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Abstract

Large language models (LLMs) have shown
remarkable capabilities in general domains,
but their application to multi-omics biology
remains underexplored. To address this gap,
we introduce Biology-Instructions, the first
large-scale instruction-tuning dataset for multi-
omics biological sequences, including DNA,
RNA, proteins, and multi-molecules. This
dataset bridges LLMs and complex biologi-
cal sequence-related tasks, enhancing their ver-
satility and reasoning while maintaining con-
versational fluency. We also highlight sig-
nificant limitations of current state-of-the-art
LLMs on multi-omics tasks without special-
ized training. To overcome this, we pro-
pose ChatMultiOmics, a strong baseline with a
novel three-stage training pipeline, demonstrat-
ing superior biological understanding through
Biology-Instructions. Both resources are pub-
licly available, paving the way for better in-
tegration of LLMs in multi-omics analysis.
The Biology-Instructions is publicly avail-
able at: https://github.com/hhnqqq/Biology-
Instructions.

1 Introduction

Understanding the intricate and dynamic activities
across diverse omics layers in living organisms
is of paramount importance. This includes study-
ing DNA regulatory elements that control gene
expression (Emilsson et al., 2008), RNA regula-
tion (Mattick, 2004) that influences protein synthe-
sis, and the functional properties of proteins them-
selves (Marcotte et al., 1999). These molecular
processes critically affect the development of dis-
eases and the synthesis of drugs within organisms.
Recent BERT-like encoder-only models (Devlin,
2018) have achieved significant advances in natural
language understanding tasks.

*Equal contribution.
†Project lead.
‡Corresponding author.

When applied to genome or protein understand-
ing tasks, these models (Zhou et al., 2023; Rives
et al., 2021) are capable of capturing complex in-
trinsic relationships within biological sequences,
achieving high accuracy in tasks such as promoter
prediction. However, their reliance on specific clas-
sification or regression heads to predict a single task
at a time limits their versatility, and their repeated
fine-tuning sessions with different prediction heads
to address multiple tasks further complicate the
training, inference, and deployment processes.

In contrast, powerful general-purpose large lan-
guage models (LLMs), such as GPT-4 (Achiam
et al., 2023) and Gemini (Achiam et al., 2023; Team
et al., 2023), trained on vast corpora of natural
language data encompassing broad human knowl-
edge, have demonstrated remarkable potential in
domain-specific applications. These decoder-only
models frame every task as a text completion prob-
lem through the next-token prediction objective,
enabling them to unify diverse biological sequence-
related tasks by leveraging natural language as
an intermediary representation—while preserving
their inherent conversational capabilities. There-
fore, utilizing LLMs combined with unified train-
ing and dataset construction techniques can make it
possible to replace BERT-like models with a com-
plicated fine-tuning pipeline.

Recently, several studies have explored lever-
aging LLMs for tasks related to biological se-
quences through instruction tuning, such as
ChatNT (Richard et al., 2024) and ProLlama (Lv
et al., 2024). While these models show promis-
ing performance, they are typically trained on
instruction-tuning datasets that employ only basic
linguistic patterns, thereby underutilizing the full
linguistic capabilities inherent in pre-trained LLMs.
Moreover, these models mainly focus on single-
omics data—either for proteins or DNA—thereby
limiting their capacity to deliver comprehensive
multi-omics insights as a unified foundational lan-
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Figure 1: Comparative examples showcasing ChatMultiOmics performance against baseline models on multi-
molecular tasks. (a) Enhancer-Promoter Interaction Prediction (Min et al., 2021) after stage2 training. (b)
Antibody-Antigen Neutralization (AAN) (Zhang et al., 2022) after stage3 training. Note that AAN is not included
in stage 3 training, which showcases our model’s task generalization capability.

guage model. Inspired by multimodal LLMs like
MiniGPT-4 (Zhu et al., 2023), we see an oppor-
tunity to extend this approach to biology. In biol-
ogy, where molecular interactions are fundamen-
tally grounded in the central dogma (Crick, 1970),
integrating multi-omics data holds immense poten-
tial for generating mutually reinforcing insights.

Our study attempts to answer a key question:
Can instruction-tuned language models, already
proficient in understanding human language, be
effectively adapted to comprehend biological se-
quences and excel in solving biologically critical
tasks? The motivation behind this inquiry lies in
the intrinsic parallels between biological sequence
data and human language—both are discrete, se-
quential, abundant, and rich in encoded informa-
tion. These shared characteristics suggest that, with
appropriate adaptation, instruction-tuned LLMs
could unlock transformative capabilities in biology.

To properly investigate the gap between hu-
man language and biological sequence understand-
ing, we introduce Biology-Instructions, the first
large-scale, multi-omics biology sequence-related
instruction-tuning benchmark supporting 21 dis-
tinct tasks spanning DNA, RNA, proteins, and
multi-molecular prediction tasks for a comprehen-
sive assessment of biological understanding. Us-
ing Biology-Instructions, we conduct a comprehen-
sive evaluation of various open-source and closed-

source LLMs, revealing that most models, includ-
ing the state-of-the-art model such as GPT-4o, per-
form at near-random levels on biological sequence-
related understanding tasks without prior special-
ized training. This suggests the lack of inherent
biological sequence knowledge in LLMs and high-
lights the critical need for effective strategies to
integrate biological knowledge into these models.

Furthermore, we attempt to activate the biologi-
cal multi-omics sequence understanding ability of
LLMs with the constructed instruction data. We dis-
cover that solely performing instruction tuning on
Biology-Instructions cannot yield satisfactory re-
sults. To address this gap, we propose a three-stage
training pipeline: (1) train the model on unsuper-
vised DNA, RNA, and protein sequences; (2) train
the model on the question-answer pairs of Biology-
Instructions; (3) train the model on reasoning data.
The first stage serves as a warm-up to enhance the
model’s ability to understand biological sequences.
In the second stage, the model follows natural lan-
guage instructions to interpret biological sequences.
In the third stage, the model leverages the implicitly
learned knowledge base to perform reasoning and
deepen its understanding of biological sequences.
We incorporate reasoning data that begins with bio-
logical sequence analysis and culminates in conclu-
sions derived from prior analysis and logical infer-
ence, ensuring that models retain comprehensive
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conversational capabilities while simultaneously
acquiring a deeper understanding of biological se-
quences and tasks. We have implemented this train-
ing pipeline on Llama3.1-8B-Instruct (Dubey et al.,
2024) using Biology-Instructions, resulting in sig-
nificant performance improvements shown in Fig-
ure 1. Our findings and experiences are thoroughly
documented. The contributions of this study can
be summarized as:

• Multi-omics Instruction-Following Data.
We present the first dataset specifically
designed for multi-omics instruction-
following, which includes reasoning
instruction data and multi-sequence, multi-
molecule instruction data. This dataset aims
to improve the ability of LLMs to compre-
hend and analyze biological sequences. To
ensure the quality of Biology-Instructions, we
conduct a comprehensive multi-stage quality
control process, as detailed in Appendix D.

• Multi-omics Instruction-Following Bench-
mark. We benchmark open-source and
closed-source LLMs on Biology-Instructions.
Our results reveal that even SOTA LLMs can
not solve biological sequence-related tasks.

• ChatMultiOmics and Three-Stage Train-
ing Pipeline. We develop a biology-focused
LLM named ChatMultiOmics, which is capa-
ble of handling multi-omics sequence-related
tasks by training Llama-3.1-8B-Instruct. We
propose an efficient three-stage pipeline to
enhance the biology learning ability of LLM
based on some important findings.

2 Related works

2.1 Large Language Models

In recent years, LLMs have demonstrated signif-
icant advancements in the field of natural lan-
guage processing (NLP). These models undergo
self-supervised training on a substantial corpus of
data to acquire knowledge. Their capabilities are
further refined via instruction fine-tuning, which
enables them to follow user prompts and answer
questions. Currently, numerous open-source mod-
els are available, including the Llama series (Dubey
et al., 2024), Qwen series (Bai et al., 2023), GLM
series (GLM et al., 2024), along with many Llama-
based derivatives like Alpaca (Taori et al., 2023)
and Vicuna (Chiang et al., 2023). Additionally,

Galactica (Taylor et al., 2022) is a model that
demonstrates exceptional performance in scientific
domains and is trained on data from a multitude of
scientific fields. Furthermore, closed-source, SOTA
models like GPT-4o and GPT-4o-mini are available.
Nevertheless, since these models lack pre-training
on specialized biological data, their performance
in this domain is significantly limited.

2.2 Biological Large Language Models

Consequently, researchers have focused on enhanc-
ing LLM capabilities within the biological domain.
For instance, InstructProtein (Wang et al., 2023)
uses knowledge-based instructions to align natural
language with the language of proteins. Similarly,
Fang et al. (Fang et al., 2023) instruction-tunes
LLaMA-7B using the protein-focused subset of the
Mol-Instructions dataset. ProLLaMA (Lv et al.,
2024) is a more recent model that targets multi-
protein tasks, developed via fine-tuning Llama-2
using a two-stage training process. However, the
efficacy of these methods is often confined to a
few protein-specific tasks. Other models have ex-
plored different architectures. BioMedGPT (Zhang
et al., 2023) incorporates a specialized vision en-
coder to address multi-modal biological questions,
but its understanding of biological sequences is
limited, as it lacks tuning on large-scale biological
instructions. ChatNT (Richard et al., 2024) inte-
grates a DNA sequence encoder with an LLM for
DNA understanding. A key limitation, however, is
the difficulty of integrating multiple encoders from
diverse omics domains with an LLM.

3 Biology-Instructions

3.1 Overview of Biology-Instructions

To build a large-scale biological instruction-
following dataset, we have gathered biological
sequence data from a substantial aggregation of
sources. This effort has resulted in a dataset encom-
passing 21 subtasks related to multi-omics fields.
The Biology-Instructions exhibits the following
characteristics:

Multi-omics Biology-Instructions comprises 21
subtasks across three types of omics, including
single-omics tasks and multi-omics interaction
tasks. As shown in Section 5, joint training of
different omics not only enhances efficiency by
accomplishing multiple omics tasks with a single
model but also improves the model’s capability in
a specific omics domain.
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Figure 2: Distribution of tasks across four omics types in our dataset.

Large-scale With over 3 million training sam-
ples, the Biology-Instructions dataset provides
an extensive foundation for biological sequence-
related instruction data. Fine-tuning on this large-
scale dataset enhances models’ understanding of
biological sequence traits and functions, enabling
more accurate and comprehensive responses to
given questions.

High-quality To ensure the quality of the
dataset, we manually draft question and answer
templates for each task type and expand the tem-
plate pool using Claude-3.5-sonnet and GPT-4o.
The resulting number of question-answer template
pairs for each task ranges from 10,000 to 100,000,
depending on the volume of the data of each task
type. Throughout this process, we emphasize
the importance of diversity in grammar and lan-
guage style, ensuring that samples in the Biology-
Instructions dataset have different question-answer
styles. For examples of question-answer template
pairs, please refer to Table 10.

Reasoning Although previous studies (Richard
et al., 2024; Liu et al., 2024b; Lv et al., 2024) have
demonstrated that large-scale primary instruction-
following datasets can teach LLMs to answer bio-
logical sequence-related questions, they often fail
to fully harness the powerful language abilities of
LLMs, as they focus primarily on basic language
patterns. In other words, they fail to leverage the

powerful conversational abilities of these models to
form natural and fluent dialogues or to utilize rea-
soning to improve the validity of the output results.
To address this limitation, we design a prompt that
requires powerful closed-source LLMs to refor-
mulate answers for a subset of the validation set
of Biology-Instructions and provide polished an-
swers ready for end-users to read and understand,
based on given questions and original answers. We
encourage the model to first thoroughly analyze
the sequence and the question, and then generate
a well-reasoned, refined answer grounded in the
preceding analysis and logical reasoning.

3.2 Biology-Instructions Construction

3.2.1 Tasks

As presented in Figure 2 (train-test split infor-
mation is detailed in Table A.2), the Biology-
Instructions dataset comprises 21 tasks: 6 DNA
tasks, 6 RNA tasks, 5 protein tasks, and 4 multi-
molecule tasks. When considering the number of
input sequences, there are 4 multi-molecule inter-
action tasks and 17 single-molecule tasks. Tasks
were sourced from high-impact literature, journals,
and competitions, ensuring coverage of biologi-
cally critical aspects in structure, function, and en-
gineering across DNA, RNA, proteins, and their
interactions. We focus on predictive sequence-
understanding tasks, leaving generative applica-
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Figure 3: Overview of our data construction pipeline: Step1: Collect data from primary databases and categorize
downstream tasks; Step2: Create diverse instruction prompts based on tasks; Step3: Use LLMs to enhance dataset
quality; Step4: Follow key principles for reasoning data construction.

tions, such as sequence design, for future research.
To the best of our knowledge, Biology-Instructions
is the first instruction dataset to include multi-omics
tasks and multi-molecule interaction tasks. Task
definitions are provided in Appendix A.2; the
evaluation metric for each task is described in
Appendix A.3; and the input-output formats are
detailed in Table 8 and Table 10.

3.2.2 Templates
To convert the original classification and regression
task dataset into an instruction tuning dataset, we
employ question-answer templates to integrate the
data. The primary objective of creating these tem-
plates is to teach the model how to follow biological
instructions and complete tasks without overfitting
to specific language patterns. To achieve this, we
prioritize diversity in language styles, expressive
tones and lengths during the template construc-
tion process. We manually constructed 10 question
templates and 10 answer templates for each task,
covering various styles including, but not limited
to, request, concise, informal, and academic styles.
Then, we used GPT-4o and Claude-3.5-sonnet to
expand the templates. Depending on the data vol-
ume for each task, we included 100 to 300 question
templates and 100 to 300 answer templates. Ul-
timately, each task resulted in 10,000 to 100,000
question-answer template pairs. Since biological
sequences are generally much longer than natu-
ral language prompts, we place the biological se-
quence at the beginning of question templates for
each biological sequence task for non-interaction

tasks. This approach helps prevent the prompts
from being overwhelmed by the lengthy biologi-
cal sequences, ensuring that the model can accu-
rately understand the question and complete the
task. Figure 10 provides examples of the instruc-
tion prompts constructed for each type of omics,
illustrating the diversity and structure of the tem-
plates used in the dataset.

3.2.3 Reasoning Data Construction
Similar to the data construction method used
by LlaVA (Liu et al., 2024a). For a biolog-
ical sequence Xs and its related question Xq,
simple answer Ys, we prompt GPT-4o-Mini to
construct an optimized answer Yo based on the
given information. Generally, the instruction data
were transformed to the format USER:Xs, Xq

ASSISTANT:Yo.
In the system prompt used for GPT-4o-Mini, as

shown in Figure 9, we emphasized the following
key points to ensure the production of high-quality
data: (1) first understand the provided biological
sequence and the question; (2) analyze the bio-
logical sequence at the nucleotide or amino acid
level, aiming to extract question-related informa-
tion from the sequence; (3) refine the answer based
on the previous analysis, including a rational ex-
planation and a chain of thought approach, espe-
cially for complex questions; (4) list any relevant
knowledge and information from reliable sources,
and cite these sources appropriately; (5) return the
polished answer in an end-to-end style, exclud-
ing any information from the standard answer and
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task hint. By following this approach, we gathered
8000 final AI-polished training data points without
two multi-molecule tasks: antibody-antigen neu-
tralization and RNA-protein interaction prediction,
to study transfer learning for reasoning capabil-
ity. Figure 3 provides an overview of the complete
construction process for Biology-Instructions, in-
cluding the data collection, template construction,
and reasoning data construction stages.

3.3 Evaluation Pipeline and Metrics
Our evaluation framework is designed for robustly
assessing model performance on the Biology-
Instructions dataset. Tasks, irrespective of their
associated omics domain, are categorized into five
types: single-label regression, multi-label regres-
sion, binary classification, multi-class classifica-
tion, and multi-label classification—each requir-
ing tailored evaluation metrics to capture nuanced
performance differences. The evaluation pipeline
begins with preprocessing the models’ outputs, fol-
lowed by grouping entries according to task type,
and then computing task-specific metrics. For re-
porting, all metric values are scaled by 100 and
rounded to two decimal places. Further details are
provided in Appendix A.3.

4 Model

As shown in Figure 4, we train a model based on
Llama3.1-8B-Instruct (Dubey et al., 2024) named
ChatMultiOmics using multi-omics pre-training
data and Biology-Instructions. In general, we per-
form a three-stage training paradigm to enhance
the interactive, biology-related chat performance
of the final biological assistant. Please refer to
Appendix B for more training details.

4.1 Stage 1: Biological Sequences Continued
Pre-training

Although the memory savings facilitated by
LoRA (Devalal and Karthikeyan, 2018) are not
that obvious when optimizer states are distributed
across GPUs compared with training on a single
GPU, LoRA can still significantly reduce training
time by minimizing communication between data
parallel ranks. However, directly applying LoRA to
train a chat model on Biology-Instructions results
in suboptimal performance on specific downstream
tasks. Specifically, the model shows near-random
performance in classification and regression tasks.
As noted by Ghosh et al., LoRA fine-tuning pri-
marily leverages pre-trained knowledge to generate

well-formed answers based on the output format
learned from SFT data. We suspect that large-scale
LoRA instruction tuning on biological sequence-
related data suffers due to the lack of pre-training
on biological sequence data, regardless of model ar-
chitecture (Ye et al., 2022b,a), as evident from the
baseline results. Therefore, continued pre-training
of the model is essential for better performance.
This involves teaching the model with biological
sequences to enable it to understand the nature and
functions of biological sequences. For this process,
we utilized unlabeled human DNA data from the
Genome Reference Consortium Human Genome
(GRCh) (Harrow et al., 2012), human non-coding
RNA data from RNACentral (rna, 2019), and pro-
tein sequences from UniRef50 (Suzek et al., 2007)
during the first phase of pre-training. This initial
pre-training served as a foundational warm-up to
improve the model’s comprehension across multi-
omics biological sequences.

We employed LoRA+ (Hayou et al., 2024) for
all linear layers in the model, training on a contin-
ued pre-training dataset. LoRA+ demonstrates su-
perior convergence compared to vanilla LoRA (Hu
et al., 2022) by increasing the learning rate of the
weight B relative to the base learning rate for the
weight A and other trainable parameters. Hayou
et al. (2024) observed that setting the learning rate
of weight B to 16 times that of weight A results in
more effective convergence. However, our experi-
ments revealed that while LoRA+ indeed improves
convergence rates, applying a large learning rate
multiplier can lead to instability during the contin-
ued pre-training process. Based on this observation,
we opted for a more conservative learning rate mul-
tiplier of 4. We trained the normalization layers of
the model alongside the LoRA parameters.

4.2 Stage 2: Massive Instruction Tuning
In Stage 2, we employ the Biology-Instructions
dataset, excluding the reasoning sub-dataset. In
the initial attempts of the training process, we
find that the imbalance among tasks within the
dataset can pose challenges for the model in dis-
tinguishing between different tasks. To mitigate
this, we randomly select 30 percent of the train-
ing data and prepend a task label in the format
”[Classification/Regression:task name]” at
the beginning of each question. This method effec-
tively aids the model in identifying different tasks
and output objectives.

We use a system prompt Psc: ”You are a knowl-
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Figure 4: Overview of our three-stage training pipeline.

EA(hk)

EA(dev)

EMP

TB-HTB-M

PD300

CPD

-2.81

-0.91

-2.95

-1.17
-1.49

-1.70

-5.76

59.74

46.82

8.10

22.3032.21

56.13

44.19

DNA Tasks

APA

ncRNA

Modif

MRL

PRS

CRI-On
0.00

0.00

-6.21

0.00

0.00

0.00

50.00
0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

59.78

62.77

59.35

36.50

26.65

4.27

RNA Tasks

EC

Sta

FluSol

Ther

-5.86-0.93

0.88

-0.7346.78

19.35

60.30

1.4962.57

44.59

Protein Tasks

EPI

siRNA

AAN

RPI

-0.39

0.00

-3.29

-2.39

3.39

56.31

10.26

73.80

Multi-Molecule Tasks

LLaMA3.1-8B-Instruct
Qwen2-7B
LLama2-7B

Alpaca-7B
ChatGLM4
Vicuna

Galactica-1.3B
GPT4o-mini
GPT4o

InstructProtein-1.3B
llama-molinst-protein-7B (Mol-Ins)

BioMedGPT-LM-7B
ChatMultiOmics(ours)

Figure 5: Radar plot comparing the performance of ChatMultiOmics with SOTA baselines on all 21 downstream
tasks grouped by omics, including DNA, RNA, Protein, and Multi-molecule tasks.

edgeable and helpful biology assistant. Please an-
swer my biology sequence-related questions clearly
and concisely. For regression tasks, please re-
turn a number.” This prompt helps the model to
differentiate biology sequence-related tasks from
other tasks. As illustrated in Figure 7, we main-
tain the data format: SYSTEM:Psc USER:Xs, Xq

ASSISTANT:Yo consistent with the chat template
of Llama-3.1-8B-Instruct.

4.3 Stage 3: Reasoning Instruction Tuning

In Stage 3, we fine-tune the model using the rea-
soning sub-dataset from Biology-Instructions. To
preserve the model’s performance on classification
and regression tasks, we additionally include 3,000
samples from the non-reasoning portion of the vali-
dation set, which are trained simultaneously.

To better control the behavior of the model, a
more detailed system prompt Psd was used for
reasoning data: ”You are a highly knowledgeable
AI assistant specializing in biology, particularly
in sequence-related topics. Your primary task is
to provide clear, accurate, and comprehensive an-
swers to biology questions. When analyzing and
interpreting sequences, ensure to provide step-by-
step explanations to make your responses natural
and easy to understand. Engage with the user

by asking clarifying questions if needed and of-
fer detailed insights into the biological sequences.”
In this case, the format of training samples of
reasoning data is transformed to SYSTEM:Psd

USER:Xs, Xq ASSISTANT:Yo.

5 Results

5.1 Experimental Setups

To evaluate the biological sequence understand-
ing capabilities of current LLMs and deter-
mine if our method can enhance LLMs’ perfor-
mance, we compare ChatMultiOmics with vari-
ous open-source general-purpose LLMs: Llama3.1-
8B-Instruct (Dubey et al., 2024), Llama2-7B-
Chat (Touvron et al., 2023), Alpaca-7B (Taori
et al., 2023), Vicuna-v1.5-7B (Chiang et al.,
2023), Qwen2-7B (Bai et al., 2023), GLM4-9B-
Chat (GLM et al., 2024), and Galactica-1.3b (Tay-
lor et al., 2022). Additionally, we include com-
parisons with SOTA closed-source LLMs: GPT-
4o and GPT-4o-Mini. We also evaluate biology-
specialized LLMs: InstructProtein-1.3B (Wang
et al., 2023), Llama-molinst-protein-7B (Fang et al.,
2023), and BioMedGPT-LM-7B (Zhang et al.,
2023). To ensure well-formed and quantifiable an-
swers, we restrict the output format for all baselines
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Figure 6: Ablation studies showing the performance across different training stages. One downstream task from
each omics type is selected for display. Each bar color represents a specific training approach. The blue dashed line
indicates the performance level expected by random chance for each task, based on the respective evaluation metric.

and provide them with task information, enabling
them to understand both what to output and how
to format their output. The experimental results
are visualized in Figure 5, showcasing the com-
parative performance of various LLMs across four
types of datasets: DNA, RNA, protein, and multi-
molecule interactions. Due to space constraints,
we present only the visual results here; the com-
plete experimental results, including domain-
specific baselines, are provided in tabular form
in Appendix C (Tables 4–7) for detailed numeri-
cal comparison.

5.2 Finding 1: General LLMs lack biological
sequence understanding capability.

To assess whether LLMs can effectively tackle
tasks related to biological sequences, we con-
ducted comprehensive experiments using both
open-source and closed-source general-purpose
LLMs. For open-source LLMs, we selected models
of comparable size to our model, ChatMultiOmics.
For closed-source LLMs, we evaluated SOTA mod-
els such as GPT-4o and its streamlined version,
GPT-4o-mini. The results unequivocally demon-
strate that all open-source LLMs of similar size
to ChatMultiOmics fail to surpass average perfor-
mance levels. Similarly, the closed-source LLMs,
GPT-4o and GPT-4o-mini, exhibit performance on
par with the open-source models.

Notably, models within the same series but of
different versions—such as Llama2-7B-Chat and
Llama3.1-8B-Instruct—or of distinct sizes—such
as GPT-4o and GPT-4o-mini—exhibit compara-
ble performance on tasks involving biological se-
quences. These findings suggest that the language
capabilities of these models do not directly corre-
late with their biological sequence understanding
capability. This implies that natural language per-
formance does not determine the effectiveness of
these models in biological sequence understanding

tasks, indicating a significant lack of pre-training
on biological sequence knowledge. Despite their
extensive text-based biological knowledge, LLMs
struggle to connect this knowledge with biological
sequences and are unable to analyze sequences at
the molecular level effectively.

5.3 Finding 2: Current Biology-specialized
LLMs fail on multi-omics tasks.

Biology-specified LLMs have demonstrated re-
markable performance on a variety of tasks. For
instance, the Llama-molinst-protein-7B model ex-
cels in five key areas of protein understanding, in-
cluding the prediction of catalytic activity, protein
design, protein function prediction, and others. De-
spite these impressive achievements, these meth-
ods exhibit limitations. Notably, they lack transfer
learning capabilities across multi-omics tasks and
fail to outperform general-purpose baselines even
in single-omics tasks, and in some cases, strug-
gle to follow instructions correctly. This indicates
that while specialized LLMs are highly effective
within their specific domains, their applicability
and efficiency in broader, more integrative biologi-
cal studies remain constrained.

5.4 Finding 3: Continued pre-training boosts
fine-tuning performance.

Previous studies have utilized LoRA (Fang et al.,
2023; Lv et al., 2024) for model training. However,
our experimental findings suggest that employing
LoRA to fine-tune models on Biology-Instructions
does not result in expected performance enhance-
ments. For LoRA fine-tuning, the quality and quan-
tity of the pre-training on related knowledge ap-
pear to be critical factors for achieving good re-
sults, as indirectly proved by the experimental setup
in (Fang et al., 2023), where full fine-tuning was ap-
plied to protein-related tasks, and LoRA was used
for the fine-tuning of other tasks, alongside the near-
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Table 1: Performance comparison on protein-related tasks (ROUGE-L scores, higher is better).

Model Protein Function Functional Description Catalytic Activity Domain/Motif

Training Set Size 116,458 88,259 54,259 46,028

Alpaca 0.20 0.10 0.23 0.12
Baize 0.20 0.15 0.22 0.13
ChatGLM 0.15 0.14 0.13 0.10
LLaMa 0.12 0.12 0.13 0.09
Vicuna 0.15 0.14 0.16 0.12
Galactica 0.07 0.08 0.08 0.06
Llama-molinst-protein-7B 0.43 0.44 0.52 0.46
ChatMultiOmics 0.36 0.38 0.60 0.44

random performance of the baselines on biological-
sequence understanding tasks. After continued
pre-training on multi-omics sequences, LoRA fine-
tuning on Biology-Instructions does help the model
leverage the intrinsic relationships and dependen-
cies from pre-trained knowledge. The results of
the second stage significantly surpass those of in-
struction tuning without continued pre-training, as
shown in Figure 6.

5.5 Finding 4: Fine-tuning on the reasoning
dataset further enhances performance.

We hypothesize that the model’s performance can
be enhanced by incorporating task information and
reasoning steps, which can aid the model in better
understanding the task and consequently lead to im-
proved results. We tested the third-stage model us-
ing the system prompt Psc to facilitate results com-
putation. The results indicate that for most tasks,
performance was enhanced. However, for some
regression tasks, the performance was slightly ad-
versely affected by the third-stage training.

Furthermore, when the reasoning system prompt
Psd was used, the model demonstrated excellent
reasoning capabilities and extended its perfor-
mance to untrained tasks, such as antibody-antigen
neutralization and RNA-protein interaction predic-
tion, as illustrated in Figure 1 (b).

5.6 Finding 5: ChatMultiOmics generalizes to
out-of-domain biological sequence tasks.

Although ChatMultiOmics is primarily trained on
a curated set of prediction and regression tasks,
we further evaluate its ability to generalize to
out-of-domain biological sequence tasks. To this
end, we conduct a comprehensive benchmark
across all protein-related tasks included in Mol-
Instructions (Fang et al., 2023). For each task, the

model is fine-tuned using only 1,000 samples for
prompt-answer format alignment and then evalu-
ated on the respective test sets. As shown in Ta-
ble 1, ChatMultiOmics achieves highly compet-
itive performance across all four tasks—Protein
Function, Functional Description, Catalytic Activ-
ity, and Domain/Motif Prediction—despite the lim-
ited task-specific tuning. These results demonstrate
the strong generalization capability of ChatMulti-
Omics to diverse protein-related tasks beyond its
original training domain.

6 Conclusion

We introduce Biology-Instructions, the first
large-scale, multi-omics instruction-tuning dataset
focused on biological sequences. Biology-
Instructions bridges the gap between large lan-
guage models (LLMs) and complex biological
tasks by encompassing 21 diverse tasks involv-
ing DNA, RNA, proteins, and multi-molecule in-
teractions, spanning both single-sequence analy-
sis and interaction-based reasoning. By incor-
porating reasoning-oriented instructions, Biology-
Instructions enables LLMs to handle complex bio-
logical tasks with greater versatility while preserv-
ing conversational fluency. Our evaluation reveals
that SOTA LLMs such as GPT-4 struggle with bio-
logical sequence-related tasks without specialized
training. Using Biology-Instructions for instruc-
tion tuning, we demonstrate significant improve-
ments, proving its value in enhancing LLMs for
multi-omics sequence analysis. We also develop
ChatMultiOmics, along with a three-stage training
pipeline: continued pre-training, massive instruc-
tion tuning, and reasoning instruction tuning. This
pipeline yields significant performance improve-
ments, offering an effective and scalable approach
for training biological LLMs.
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7 Limitations

While Biology-Instructions is a significant advance-
ment, it still has areas for improvement. The dataset
covers primarily the predictive tasks. Future ver-
sions of this work should include generative tasks,
such as designing novel protein sequences, which
could greatly enhance its utility in protein engineer-
ing.

ChatMultiOmics demonstrates promising rea-
soning capabilities, yet further enhancements are
needed to make its outputs more practical and re-
liable. To enhance model performance, we could
use hybrid architectures that combine specialized
biological tokenizers or encoders with LLMs and
even refine the model architecture (Ye et al., 2025).
This could reduce information loss during the tok-
enization of biological sequences.

Integrating structural data, such as 3D molec-
ular coordinates, could improve the model’s abil-
ity to capture functional implications of molecular
structures. Incorporating multi-hop data could be
another potential enhancement for the model to
reason over interconnected biological datasets and
capture more intricate relationships across multiple
omics layers.

Future efforts should also expand evaluation met-
rics beyond accuracy to include interpretability, ro-
bustness, and computational efficiency, offering a
more holistic view of model performance.

Long-chain-of-thought reasoning models have
demonstrated strong performance across a variety
of complex tasks, such as advanced mathematical
reasoning. These models also hold significant po-
tential for excelling in biological sequence-related
tasks as they can further bridge the gap between
natural language and biological language. How-
ever, benchmarking long chain-of-thought reason-
ing models and developing more powerful models
through such approaches is a comprehensive and
labor-intensive endeavor, which we leave for fu-
ture research. Future work could involve bench-
marking various long-chain-of-thought reasoning
models—such as DeepSeek-R1 (Guo et al., 2024)
and QwQ-32B (Team, 2025) on biology-sequence-
related tasks using the Biology-Instructions dataset.

Additionally, future works may explore con-
structing a long-chain-of-thought-enhanced version
of Biology-Instructions through rejection sampling
techniques. Furthermore, by leveraging this en-
hanced dataset alongside supervised fine-tuning or
reinforcement learning methods, future studies can

aim to improve the biological sequence understand-
ing capabilities of LLMs.
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A Detailed information of
Biology-Instructions and Evaluation
Metrics

A.1 Impact
The Biology-Instructions dataset addresses critical
challenges in computational biology across multi-
ple omics domains. DNA instructions improve our
understanding of regulatory elements in gene ex-
pression. RNA instructions tasks offer insights
into transcriptomics and regulation at the RNA
level. Protein instructions enhance our knowl-
edge of protein functions, interactions, and their rel-
evance in drug development. Multi-molecular in-
structions explore biomolecular interactions, such
as RNA-protein and promoter-enhancer, revealing
regulatory networks. By supporting these diverse
tasks, Biology-Instructions advances multi-omics
research and fosters discoveries in genetic regula-
tion and therapeutic development.

A.2 Tasks Definition
A.2.1 DNA tasks
Epigenetic Marks Prediction This is a binary
classification task that predicts whether a DNA se-
quence has chemical modifications affecting gene
regulation without changing the DNA itself. Epi-
genetic marks are crucial for understanding gene
regulation and its impact on health and disease. We
use part of the DNABERT-2 dataset (Zhou et al.,
2024), containing 28,740 DNA sequences, some
of which are chemically modified. Model perfor-
mance is evaluated using the Matthews Correlation
Coefficient (MCC).

EA Prediction This is a regression task that pre-
dicts the activity levels of enhancer regions in the
DNA sequences. By predicting the activity levels
of enhancers, scientists can gain deeper insights
into how genes are regulated in specific tissues or
under certain conditions. The target values are two
numeric values that reflects the housekeeping and
developmental activity level. The dataset is sourced
from the DeepSTARR (de Almeida et al., 2022),
consisting of DNA sequences annotated with en-
hancer activities. We evaluate the performance of
the model using the Pearson Correlation Coeffi-
cient (PCC), reflecting its ability to decide levels
of activity across different DNA sequences.

Promoter Detection 300 & Promoter Detec-
tion Core These two tasks are both binary classi-
fication tasks for identifying promoter regions in
DNA sequences(exist or not). Promoter Detection

300 refers to detecting promoter regions within a
300 base pair (bp) window, which includes both
the core promoter region and the surrounding reg-
ulatory elements. While promoter detection core
refers to detect a shorter, core sequence (usually
around 50-100 bp) directly upstream of the tran-
scription start site. Both tasks are important for
understanding gene regulation and can aid in study-
ing transcriptional activity, identifying novel genes,
and mapping gene expression patterns. For these
tasks, we also adopt the dataset part of DNABERT-
2 (Zhou et al., 2024). Evaluation of the model
performance is done using MCC, capturing the
model’s ability to predict the existence of promot-
ers on different sequence contexts balancedly.

Transcription Binding Sites Detection We de-
fine this as a binary classification task to determine
whether specific regions with transcription factors
binding in the DNA sequences are present or not.
These transcription binding sites (TBS) are criti-
cal for controlling the initiation, enhancement, or
repression of transcription. Once more, data from
DNABERT-2 is utilized for this task (Zhou et al.,
2024), which includes numerous DNA sequences,
partly possessing TBS. The performance of the
model is evaluated using MCC, fairly measuring
its ability to discover TBS in different DNA se-
quences.

Enhancer-Promoter Interaction Prediction
This is a binary classification task, which involves
identifying the interactions between enhancer re-
gions and their corresponding promoter regions in
a pair of DNA sequences. Predicting these interac-
tions helps researchers understand the complex reg-
ulatory networks governing DNA activity, which
is essential for studying developmental processes
and potential therapeutic targets. We extract our
dataset from the research (Min et al., 2021), which
contains two DNA sequences. The model needs
to figure out whether they interact with each other.
We evaluate the performance of the model using the
metric MCC to test whether the model can identify
these interactions correctly.

A.2.2 RNA tasks
APA Isoform Prediction This is a regression task
that predicts the usage of alternative polyadenyla-
tion (APA) isoforms by analyzing RNA sequences
and outputting a proportion between 0 and 1 that
represents the relative expression of each APA iso-
form. Accurate APA isoform prediction is critical
for understanding the regulation of gene expression
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Table 2: Tasks information of Biology-Instructions

Task Omics #Training/Validation/Test

DNA Tasks
Epigenetic Marks Prediction (EMP) DNA 229885/28741/28741

EA Prediction (EA) DNA 402296/40570/41186
Promoter Detection 300 (PD300) DNA 94712/11840/11840
Core Promoter Detection (CPD) DNA 94712/11840/11840

Transcription Binding Sites Detection Human (TB-H) DNA 128344/5000/5000
Transcription Binding Sites Detection Mouse (TB-M) DNA 80018/10005/10005

RNA Tasks
APA Isoform Prediction (APA) RNA 1575557/33170/49755

Non-coding RNA Function Classification (ncRNA) RNA 5670/650/4840
Modification Prediction (Modif) RNA 304661/3599/1200

Mean Ribosome Loading Prediction (MRL) RNA 76319/7600/7600
Programmable RNA Switches (PRS) RNA 73227/9153/11019

CRISPR On Target Prediction (CRI-On) RNA 1453/207/416
Protein Tasks

Enzyme Commission Number Prediction (EC) Protein 15551/1729/1919
Stability Prediction (Sta) Protein 53614/2512/12851

Fluorescence Prediction (Flu) Protein 21446/5362/27217
Solubility Prediction (Sol) Protein 62478/6942/2001

Thermostability Prediction (Ther) Protein 5056/639/1336
Multi-molecular Tasks

Antibody-Antigen Neutralization (AAN) Multi-molecule 22359/1242/3301
RNA-Protein Interaction Prediction (RPI) Multi-molecule 14994/1666/4164

Enhancer-Promoter Interaction Prediction (EPI) Multi-molecule 14288/1772/308
siRNA Efficiency Prediction (siRNA) Multi-molecule 53592/6707/6688

Total
All 3330232/190946/244681

at the RNA level, which plays a fundamental role
in transcriptome diversity. For this task, we adopt
APARENT’s (Bogard et al., 2019a) APA isoform
prediction dataset, which consists of isoform usage
data derived from synthetic and human 3’UTRs.
The output represents the proportion of isoform
usage, capturing the variability in polyadenylation
signal processing. The performance of the predic-
tion is evaluated using the Coefficient of Determi-
nation (R2).

Non-coding RNA Function Classification This
is a multi-label classification task that predicts the
functional class of non-coding RNA (ncRNA) se-
quences. The model outputs one or more class la-
bels from a set of 13 possible ncRNA classes, such
as ’tRNA’, ’miRNA’, and ’riboswitch’. Accurately
classifying ncRNAs is essential for improving our
understanding of their regulatory roles in gene ex-
pression, as well as their contributions to diverse
biological processes and diseases. For this task,

we adopt the nRC (non-coding RNA Classifier)
dataset from (Fiannaca et al., 2017), which utilizes
features derived from ncRNA secondary structures.
The output assigns each RNA sequence to one or
more functional classes, enabling a detailed exami-
nation of the functional diversity within ncRNAs.
The performance of the model is evaluated using
accuracy (Acc), reflecting the model’s ability to
correctly classify ncRNA functions across all cate-
gories.

Modification Prediction This is a multi-label
classification task that predicts post-transcriptional
RNA modifications from RNA sequences. The
model outputs one or more modification types from
a set of 12 widely occurring RNA modifications,
including ’m6A’, ’m1A’, and ’m5C’. Precise iden-
tification of RNA modification sites is essential for
understanding the regulatory mechanisms of RNA
and their roles in various biological processes. For
this task, we adopt the MultiRM dataset from (Song
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et al., 2021a), which contains RNA sequences an-
notated with multiple modification types. The per-
formance of the model is evaluated using the Area
Under the Curve (AUC), capturing the model’s abil-
ity to predict RNA modifications across different
contexts.

Mean Ribosome Loading Prediction This is
a regression task that predicts ribosome loading
efficiency by analyzing RNA sequences and out-
putting a numeric value, representing mean ribo-
some loading, with two decimal precision. Ac-
curate prediction of ribosome loading is essential
for understanding how cis-regulatory sequences,
such as 5’ untranslated regions (UTRs), influence
translation efficiency, which is crucial for both fun-
damental biological research and applications in
synthetic biology and mRNA therapeutics. For
this task, we adopt the dataset from (Sample et al.,
2019a), which includes polysome profiling data of
280,000 randomized 5’ UTRs and 35,212 truncated
human 5’ UTRs. The performance of the model
is evaluated using the Coefficient of Determina-
tion (R2), measuring its ability to predict ribosome
loading across different sequence contexts.

Programmable RNA Switches This is a multi-
label regression task that predicts the behavior of
programmable RNA switches by analyzing RNA
sequences and outputting three numeric values rep-
resenting the ’ON’, ’OFF’, and ’ON/OFF’ states,
each with two decimal precision. Accurate predic-
tion of these states is critical for advancing syn-
thetic biology, as RNA switches are essential tools
for detecting small molecules, proteins, and nu-
cleic acids. For this task, we adopt the dataset
from (Angenent-Mari et al., 2020a), which in-
cludes synthesized and experimentally character-
ized data for 91,534 toehold switches spanning 23
viral genomes and 906 human transcription factors.
The performance of the model is evaluated using
the Coefficient of Determination (R2), measuring
the model’s ability to predict the functional states
of RNA switches across diverse sequence contexts.
(Ren et al., 2024a)

This is a multi-label regression task that predicts
the behavior of programmable RNA switches by
analyzing RNA sequences and outputting three nu-
meric values representing the ’ON’, ’OFF’, and
’ON/OFF’ states, each with two-decimal precision.
Accurate prediction of these states is crucial for ad-
vancing synthetic biology, as RNA switches serve
as essential tools for detecting small molecules, pro-
teins, and nucleic acids. For this task, we use the

dataset from (Angenent-Mari et al., 2020a), which
includes synthesized and experimentally charac-
terized data for 91,534 toehold switches spanning
23 viral genomes and 906 human transcription fac-
tors. This dataset is also included in the RNA-
related tasks benchmark BEACON (Ren et al.,
2024a). Model performance is evaluated using the
Coefficient of Determination (R2), assessing the
model’s ability to predict the functional states of
RNA switches across diverse sequence contexts.

CRISPR On Target Prediction This is a re-
gression task that predicts the on-target knockout
efficacy of single guide RNA (sgRNA) sequences
using CRISPR systems. The model outputs a nu-
meric value that represents the predicted sgRNA
knockout efficacy for a given RNA sequence. Accu-
rate prediction of on-target efficacy is essential for
optimizing the design of sgRNAs with high speci-
ficity and sensitivity, which is crucial for success-
ful CRISPR-based genome editing. For this task,
we adopt the DeepCRISPR dataset from (Chuai
et al., 2018), which includes sgRNA sequences
and their corresponding on-target knockout effi-
cacy data. The performance of the model is evalu-
ated using Spearman’s correlation, measuring the
model’s ability to predict the effectiveness of sgR-
NAs across different genetic contexts.

siRNA Efficiency Prediction This is a regres-
sion task that predicts the efficiency of siRNA in si-
lencing target genes by analyzing modified siRNA
sequences and corresponding target sequences, out-
putting a numeric value representing the percentage
of mRNA remaining after siRNA treatment. Ac-
curate prediction of siRNA efficiency is crucial
for optimizing siRNA design in RNA interference
(RNAi) applications, which plays a critical role in
gene expression regulation and has significant im-
plications in therapeutic interventions. For this task,
we adopt the dataset from the competition (SAIS,
2020) and benchmark (Ren et al., 2024b), which
contain chemically modified siRNA sequences and
their measured silencing efficiency data. The per-
formance of the model is evaluated using a mixed
score, reflecting its ability to predict the mRNA re-
maining percentage across different chemical mod-
ifications and experimental conditions.

A.2.3 Protein tasks
Enzyme Commission (EC) Number Prediction.
This is a multi-label classification task that predicts
enzyme functions by annotating protein sequences
with all corresponding EC numbers. We adopt
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DeepFRI’s (Gligorijević et al., 2021) EC annotation
dataset from PDB chains, whose binary multi-hot
vectors are converted back into corresponding EC
numbers for language capability in our task. The
performance of the prediction is evaluated using
the Fmax metric. Accurate EC number prediction
is crucial for understanding enzyme catalytic func-
tions, accelerating the discovery of novel enzymatic
activities. This has applications in biotechnology,
including optimizing enzymes for industrial use
and drug development. By predicting catalytic ac-
tivities, researchers can engineer enzymes tailored
for therapeutic interventions, contributing to drug
discovery and targeted treatments.

Stability Prediction. This is a regression task to
assess the intrinsic stability of proteins under vari-
ous conditions, with each protein sequence mapped
to a continuous stability score that reflects how well
the protein maintain its fold above a certain concen-
tration threshold, like EC50. We adopt the dataset
from Rocklin et al. (Rocklin et al., 2017), which
includes protease EC50 values derived from exper-
imental data. The model’s performance is assessed
using Spearman’s correlation. Predicting protein
stability is essential in protein engineering, espe-
cially for therapeutic applications where protein
integrity is crucial. These predictions reduce the
need for experimental screening, facilitating the de-
sign and refinement of stable proteins for industrial,
pharmaceutical, and research purposes.

Fluorescence Prediction. This is a regression
task that aims to evaluate the model’s ability to pre-
dict fluorescence values for higher-order mutated
green fluorescent protein (GFP) sequences. This is
a regression task where each protein sequence is
mapped to the logarithm of its fluorescence inten-
sity (Sarkisyan et al., 2016). Following the setting
in TAPE (Rao et al., 2019), the model is trained
on a set of mutants with a low number of muta-
tions, while tested on mutants with four or more
mutations. The task is designed to assess how well
the model generalized to unseen combinations of
mutations by leveraging Spearman’s correlation to
evaluate predictive performance. Accurate fluo-
rescence prediction in higher-order mutated GFP
aids in understanding mutation effects and inter-
actions. These predictions provide insights into
protein function and help efficiently explore muta-
tional landscapes, facilitating the design of fluores-
cent proteins for applications in synthetic biology
and protein engineering.

Solubility Prediction. This is a binary clas-

sification task to determine whether a protein is
soluble or insoluble. The dataset is sourced from
the DeepSol (Khurana et al., 2018), ensuring that
protein sequences with a sequence identity greater
than 30 percent to any sequence in the test set are
excluded from training. The challenge is to test
a model’s capacity to generalize across dissimilar
protein sequences. Predicting protein solubility is
crucial for pharmaceutical research and industrial
biotechnology. Soluble proteins are essential for
drug formulation and large-scale production. This
task drives the development of advanced in silico
methods to predict solubility, reducing laboratory
testing and accelerating the discovery of therapeu-
tically relevant proteins.

Thermostability Prediction. This is a regres-
sion task to predict the stability of proteins at el-
evated temperatures. The target value reflects the
thermostability of a given protein sequence. We
focus on the Human-cell split from the FLIP (Dal-
lago et al., 2021), sequences are clustered by iden-
tity and divided into training and test sets. Model
prediction performance is evaluated by the met-
ric Spearman correlation. Accurate prediction of
protein thermostability enhances understanding of
protein function and stability, which is critical for
protein engineering. These predictions support pro-
tein optimization in biotechnological applications,
including drug and vaccine development (Chen and
Gong, 2022), and provide a framework for select-
ing thermostable proteins.

A.2.4 Multi-molecule tasks
RNA-Protein This is a binary classification task,
the objective of which is to identify interactions
between non-coding RNAs (ncRNAs) and proteins,
based on the sequences of the aforementioned ncR-
NAs and proteins. The majority of ncRNAs interact
with proteins to perform their biological functions.
Consequently, inferring the interactions between
ncRNAs and proteins can facilitate the compre-
hension of the potential mechanisms underlying
biological activities involving ncRNAs (Li et al.,
2016). The dataset employed in this study was
derived from (Han and Zhang, 2023), comprising
14,994 samples. The evaluation metric employed
was MCC.

Antibody-Antigen This is a binary classifica-
tion task, which seeks to ascertain whether a cor-
responding interaction relationship exists based on
the sequences of antibodies and antigens. The ob-
jective of this task is to ascertain the correspon-
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dence between antigens and antibodies and to pre-
dict more effective antibody characteristics for
new variants of viruses. The dataset was sourced
from (Zhang et al., 2022), which contains 22,359
antibody-antigen pairs. MCC is employed for the
assessment of the model’s performance.

A.3 Evaluation Metrics
Single-label Regression: This type of task in-
volves predicting one continuous numerical value.
The evaluation process extracts the numeric val-
ues from model outputs using regular expressions,
avoiding over- and underflow by limiting values to
six significant digits. Metrics computed for regres-
sion tasks include:

• Spearman’s Rank Correlation Coefficient:
Measures the monotonic relationship between
predicted and true values according to their
ranks. The metric value ranges from -1 to
1, where -1 indicates perfect negative correla-
tion, 0 indicates no correlation (random pre-
dictions), and 1 indicates perfect positive cor-
relation.

• Coefficient of Determination (R2): Obtained
by squaring the Pearson correlation coefficient
to reflect the proportion of variance in the de-
pendent variable explained by the independent
variable. The metric value ranges from 0 to 1,
where 1 indicates perfect prediction and 0 in-
dicates predictions as good as the mean value
(randomness).

• Mixed Score: A custom metric (SAIS, 2020)
balances regression error and classification
accuracy by integrating F1 score (harmonic
mean of precision and recall), Mean Absolute
Error (MAE), and range-based MAE (MAE
computed within a range threshold). Calcula-
tion details will be further explained in A.3.1.

Multi-label Regression: This type of task in-
volves predicting multiple continuous outputs for
each input. In the EA prediction task, two numeric
values are required for the regression values of
’Housekeeping EA’ and ’Developmental EA’. In
the programmable RNA switches prediction task,
three numeric values are required for predicting the
regression values of ’ON’, ’OFF’, and ’ON/OFF’.

• Pearson Correlation Coefficient (PCC): As-
sesses the linear correlation between two sets
of data. The metric value ranges from -1 to

1, where -1 indicates perfect negative linear
correlation, 0 indicates no linear correlation
(random predictions), and 1 indicates perfect
positive linear correlation.

• Average R2: Computes individual R2 for
each label and takes the mean across labels
to obtain an average R2 as the overall perfor-
mance metric. The metric values share the
same range and interpretations similar to the
single-label R2.

Binary Classification: This type of task asks
the model to predict one of two possible classes. In
our case, either positive or negative. The evalua-
tion pipeline involves first classifying via keywords
based on the presence of predefined positive or neg-
ative keywords. If keywords classification fails,
the pre-trained sentiment analysis model Twitter-
roBERTa-base ¡cite source?¿ will be utilized as a
fallback to determine the class based on the sen-
timent polarity assigned with a higher probability
score.

• Matthews Correlation Coefficient (MCC):
Provides a balanced measure for binary clas-
sifications, even when classes are imbalanced.
The metric ranges from -1 to 1, where -1 in-
dicates perfect inverse correlation, 0 indicates
random predictions or no correlation, and 1
indicates perfect positive correlation.

• Accuracy Score: Calculates the proportion
of correct predictions out of all predictions
made. It ranges from 0 to 1, where 0 indicates
no correct predictions, 1 indicates all correct
predictions, and 0.5 as random predictions.

Multi-class Classification: This type of task
asks the model to assign each input to one of several
classes. In the non-coding RNA family prediction
task, the model is required to predict one of 13
classes.

• Accuracy Score: Calculates the proportion
of correct predictions out of all predictions
made. It ranges from 0 to 1, where 0 indicates
no correct predictions, 1 indicates all correct
predictions, and 0.5 as random predictions.

Multi-label Classification: This type of task
involves inputs that may belong to multiple classes
and asks the model to predict all of them. The
evaluation process includes first extracting all rele-
vant labels from the model outputs and converting
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them into binary multi-hot vectors representing the
presence or absence of each class.

• Area Under the ROC Curve (AUC): Mea-
sures the model’s ability to distinguish be-
tween classes across all thresholds. The met-
rics range from 0 to 1, where 1 indicates per-
fect ability to distinguish classes and 0.5 as
random performance.

• Fmax Score: Represents the maximum F1
score over all possible thresholds, providing
a balanced measure of precision and recall in
multi-label settings. The metric ranges from 0
to 1, where 0 indicates the worst balance of no
correct predictions and 1 indicates a perfect
balance between precision and recall.

A.3.1 Mixed Score Calculation
The Mixed Score is a custom metric adopted
from (SAIS, 2020) which is designed to balance
regression error and classification accuracy by inte-
grating three components: the F1 score, the Mean
Absolute Error (MAE), and the Range-based MAE
(Range-MAE). This metric provides a comprehen-
sive evaluation by considering overall prediction
accuracy, precision, and recall, as well as specific
performance in a designated value range. The cal-
culation is detailed below:

• Mean Absolute Error (MAE): This mea-
sures the average magnitude of prediction er-
rors across all samples, providing an indica-
tion of the model’s overall regression accuracy.
The MAE is defined as:

MAE =
1

n

n∑

i=1

|yi − ŷi|,

where n is the total number of samples, yi is
the ground truth value, and ŷi is the predicted
value. The range of MAE is [0, 100].

• Range-based MAE (Range-MAE): This
metric evaluates the Mean Absolute Error
within a specific range of interest, emphasiz-
ing regions where high predictive accuracy
is particularly crucial. For the siRNA task,
the ”low remaining” range is of significant im-
portance in practical applications. Following
(SAIS, 2020), we define this range as [0, 30].
The Range-MAE is computed as:

Range−MAE =
1

m

m∑

j=1

|yj − ŷj |,

where m is the number of samples within
the specified range, and yj , ŷj represent the
ground truth and predicted values within this
range. The Range-MAE is also bounded
within [0, 100].

• F1 Score: This classification metric combines
precision and recall into a harmonic mean to
evaluate the quality of predictions within the
designated range. For the range [0, 30], preci-
sion and recall are calculated for predictions
falling within this interval, and the F1 score is
derived as:

F1 = 2 · Precision ·Recall

Precision+Recall
.

final Mixed Score integrates these three compo-
nents to provide a balanced assessment of regres-
sion and classification performance. The formula
for the Mixed Score is:

Mixed Score = 50% ·(1−MAE/100)
+ 50% · F1 · (1−Range−MAE/100).

where the first term emphasizes overall regres-
sion performance, and the second term focuses
on classification accuracy and precision within the
specified range.

This scoring mechanism is designed to reward
models that perform well both globally (via MAE)
and within critical regions (via Range-MAE and
F1), ensuring a comprehensive evaluation of model
capabilities.

B Model Training Details

As shown in TABLE 3, we adopt different training
methods for each stage due to limitations in com-
putational resources while attempting to improve
model performance as much as possible.

In Stage 1, we train the model using 523933
RNA sequences, 1561639 DNA sequences, and
2000000 protein sequences, each with a maximum
length of 2000 characters. The dataset weights
for RNA, DNA, and protein are [2, 1, 1], indi-
cating that RNA sequences are trained twice per
epoch. This stage consumes the majority of com-
putational resources. To reduce training time, we
apply LoRA to every linear layer in the model and
additionally train each RMS normalization (Zhang
and Sennrich, 2019) layer. To optimize process-
ing efficiency and balance model performance and
training efficiency, we impose a maximum input
length of 2000 characters for biological sequences,
which approximately translates to a maximum of
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1200 input tokens. To address the potential ineffi-
ciency arising from varying input sequence lengths,
we implement a packing strategy1. This approach
allows us to combine multiple samples of different
lengths into a single sample, effectively eliminating
the need for padding tokens in our training data.
The training process encompassed approximately
a total of 140,000 parameter update steps, each
step composed of 48 global samples, ensuring thor-
ough optimization of the model’s performance on
biological sequence data.

In Stage 2, we train the model with 3330232 sam-
ples. As noted by (Ghosh et al.), we discover that
using LoRA and its variants (Hayou et al., 2024;
yang Liu et al., 2024; Kalajdzievski, 2023) for the
entire model during supervised fine-tuning leads to
sub-optimal performance. Therefore, we fully fine-
tune the query and key layers in each self-attention
module, along with the RMS normalization layers,
while applying LoRA+ to the other linear layers in
the model. This approach ensures the update for
the whole model and improves model performance
while maintaining relatively low training times by
reducing the communication quantity of optimizer
states. The base learning rate was set to 1e-4, with
the learning rate for the weight B parameter group
at 1.6e-3. We configured the gradient accumula-
tion steps to 10 and set the micro-batch size on the
GPU to 2, given that the maximum input length
was limited to 1024. This configuration results in
a global batch size of 400. In Stage 3, minimal
computational resources are required. Thus, we
employ full fine-tuning for the entire model except
the embedding layer and output layer.

We use DeepSpeedCPUAdam and
adamw_mode=True for Stage 1 and Stage 2,
as LoRA efficiently reduces the communication
time between CPU and GPU for offloaded
optimizers. For Stage 3, we use FusedAdam
and adam_w_mode=True to reduce training time.
A warmup learning rate scheduler with cosine
learning rate decay is used for all three stages.
All stages employ a mixed precision training
strategy where model parameters, gradients, and
activations are stored in torch.bfloat16. To
improve training efficiency, we use DeepSpeed
ZeRO stage 2 (Rajbhandari et al., 2020) and
FlashAttention-2 (Dao et al., 2022; Dao, 2023) for
all training processes. We adopt PyTorch2.2.1’s

1https://github.com/meta-Llama/Llama-
recipes/tree/main/recipes/quickstart/finetuning/datasets

scaled dot product attention for FlashAttention-2
implementation, which is more convenient than
the FlashAttention official library with a Python
environment. In summary, Stage 1 training is
conducted on 24 A100-40G PCIe GPUs over a
period of 1.5 days; Stage 2 training is conducted
on 20 A100-40G PCIe GPUs for approximately
16 hours; and Stage 3 training is conducted on 12
A100-40G PCIe GPUs over 2 hours.

C Additional Results

Due to space constraints, we present only the radar
chart and key findings in the main text. Compre-
hensive results across 21 tasks, detailed in Tables
4, 5, 6, and 7, further demonstrate the effectiveness
of our dataset and three-stage training pipeline.

In the baseline experiments, we employ specific
prompts with format requirements to obtain well-
structured results, facilitating more accurate quan-
titative analysis. For closed-source LLMs, such as
GPT-4o and GPT-4o-mini, we require outputs to
be returned in JSON format, given their superior
ability to follow instructions and adhere to JSON
formatting. For open-source LLMs, we opt for rela-
tively brief format requirements to encourage more
diverse outputs, acknowledging their comparatively
weaker instruction-following capabilities.

As shown in Table 8, we also provide task-
relevant information as a hint to the baselines to
ensure a fair comparison and clarify the expected
output content. Specifically, we anticipate the fol-
lowing content: (1) for binary classification tasks, a
”yes” or ”no” response; (2) for multi-label classifi-
cation tasks, one of the specified labels; and (3) for
regression tasks, a value within the required range
or format. The final prompt formats are detailed in
Table 9.

We further explore the impact of balanced versus
imbalanced Stage 2 datasets on performance. Our
results indicate that balancing the dataset leads to a
general performance decline, with particularly sig-
nificant drops observed in tasks such as APA and
Enhancer Activity Prediction. We believe that bal-
anced datasets may distort the natural distribution
of real-world biological data and reduce overall
data size to match the smallest task, which contains
only a few thousand samples, limiting the model’s
ability to fully utilize available data.

Figure 8 illustrates two comparison examples
between ChatMultiOmics and baseline models. In
both cases, the baseline models failed to provide
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Figure 7: Example of a training sample in stage 2.

correct answers due to various reasons, while Chat-
MultiOmics produced accurate responses, with or
without reasoning. In one example, ChatMulti-
Omics successfully reasons through an antibody-
antigen neutralization task, despite this reasoning
not being part of the Biology-Instructions subset.
However, while ChatMultiOmics arrived at the cor-
rect final answer, it followed an incorrect reasoning
path. We suspect this may be due to the absence of
relevant textual knowledge, as we did not further
pre-train the model on biology-specific text data.
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Figure 8: Comparison of ChatMultiOmics with baseline models in two examples.
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Table 3: Hyperparameters at each stage. Wq,Wk,Wv,Wo: Four linear parameters in the self-attention modules
corresponding to query, key, value, and output. W1,W2,W3: Three linear parameters in the feed-forward modules
corresponding to up projection, gate projection, and down projection. RMSnorm: parameters in RMS normalization
layers. All: Parameters in RMS normalization layers. All: All parameters in the model.

Hyper Parameters stage 1 stage 2 stage 3
Fine-tune method Mixed Mixed Full

LoRA target modules All linear Wv,Wo,W1,W2,W3 -
Trainable parameters LoRA, RMSNorm LoRA, RMSNorm, wq, wv All

Base learning rate 1e-4 1e-4 1e-5
LoRA+ scaler 4 16 -

LoRA rank 128 64 -
LoRA α 32 32 -

Max input length 1200 1024 1024
Batch size per gpu 2 2 2

Gradient accumulation steps 1 10 1
Global batch size 48 400 24

Global steps 140000 80000 2750

Table 4: Evaluation results on DNA tasks

Model/Task EA (hk) EA (dev) EMP TF-H TF-M PD300 CPD
Metrics % PCC PCC MCC MCC MCC MCC MCC

Literature SOTA
Literature DeepSTARR DeepSTARR DNABERT2 DNABERT2 DNABERT2 DNABERT2 DNABERT2

(de Almeida et al., 2022) (de Almeida et al., 2022) (Zhou et al.) (Zhou et al.) (Zhou et al.) (Zhou et al.) (Zhou et al.)
SOTA 68.00 74.00 58.83 66.84 71.21 83.81 71.07

Open source LLM
LLaMA3.1-8B-Instruct 0.61 0.27 -0.37 0.00 -1.42 0.01 0.00
Qwen2-7B 0.40 0.35 -0.66 -0.21 -1.59 -4.83 1.35
Llama2-7B-Chat 0.55 0.13 0.94 1.84 0.97 -0.29 -0.55
Alpaca-7B -0.11 0.31 -0.36 2.00 0.00 -0.15 -1.30
GLM-4-9B-Chat 0.87 0.17 -0.22 0.00 0.00 -0.25 -2.53
Vicuna-v1.5-7B 0.18 0.69 0.00 0.00 0.00 0.00 0.00
Galactica-1.3B 0.13 0.09 0.07 3.00 -2.81 0.41 -1.01

Closed source LLM
GPT-4o-mini -0.76 0.09 -0.91 0.14 -0.31 -4.44 -2.95
GPT-4o -1.17 -1.49 -0.49 -1.70 -1.38 8.67 -0.84

Biology-specialize LLM
InstructProtein-1.3B 0.00 0.39 0.22 -1.29 1.19 2.75 -0.33
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.10 -0.29 2.40 0.33 -5.76 1.98

Our Model on Balanced Dataset
ours (stage 1 + balanced stage 2) 0.92 0.06 1.40 2.46 0.88 5.19 5.57

Our Model on Our Dataset
ours (stage 2 only) -0.16 0.08 0.31 0.86 0.13 0.87 1.8
ours (stage 1 + stage 2) 59.74 46.82 8.1 19.07 27.94 49.01 41.18
ours (stage 1 + stage 2 + stage 3) 57.24 45.92 3.64 24.45 39.91 58.18 44.54

18006



Table 5: Evaluation results on RNA tasks

Model/Task APA ncRNA Modif MRL PRS CRI-On

Metrics % R2 Acc Auc R2 R2 Spearman’s ρ

Literature SOTA

Literature APARENT GCN MultiRM Optimus MLP-O SSC
(Bogard et al., 2019b) (Rossi et al., 2019) (Song et al., 2021b) (Sample et al., 2019b) (Angenent-Mari et al., 2020b) (Xu et al., 2015)

SOTA 50.82 85.73 84.00 78.00 55.67 44.10
Open-Source LLM

LLaMA3.1-8B-Instruct 0.01 6.32 50.52 0.01 0.02 -0.09
Qwen2-7B 0.00 7.08 50.34 0.00 0.01 -6.21
Llama2-7B-Chat 0.00 4.88 50.40 0.00 0.01 0.92
Alpaca-7B 0.00 7.42 50.00 0.03 0.01 -3.55
GLM-4-9B-Chat 0.00 8.23 50.05 0.00 0.01 -0.02
Vicuna-v1.5-7B 0.01 3.81 50.27 0.01 0.00 1.88
Galactica-1.3B 0.00 6.73 53.78 0.00 0.02 -5.56

Closed-Source LLM

GPT-4o-mini 0.05 3.00 50.49 0.01 0.03 3.77
GPT-4o 0.00 5.60 50.47 0.01 0.00 -3.31

Specific Biology LLM

InstructProtein-1.3B 0.00 0.00 51.08 0.02 0.00 0.00
Llama-molinst-protein-7B (Mol-Ins) 0.02 0.00 52.51 0.00 0.02 -0.10
BioMedGPT-LM-7B 0.00 1.62 51.65 0.01 0.03 0.12

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 0.01 35.68 53.76 0.00 0.01 -0.31
Our Model on Our Dataset

ours (stage 2 only) 0.00 0.00 51.21 0.00 0.00 2.87
ours (stage 1 + stage 2) 50.68 62.77 57.45 29.12 26.65 -2.99
ours (stage 1 + stage 2 + stage 3) 59.01 63.09 59.06 47.64 26.57 -0.02

Table 6: Evaluation results on protein tasks

Model/Task EC Sta Flu Sol Ther

Metrics % Fmax Spearman’s ρ Spearman’s ρ Acc Spearman’s ρ

Literature SOTA

Literature SaProt-GearNet Evoformer Shallow CNN DeepSol ESM-1v
(Su et al., 2024) (Rossi et al., 2019) (Shanehsazzadeh et al., 2020) (Khurana et al., 2018) (Meier et al., 2021)

SOTA 88.9 79.00 69.00 77.00 78.00
Open-Source LLM

LLaMA3.1-8B-Instruct 1.42 -0.61 0.91 50.27 4.67
Qwen2-7B 0.90 -5.86 0.81 52.52 -0.93
Llama2-7B-Chat 0.97 -0.51 0.28 49.48 0.40
Alpaca-7B 0.88 2.05 -0.20 50.12 2.27
GLM-4-9B-Chat 0.91 -2.72 0.63 50.72 1.40
Vicuna-v1.5-7B 0.88 5.65 -0.51 51.57 0.90
Galactica-1.3B 0.91 -0.52 -0.73 46.78 -0.58

Closed-Source LLM

GPT-4o-mini 1.73 -1.52 -0.47 50.02 0.32
GPT-4o 5.89 0.09 0.69 51.67 3.50

Specific Biology LLM

InstructProtein-1.3B 1.85 0.35 -0.03 47.88 -0.50
Llama-molinst-protein-7B (Mol-Ins) 1.85 0.05 0.27 48.33 1.07
BioMedGPT-LM-7B 1.07 -0.92 0.43 49.78 -0.72

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 10.76 0.48 0.55 52.37 39.97
Our Model on Our Dataset

ours (stage 2 only) 1.85 0.23 0.37 49.28 -0.51
ours (stage 1 + stage 2) 19.35 56.76 1.49 62.07 44.59
ours (stage 1 + stage 2 + stage 3) 19.79 60.25 2.57 63.02 45.07
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Table 7: Evaluation results on multi-molecule tasks

Model/Task EPI siRNA AAN RPI

Metrics % MCC Mixed Score MCC MCC
Literature SOTA

Literature EPI-DLMH Meta-Biomol DeepAAI ncRPI-LGAT
(Min et al., 2021) (Ren et al., 2024b) (Zhang et al., 2022) (Han and Zhang, 2023)

SOTA 53.59 49.38 54.9 93.2
Open-Source LLM

LLaMA3.1-8B-Instruct 0.00 32.76 -1.05 3.82
Qwen2-7B 0.00 33.39 2.98 -2.15
Llama2-7B-Chat 0.00 17.43 -0.63 5.87
Alpaca-7B 0.00 19.12 -0.81 4.38
GLM-4-9B-Chat 0.00 23.33 1.32 0.13
Vicuna-v1.5-7B 0.00 14.28 2.00 0.00
Galactica-1.3B 0.00 33.55 0.01 0.24

Closed-Source LLM

GPT-4o-mini -0.39 30.37 1.59 1.22
GPT-4o 0.00 0.00 -3.29 1.17

Specific Biology LLM

InstructProtein-1.3B 0.00 5.58 1.53 -1.55
Llama-molinst-protein-7B (Mol-Ins) 0.00 13.85 -1.38 3.71
BioMedGPT-LM-7B 0.00 19.71 0.92 -2.39

Our Model on Balanced Dataset

ours (stage 1 + balanced stage 2) 4.13 42.92 -1.48 8.29
Our Model on Our Dataset

ours (stage 2 only) 4.77 4.25 0.72 1.61
ours (stage 1 + stage 2) 1.68 56.31 10.26 70.80
ours (stage 1 + stage 2 + stage 3) 3.37 56.25 1.06 74.26

18008



Table 8: Hints for each task

Task Hint

Epigenetic Marks Prediction Return yes or no.
Promoter Detection Return yes or no.
Core Promoter Detection Return yes or no.
Enhancer-Promoter Interaction Prediction Return yes or no.
RNA-Protein Interaction Prediction Return yes or no.
Antibody-Antigen Neutralization Return yes or no.
Transcription Binding Sites Detection Hu-
man

Return yes or no.

Transcription Binding Sites Detection
Mouse

Return yes or no.

EA Prediction Return two numeric values with two decimal places for ’House-
keeping EA’ and ’Developmental EA’.

Fluorescence Prediction Return one numeric value with two decimal places.
Enzyme Commission Number Prediction Return Enzyme Commission number(s), e.g., 2.7.11.12
Solubility Prediction Return yes or no.
Stability Prediction Return one numeric value with two decimal places.
Thermostability Prediction Return one numeric value with two decimal places.
APA Isoform Prediction Return one numeric value with two decimal places.
Non-coding RNA Function Classification Return one RNA class: 5S rRNA, 5 8S rRNA, tRNA, ri-

bozyme, CD-box, miRNA, Intron gpI, Intron gpII, HACA-box,
riboswitch, IRES, leader, or scaRNA.

Modification Return RNA modification(s): Am, Cm, Gm, Um, m1A, m5C,
m5U, m6A, m6Am, m7G, Psi, AtoI, or none.

Mean Ribosome Loading Prediction Return a numeric value with two decimal places.
Programmable RNA Switches Return three numeric values with two decimal places for ’ON’,

’OFF’, and ’ON/OFF’.
CRISPR On Target Prediction Return a numeric value with two decimal places.
siRNA Efficiency Prediction Return a numeric value with two decimal places.

Table 9: Prompt format for baselines

Prompt format for open-source LLMs:
My question is {input} This is a {task type} task. {hint} Do not explain or repeat.
Prompt format for closed-source LLMs:
You are an expert biology AI assistant specializing in sequence-related topics. Focus on: DNA,
RNA, and protein sequences. When answering questions, please follow this format:
First, give a direct answer in JSON dict such as: {”answer”: ”Yes”}:

Remember to follow the provided rules:
- For binary classification questions: Answer ”Yes” or ”No”.
- For multi-label classification questions: State the specific label(s).
- For regression questions: Provide the numerical value or range.

Answer the question: ”{input}”.
Task type: {task type}.
For a better understanding of the task, hint: {hint}.
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D Data quality control for Stage 3
Reasoning Data

To ensure the quality and reliability of Stage 3
reasoning data, we have established a robust multi-
step validation process:

D.1 Self-validation by the model
Once the data is generated, the large language
model conducts a self-check to ensure compliance
with four core criteria outlined in the data genera-
tion prompt, as illustrated in Figure 9:

• Providing a detailed and accurate analysis of
the sequence

• Accurately recalling task-related knowledge
from studies, databases, or academic sources;

• Engaging in comprehensive reasoning to draw
logical conclusions for the question

• Citing relevant references where applicable.
The model is required to output the results of
its self-check and provide recommendations
for improvement in cases that do not meet the
standards

For outputs that fail to meet these criteria, spe-
cific issues are identified, and the model is in-
structed to regenerate outputs that adhere to the
required standards based on the evaluation results.

D.2 Secondary review by an independent
model

Following the initial validation, a second large lan-
guage model, Gemini-1.5-pro, is employed to in-
dependently review and verify the accuracy and
consistency of the reasoning paths. Additionally,
GPT4o-mini is tasked with reconstructing any un-
qualified cases based on feedback from Gemini-
1.5-pro.

This rigorous quality assurance process not only
ensures the integrity of the data but also lays a
strong foundation of high-quality training data, en-
hancing interpretability in downstream tasks.

D.3 Final review by MEME tool and human
To further corroborate our findings, we utilized the
MEME tool (Multiple Expectation Maximizations
for Motif Elicitation) to identify motifs in DNA se-
quences. The motifs discovered by MEME showed
strong consistency with the reasoning data, provid-
ing additional validation. We also invited biology

PhD students and professors to conduct human
evaluations of the reasoning data. Their feedback
confirmed the high quality and reliability of the
generated data. An example of our data quality
control process is shown in Table 14.
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Figure 9: An example of a prompt used to generate reasoning data. The system prompt outlines the requirements
for the data construction task for GPT-4o-mini. Answers are refined, and corresponding questions are placed within
specific prompts.
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Figure 10: Examples of instruction prompts constructed for each omics type.

Table 10: Examples of question and answer template pairs in stage 2 training data.

Task Question template Answer template

Epigenetic Marks
Prediction

<dna>{DNA}</dna> Are there any charac-
teristic epigenetic marks in this DNA?

After careful EMP analysis, there
is conclusive evidence of epigenetic
marks in the given DNA sequence.
(Positive case)

Core Promoter Detection <dna>{DNA}</dna>: Evaluate this se-
quence for potential promoter regions.

No, a promoter region is not present
in the given genomic fragment. (Neg-
ative case)

Enhancer Activity
Prediction

<dna>{DNA}</dna> Enhancer activity in
this sequence - what’s the deal?

The enhancer activity prediction
yields: HK - {hk enrichment}, Dev -
{dev enrichment}

CRISPR On Target
Prediction

<rna>{RNA}<rna> What is the predicted
on-target activity of the sequence?

The sequence has an on-target effi-
ciency score of {label}.

Programmable RNA
Switches

<rna>{RNA}<rna> What ON/OFF ratio
can be expected from the sequence?

The ON state for this sequence
is {label ON}, the OFF state is
{label OFF}, and the ON/OFF ratio
is {label ON OFF}.

Modification Prediction <rna>{RNA}<rna> [RNA modification
classification] Which RNA modifications
are inferred from the sequence?

The RNA modifications for the se-
quence are predicted as {label}.

Fluorescence Prediction <protein>{protein}<protein> How
effective is the predicted fluorescence for
this GFP sequence?

The GFP’s fluorescence is calculated
to be {label}.

Enzyme Commission
Number Prediction

<protein>{protein}<protein> What
is the specific activity of this protein as an
enzyme?

Specific enzyme activities are de-
fined by EC number {label}.

Solubility Prediction <protein>{protein}<protein> Can
solubility be confirmed for this protein?

This protein shows positive solubility.
(Positive case)

Enhancer-Promoter
Interaction Prediction

<dna>{DNA1}<dna> promoter +
<dna>{DNA2}<dna> enhancer: con-
nected?

We find no support for promoter-
enhancer communication in this ge-
netic material. (Negative case)

Antibody-Antigen
Neutralization

Is there any molecular recogni-
tion between this Ab-Ag pair:
<protein>{AB}<protein>>-
<protein>{AG}<protein>>?

The computational predictions do not
support any significant Ab-Ag inter-
action. (Negative case)

siRNA Efficiency
Prediction

<rna>{SiRNA}<rna>
<dna>{targetDNA}<dna> How does
the target RNA perform in terms of
siRNA-induced mRNA reduction?

The siRNA treatment results in
an mRNA remaining percentage of
{label}.
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Table 11: An example of question and answer pairs in stage 3 training data for siRNA Efficiency Prediction task.

Task: siRNA Efficiency Prediction
Question <rna>{SiRNA}<rna> <dna>{targetDNA}<dna> How much mRNA remains

after siRNA treatment of the target RNA?

Answer To assess the amount of mRNA remaining after siRNA treatment, we first need
to understand the mechanisms involved in RNA interference (RNAi) and its
impact on mRNA levels.

siRNA (small interfering RNA) is a class of double-stranded RNA that
can lead to the degradation of complementary mRNA molecules, effectively
silencing their expression. When siRNA binds to target mRNA, it recruits
the RNA-induced silencing complex (RISC), which then cleaves the mRNA,
reducing its stability and leading to its degradation.

To determine how much mRNA remains after treatment, one typically
considers:
1. The initial concentration of mRNA.
2. The efficacy of siRNA in degrading the target mRNA.
3. The kinetic parameters related to both the mRNA decay rate and the siRNA
efficacy.

For instance, if initial studies or assays show that treatment with spe-
cific siRNA reduces target mRNA levels by approximately 80% under standard
experimental conditions, then we can assume that 20% of the original mRNA
remains. However, the problem states that the final calculated remaining
mRNA is estimated to be 80.6% of the original mRNA.

This indicates that the siRNA treatment was not completely effective,
or there might be factors such as incomplete targeting or secondary structures
in the mRNA that protected it from degradation.

In summary, after siRNA treatment of the target RNA, the remaining
amount of mRNA is therefore 80.6%, indicating a less than complete silencing
effect. This percentage reflects the balance of mRNA decay, the effectiveness
of the siRNA treatment, and the biological context in which the treatment was
performed.

18013



Table 12: An example of question and answer pairs in stage 3 training data for Noncoding RNA Family Prediction
task.

Task: Noncoding RNA Family Prediction
Question <rna>{RNA}<rna> How does this RNA sequence contribute to gene regula-

tion?

Answer This RNA sequence represents a component that likely plays a crucial role in
gene regulation, particularly through its classification as a ”leader” RNA. In the
context of molecular biology, leader RNAs are typically found at the 5’ end of
mRNA sequences and can influence gene expression by engaging in regulatory
interactions with ribosomes or other molecular partners.

Leader sequences can have multiple functions, including:
1. **Regulatory Functions:** They may harbor sequences that can bind
small regulatory molecules or proteins, thus modulating the transcription or
translation of the downstream coding region.
2. **Secondary Structures:** The folding patterns in leader sequences can
form intricate secondary structures that contribute to transcriptional attenuation
or the formation of a riboswitch. These structures can determine whether the
RNA remains in a transcriptionally active state or folds into a configuration that
halts transcription or translation.
3. **Interaction with Ribosomes:** The leader region often acts as a signal for
ribosomes to initiate translation. For mRNAs, the presence of specific motifs
within this region can influence how efficiently translation occurs, impacting
overall protein synthesis levels and thus the expression of the associated gene.

In summary, the RNA sequence presented can be classified as a leader,
contributing to gene regulation through its interactions and structural charac-
teristics. This underscores the importance of untranslated regions (UTRs) in
controlling gene expression. Understanding such RNA sequences and their
functions provides valuable insights into the mechanisms of gene regulation,
highlighting how sequences beyond coding regions play vital roles in cellular
processes.
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Table 13: An example of question and answer pairs in stage 3 training data for Core Promoter Detection.

Task: Core Promoter Detection
Question <dna>{DNA}<dna> Identify potential core promoter region in this sequence.

Answer The provided DNA sequence shows characteristics that warrant careful
examination for core promoter elements. Core promoters are essential in
initiating transcription and are typically located upstream of the transcription
start site. They often contain specific motifs, such as the TATA box, initiator
sequences (Inr), and other regulatory elements that facilitate the binding of
transcription factors and RNA polymerase II.

In the sequence provided, critical components of core promoters might
include:
1. **Initiator sequences (Inr):** These sequences often span the transcription
start site and can exhibit variability but typically include consensus elements
that help delineate the start of transcription.
2. **TATA box:** A common feature among many eukaryotic promoters,
which is usually located about 25-30 bases upstream from the transcription
start point.
3. **GC-rich regions:** These regions can also play a role in promoter activity
by providing binding sites for transcription factors.

Upon examining the sequence:
- There are no clear TATA boxes or Inr motifs that align with typical core
promoter signatures.
- The sequence appears GC-rich, notably towards the middle, but does not show
significant promoter elements consistent with those typically required for core
promoter identification.

Given these observations, we can conclude that this sequence does not
contain recognizable features indicative of a core promoter region. Therefore,
the response to whether a potential core promoter region is present in this
sequence is negative.

18015



Table 14: An example of quality control process.

Task: Transcription Binding Sites Detection
Question <dna>AGTTGC......AGGCCC<dna>: Can you check if this DNA fragment contains

sequences associated with transcription initiation?

Answer The provided DNA fragment showcases a sequence that can be analyzed to determine
if it contains motifs associated with transcription initiation. Transcription initiation in
eukaryotic organisms often involves the presence of specific cis-regulatory elements,
such as promoter regions, which may include TATA boxes, GC-rich regions, or other
binding sites for transcription factors.
In the analysis of the given sequence, we should look for characteristic motifs
common in eukaryotic promoters:
TATA Box: Usually located 25-30 base pairs upstream of the transcription start site,
this sequence often resembles the consensus sequence TATAAA.
GC Box: These sequences are rich in GC content and provide binding sites for
transcription factors (e.g., Sp1). They typically appear around -100 to -200 base
pairs upstream.
CCAAT Box: Another common element involved in the binding of transcription
factors, found further upstream, approximately -75 bases from the start site.
Upon examining the sequence you provided, several regions exhibit characteristics
of transcriptional regulation:
The sequence includes stretches of CG-rich content that might suggest the presence
of a GC box. Additionally, there is a notable absence of any clear TATA box or
canonical elements, which indicates that while the segment may hold potential as
a regulatory region, it may not conform to traditional promoter motifs rigorously.
In summary, based on the detection of indirect evidence of transcription initiation
sites, particularly the presence of GC-rich sequences, we can conclude that this DNA
fragment likely contains sequences associated with transcription initiation. Therefore,
the answer to your question is affirmative; it is positive that this DNA fragment likely
includes sequences relevant to the initiation of transcription. Further studies, such as
promoter assays or bioinformatics tools, could further validate this observation.

AI Evaluation GPT4o-mini analysis: The answer provides a detailed analysis of the DNA sequence
with specific references to hallmark motifs and features associated with promoters. It
incorporates relevant biological knowledge and presents a clear conclusion regarding
the presence of promoter-like characteristics.

Gemini-1.5-pro evaluation: The answer provides a comprehensive analysis
of the DNA sequence for promoter-like features. It correctly identifies key
characteristics such as GC-rich regions and potential transcription factor binding
sites. The reasoning is clearly explained, starting with a general description of
promoters and then moving to specific features found within the provided sequence.
The conclusion is clearly stated and supported by the analysis. While it doesn’t
provide specific locations of potential promoter elements or quantify the GC
content, the overall analysis is sufficient for a general assessment of promoter-like
characteristics.

Human Evaluation For promoters, our human evaluation involved examining the DNA sequences, where
we observed a typical TATA box motif at positions -31 to -35, aligning well with
the reasoning for TATA-type promoters. Additionally, we utilized the MEME tool
(Multiple Expectation Maximizations for Motif Elicitation), which identifies motifs
in related DNA sequences. The motifs discovered by MEME also showed strong
consistency with the reasoning, further validating our findings.

18016


