2015) between F}
scores and conformity A’s show that these two
scores are not correlated both in SBIC (p = 0.14)
and CREHate (p = 0.11). This suggests that mod-
els with a higher performance but a lower con-
formity might fail in understanding unseen mes-
sages outside corpora distribution. In this sense,
the higher conformity A assigned to annotations
provided by non-white people can be interpreted
as a predictor of a potential systematic misalign-
ment between street-level algorithms decisions
and women perception of hate speech. There-
fore, conformity might be not only used as a metric
of fairness but as a guiding principle for selecting
for content moderation models that are able to see
through the lens of vulnerable minorities.
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F; score

| SBIC CREhate
model | total | w.m. w. f. —w.m.  —w.f. total | w.m. w. f. —w.m. —w.f.
IMSyPP 0.41 (0.03) | +58e-3 -17e-3 -4e-2 +le-2 | 0.33(0.01) -16e-3 +le-3 -Te-4 +6e-3
HateBert 0.51(0.04) | -3le-4 -23e-4 55e-4 55e-4 | 0.49 (0.01) -2e-3 +le-3 +le-3 +3e-4
Dynabench 0.29 (0.02) -5e-3 +5e-3 -26e-3 +35e-3 | 0.34 (0.01) -de-4 +13e-3 +8e-3 +5e-3
Twitter-Roberta-Base | 0.31 (0.03) +le-3 +8e-3 -19e-3 +27e-3 | 0.37(0.01) -3e-3 -le-2 +4e-3 +3e-3
Refugees 0.57 (0.02) -7e-3 +6e-3 +29e-3 -9e-3 0.55 (0.02) +4e-3 +2e-3 -38e-4  -24e-4
DistilRoberta 0.44 (0.03) | -11e-3 +6e-3 -19e-3 +le-2 | 0.44 (0.01) -le-2 +9e-3 +6e-4 -4e-4
Pysentimiento 0.35 (0.02) 8e-3 2e-3 -58e-4  +26e-3 | 0.33 (0.02) -19¢-3 +13e-3  +13e-3  +9e-3
MuRIL 0.36 (0.03) 10e-3 +12e-6  -55e-4 12e-3 0.31 (0.01) -17e-3  +12e-3 +6e-4 +5e-4
Olmo-7B 0.48 (0.04) | -68e-4  +35e-5 +5le-3  -12e-3 0.55 (0.03) 12e-3 -44e-4 -7T4e-4 -2le-4
Bloom-7B 0.48 (0.03) -30e-4 -14e-4  +19e-3  +16e-3 | 0.49 (0.02) +22e-4  -65e-4 +6e-4 +1le-4
Mistral-7B 0.49 (0.03) -23e-4  +3le-4 -2le-4 +53e-4 | 0.50 (0.03) -67e-4  +75e-4  +24e-4  -40e-4

Table 1: Delta F; score for SBIC and CREhate obtained with each model against the total list of disaggregated
labels and the F} score against labels of a specific group: white men (w.m.); white women (w. f.); non-white men

(—w.m.), non-white women (—w. f.).

Uncertainty Divergence

\ SBIC CREhate
model | total | wm. w.f. —wm. -w.f | total | wm. w.f. —wm. —w.f.
IMSyPP -3e-4 55e-5 88e-5 10e-3 66e-4 | -19e-4 19e-4  12e-4 29e-5 16e-4
HateBert -12e-4 | 49e-6 67e-5 34e-4 45e-4 -5e-4 83e-5 68e-5 40e-5 16e-4
Dynabench -Te-4 5%-6 76e-5 36e-4  45e-5 -9e-4 84e-5  88e-5 32e-5 18e-4
Twitter-Roberta-Base | -15e-4 15e-5 10e-5 45e-4 45e-4 13e-4 19e-5 13e-5 10e-3 66e-4
Refugees 13e-4 19e-5 13e-5 10e-3  66e-4 4e-4 11e-4  55e-5 39e-5 15e-4
DistilRoberta -3e-4 43e-6  70e-5 35e-4 46e-4 | -12e-4 | 94e-5  T72e-5 29e-5 16e-4
Pysentimiento 14e-4 9le-5 20e-4  58e-4 47e-4 | -23e-4 23e-4  12e-4 30e-5 16e-4
MuRIL -Tle-4 10e-4  20e-4 59e-4  49e-4 19e-5 23e-4  12e-4 3le-5 16e-4
Olmo-7B 16e-4 54e-5 18e-4 10e-3 30e-4 56e-5 13e-4 6e-4 de-4 15e-4
Bloom-7B 16e-4 15¢-5 10e-4 39e-4 42¢-4 | 32e-4 | +14e-4  9e-4 3e-4 15e-4
Mistral-7B -14e-4 84e-6 10e-4 39e-4 42e-4 10e-4 8e-4 6e-4 3e-4 15e-4

Table 2: The Uncertainty Divergence divergence between the distribution of non-conformity scores assigned by
models to all the individual annotations against the distributions of annotations grouped by the intersection of gender
and ethnicity. The highest is the score the highest is the divergence between the non-conformity of all the individual

annotations and socio-demographic groups.

6 STUDY 2: User representation:
Clustering annotators according to
their uncertainty

This study leverages Demographic Divergence to
represent users through models’ uncertainty in text
classification. The annotators were grouped into
four distinct clusters for each model M as de-
scribed in Section 3.2. The number of clusters
was set to 4 to align with the examined socio-
demographic groups (w.m., w. f., ~w.m., ~w.f.).
Clustering was performed on the annotator vectors
vM,,Va € A, which represent the distribution of
uncertainty for each annotator, using k-means. Fig-
ure 1 shows an example of results based on Hate-
Bert uncertainty scores over the CREHate dataset.
Bar plots represent the demographic distribution of
annotators in each cluster, and line plots represent
the uncertainty related to each socio-demographic
group. All the clusters are available in Appendix
B.

HateBert (CREAHate)
Cluster 0 (|AO| = 155) Cluster 1 (JAL| = 219) Cluster 2 (|A2| = 138) Cluster 3 (|A3| = 88)

o
S

© Uncertainty
u Norm Uncertainty
75 {Uncertainty Divergence:|
0.003

o @
[C ]
o wu

istribution Divergence:
0.061

Percentage (%)
S
Uncertainty

N
a
o
N
%)

0 0.00
wm. wf-wmawf wm wi-wmawf wm wf-wmawf wm, wlawmawf,

Figure 1: An example of annotator clusters based on the
uncertainty of HateBert over the CREHate dataset.

At this stage, for each of the 11 models consid-
ered, we have two clusterings (one for the CRE-
Hate dataset and one for the SBIC dataset), each
consisting of 4 clusters. Our goal is twofold: on
the one hand, to quantify the distribution of demo-
graphic characteristics of the annotators within the
clusters, and on the other, to evaluate Uncertainty
Divergence within individual clusters across the
models.

For a model M and the four identified annota-
tor clusters, we calculate the average uncertainty
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across demographic classes for each cluster by
leveraging Uncertainty Divergence metrics. If the
average uncertainty varies across the different clus-
ters, it indicates that there are groups of annotators,
for which the model M exhibits lower fairness
compared to others.

Figure 2 illustrates the ranking of models based
on Uncertainty Divergence and Demographic Di-
vergence. Uncertainty Divergence and Demo-
graphic Divergence are specifically used to quantify
the fairness of models [RQ2]. By examining the
figure, we can see that the LLMs exhibit higher Un-
certainty Divergence for both datasets. Therefore,
despite achieving optimal results in terms of F7,
the higher uncertainty compared to the LMs indi-
cates that there are groups of annotators for which
LLMs exhibit lower fairness.

In contrast, Demographic Divergence helps us to
understand whether this uncertainty is distributed
equitably across the clusters, and hence, across the
demographic classes. LLMs perform better in the
ranking, particularly Mistral-7b. Consistent with
Tables 1 and 2, this LLM maintains fairness across
the considered dimensions (gender and ethnicity).
On the other hand, Olmo-7b presents negative De-
mographic Divergence values, indicating higher
uncertainty, which is not evenly distributed across
the demographic classes.

We want to highlight the behavior of MuRIL,
which exhibits the lowest uncertainty among all
models for both datasets but presents the highest
Demographic Divergence. In Appendix B, Figure
P shows that clusters with female or non-white
female annotators exhibit higher uncertainty, and
the distributions between clusters are significantly
different.

7 Discussion

Our research shows that uncertainty and the con-
formal prediction framework are a powerful ap-
proach for the analysis of models’ fairness in
automatic content moderation. Uncertainty is
effective for the observation of the alignment of
models’ behavior with the sensibility of specific
groups of annotators. Uncertainty is also a pow-
erful way to understand how single annotators are
represented and grouped, and to what extent mod-
els perpetuate social biases during this process.
From the benchmark analysis of pre-trained mod-
els, both general patterns and model-specific behav-
iors emerge. The vast majority of models show the

SBIC fine-tuned SBIC not fine-'%uned
mmm CREHate fine-tuned vava CREHate not fine-tuned

Bloom-7B YNNI IS0
Olmo-78 WIS SIS IS4
Mistral-78 WAITIIITIIIIII.
MSyPP
Twitter-Roberta-Base
Pysentimiento
Refugees
DistilRoberta
Dynabench
Bloom-7B -
Mistral-7B
Olmo-78B
HateBert -l
Refugees
Pysentimiento
MSyPP 4
Twitter-Roberta-Base 1
DistilRoberta
Dynabench
MuRIL
HateBert 4
MuRIL
0.00!

0 0.005 0010 0015 0.020
Uncertainty Divergence

MuRIL
HateBert {
Olmo-7B -

Pysentimiento
Refugees
MSyPP
Twitter-Roberta-Base q
Dynabench -
Bloom-7B
Olmo-7B
Mistral-78
DistilRoberta
Twitter-Roberta-Base
DistilRoberta
HateBert
MSyPP
Bloom-7B {#@¥4
MuRIL
Dynabench
Refugees
Pysentimiento
Mistral-78 -J#04%
0.00

L

0.05 o.ﬁo 0.15 0.20
Demographic Divergence

Figure 2: Ranking of the models based on Uncertainty
Divergence and Demographic Divergence.

lowest uncertainty in predicting contents annotated
by men and the highest uncertainty for the predic-
tion of contents annotated by non-white people.
This implies that in the automatic content mod-
eration settings, in which the model performance
might suffer a high degradation due to temporal
semantic shifts, the risk of misalignment between
the model’s predictions and human annotations is
higher for non-white people. An explanation of
such a pattern might be in the long-term impact of
the pretraining process. Models trained on data that
poorly represent non-white people learn perspec-
tives of the world that are not easy to be removed.
In this sense, the more nuanced results in terms of
performance might be interpreted as an optimiza-
tion over specific benchmark corpora, while un-
certainty could be the blueprint of pretraining
biases.

Despite the presence of common behaviors,
choosing one pre-trained model over another mat-
ters. The average uncertainty of these models
significantly varies without correlating with per-
formance (Section 5), showing that the two ways
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of measuring them (F} score and Conformity A)
grasp different aspects of the same problem. In this
sense Mistral represents the best trade-off be-
tween performance and uncertainty, despite the
lack of information about which data has been used
to train it (Jiang et al., 2023). However, it is not pos-
sible to draw conclusions from the comparison of
fine-tuning and zero-shot approaches, since OLMO
and Bloom exhibit a higher Demographic Diver-
gence (Section 6) within their clusters: a predictor
of bias against vulnerable groups to discrimination.
Corpora themselves appear to be a factor in
stressing the uncertainty of models and represent
a significant limitation for fairness studies. Model
predictions on SBIC systematically suffer higher
Demographic Divergence (Appendix B) than pre-
dictions on CREHate. The very different composi-
tion of annotators (Section 4) might play a role in
this, as well as the different degrees of subjectivity
emerging from raw annotations (4.9% vs 9.7%),
and the average number of annotations per mes-
sage (3.2 vs 26.9). Furthermore, the inter-annotator
agreement between annotators belonging to differ-
ent demographic classes is generally higher within
the same class, while agreement between different
classes tends to vary (Appendix C). Despite these
differences, the two corpora share the same lim-
itation: binarism in the annotators’ selection
process. Non-binary people were almost not in-
volved in the annotation process, hindering most
insightful analyses that go beyond the traditional in-
tersection of race and gender. Resources developed
for fairness should be more effective in represent-
ing marginalized and invisible groups of people.

8 Conclusion and Future Work

In this paper, we presented a novel approach to
assess the fairness of models through their uncer-
tainty. We introduced metrics for measuring the
impact of uncertainty against socio-demographic
groups. In particular, we leveraged our unsuper-
vised approach based on conformal prediction to
benchmark 11 street-level algorithms on SBIC
and CREHate datasets: 8 LMs fine-tuned for hate
speech detection and 3 LLMs instantiated through
a prompt-based method. The results show that mea-
suring models’ uncertainty unfolds systematic and
hidden biases against non-white people, which do
not emerge from performance-based metrics, such
as the F} score [RQ1].

Moreover, we generated vector representations

of annotators based on uncertainty scores emerging
from models’ predictions and used them to cluster
annotators. The socio-demographic composition of
the resulting clusters significantly varies between
models, which show different degrees of fairness
against women and non-white people [RQ2].
Future work goes in two directions. We will
test the impact of considering uncertainty during
fine-tuning and active learning (e.g., through Re-
inforcement Learning approach) to reduce bias in
model prediction. We will explore the transferabil-
ity of our methodology on contiguous tasks to hate
speech detection and to other perspectivist corpora.
Limitations

Limitations

In this work, our approach has been tested on hate
speech detection; however, to validate its general-
izability, we will further employ it on the detection
of other subjective phenomena (i.e., when a higher
human label variation is a sign of diverse subjec-
tivities). Additionally, we only choose a subset
of models for our analysis. This might result in
overlooking models that actually show different
patterns in the representation of vulnerable groups
than the ones emerging in our analysis. Finally, we
focus in particular on dimensions of gender and eth-
nicity common to both datasets used as samples for
proving our methodology. However, we are aware
that a binary classification for gender and ethnicity
is far from the real world and could raise discus-
sion (Larson, 2017). Moreover, considering other
identity axes, it is possible that hidden forms of
discrimination could emerge. Nevertheless, our ap-
proach can be used with multiple categories across
various dimensions.

Ethical Issues

Since this research relies on secondary data, there
are no ethical issues related to the collection and
annotation of texts. Research biases related to these
previous studies may still have an impact on the
representation of human annotators emerging from
our results.
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A Corpora and annotators description

Both datasets include information on the annota-
tors’ gender (male, female, non-binary) and eth-
nicity (White, Hispanic, Asian, etc.). Figure 3
illustrates the distribution of the annotators’ demo-
graphic classes. Non-binary individuals were ex-
cluded due to the low number of annotators in this
gender category. For ethnicity, we grouped white
and non-white annotators separately to achieve a
more balanced distribution. Gender and ethnicity
were then combined to form four distinct demo-
graphic classes: white man (w.m), white female
(w. f), not-white male (—w.m), non-white female
(—w. f) (Figure 3).

» 150 mmm CREAHate
2 wa SBIC
=100
o
g
< 50 7
4 / i
0 w.m. w.f —wm. -wf w.n-b.-w.n-b.

Figure 3: Annotators’ demographics on CREHate and
SBIC.

We excluded annotators who annotated fewer
than 20 messages for two reasons. First, with too
few messages, the uncertainty profile could be less
reliable. Second, the threshold of 20 was chosen
because the annotator with the fewest annotations
in the SBIC dataset had annotated 24 messages.
This approach ensured that, although the annotation
distributions differed between datasets, they were
made more comparable (Figure 4).

B Uncertainty in LLMs and LMs

This appendix provides a fine-grained analysis of
the findings discussed in Section 6. For each model,

EEE CREAHate
SBIC
ws discarded
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<5304
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Figure 4: Distribution of the number of annotations per
annotator.

we visualize the distribution of annotators’ demo-
graphic classes alongside their corresponding un-
certainty levels. Each row corresponds to a single
model, with results from CREAHate on the left
and SBIC on the right. Subplots [a—o] display
the results for LMs, while [s—v] corresponds to
LLMs. Notably, the SBIC dataset often results in
very small annotator clusters. However, this does
not affect the Uncertainty Divergence and Demo-
graphic Divergence metrics, as these are weighted
by the number of annotators in each cluster. A
key observation is that uncertainty—particularly
when considering its normalized values across the
four clusters—tends to be higher in clusters where
women or non-white annotators are more prevalent
(Figure 4).

C Cohen’s Kappa between annotators
pairs

The following heatmaps show the pairwise Cohen’s
Kappa agreement between annotator classes for
the two datasets analyzed in this study (SBIC and
CREAHAte). Each matrix displays agreement val-
ues between the four demographic groups.

As expected, higher agreement is observed along
the diagonal, indicating that annotators within the
same class tend to be more consistent in their an-
notations. Off-diagonal values represent inter-class
agreement, which is generally lower, highlighting
differences in annotation behavior across demo-
graphic groups. These visualizations provide a
detailed view of intra- and inter-class consistency
and help contextualize the results reported in the
main text.
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Figure 4: There are 22 plots, corresponding to the evaluation of 11 models on two distinct datasets, CREAHate and
SBIC. Each plot consists of four subplots, where each subplot represents a cluster and illustrates the demographic
distribution of the annotators within that cluster. Additionally, the subplots display the level of uncertainty, including
its normalized value across the four clusters.
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Heatmap Cohen's Kappa - Dataset SBIC
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Figure 5: Pairwise Cohen’s Kappa agreement between
annotator classes per SBIC.
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Figure 6: Pairwise Cohen’s Kappa agreement between
annotator classes per CREAHate.
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