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Abstract

The sequential recommendation task involves
predicting the items users will be interested in
next based on their past interaction sequence.
Recently, sequential recommender systems
with generative retrieval have garnered signifi-
cant attention. However, during training, these
generative recommenders focus only on max-
imizing the prediction probability of the next
target item in the temporal sequence, while ne-
glecting awareness of diverse plausible poten-
tial items. Although introducing large language
models (LLMs) with world knowledge and
adding a set of auxiliary tasks that can link item
identifiers to their real-world meanings can al-
leviate this issue, the high inference costs as-
sociated with these LLM-based recommenders
make them challenging to deploy in practical
scenarios. In this paper, we propose a novel
learning framework, LOHRec, which leverages
the order and hierarchy in generative recom-
mendation using quantized identifiers to further
explore the performance ceiling of lightweight
generative recommenders. Under fair compar-
isons with approximate backbone parameter
sizes, comprehensive experiments show that
all variants of generative recommenders using
our framework outperform strong prior base-
lines across multiple datasets. Furthermore,
we empirically demonstrate that LOHRec can
efficiently align lightweight generative recom-
menders with LLM recommendation prefer-
ences in low-resource scenarios, further demon-
strating its practical utility. Our code repos-
itory is available at https://github.com/
xjw-nlp/LOHRec.

1 Introduction

Recommender systems are increasingly popular
in addressing the information overload problem
on web platforms such as shopping sites, video
platforms, and social media. These systems can
help users discover items of interest and enhance
their experience and engagement (Fayyaz et al.,
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Figure 1: (Left): A demonstrated correlation between
the beam width and diverse evaluation metrics on public
Amazon-Games data. The Diversity@10 represents the
intra-list diversity in the top 10 of the recommendation
list. (Right): Percentage of invalid IDs on the test set of
Amazon-Games dataset when generating item semantic
IDs in a beam search manner with various beam widths.

2020; Ko et al., 2022). Among these paradigms of
recommenders, sequential recommendation (Kang
and McAuley, 2018; Li et al., 2020) has recently
garnered considerable attention due to its superior
performance in modeling the dynamic evolving
pattern of the chronological item sequence.

In recent years, neural sequential recommenders
have achieved remarkable progress, such as us-
ing CNNs (Tang and Wang, 2018), RNNs (Hidasi
and Karatzoglou, 2018), or attention-based models
(Kang and McAuley, 2018; Ying et al., 2018) to
capture users’ evolving interests over time. With
the Transformer architecture having demonstrated
astonishing performance in a spectrum of domains
(Vaswani et al., 2017), the Transformer-based se-
quential recommender is increasingly popular in re-
search and practical application (Sun et al., 2019a;
Wu et al., 2020). However, prior work typically
represents items with atomic, random item IDs,
which do not fully leverage the rich multimodal
information that describes those items (HidasiB
et al., 2015). In addition, industrial settings often
involve an enormous number of items—billions
or more—so traditional recommendation schemes
must maintain a very large item-ID vocabulary.
This complicates optimization and deployment and

17968

https://github.com/xjw-nlp/LOHRec
https://github.com/xjw-nlp/LOHRec


𝑣2 𝑣𝑘−1 𝑣𝑘…

Generative Recommender

𝑝1 𝑝2 𝑝𝑘−1 𝑝𝑘…

𝑣1

𝑆

Candidates

Probabilities

C
o

o
rd

in
a

tio
n

Dataset

Prefix Tree Construction
C

o
n

tr
a
st

iv
e
 T

r
a

in
in

g

𝑎1 𝑎2 𝑎3 𝑎4

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3 𝑐4

Generative Recommender𝑆

Beam Search

Beam Width = 3

𝑣1
𝑜 : 𝑎1𝑏1𝑐2 𝑣2

𝑜 : 𝑎2𝑏2𝑐3

Constrained Decoding

𝑣3
𝑜 : 𝑎4𝑏3𝑐4

Prefix Tree

Figure 2: The overall framework of our LOHRec. We enhance generative sequential recommenders by leveraging
the order information for contrastive learning and conducting constrained decoding via the hierarchy of quantized
semantic item IDs.

leaves systems vulnerable to out-of-vocabulary
(OOV) issues when new items appear.

To address the challenges in the sequential rec-
ommendation, recent research has moved towards
a generative retrieval paradigm by adopting neural
quantized representations. Specifically, Rajput et al.
(2024) proposes a residual quantization method that
converts item embeddings into semantic IDs, rather
than using low-information numerical IDs. This
approach allows the number of representable items
to be the product of the cardinality of each level
in semantic IDs, thereby significantly alleviating
the scalability issues in large item corpora. Ad-
ditionally, modeling sequences of semantic item
IDs facilitates the discovery of deeper correlations
between items, enhancing the learning efficiency
of sequence transitions and improving the perfor-
mance of recommenders. Further, rather than op-
timizing Transformer-based models from scratch,
Zheng et al. (2024) proposes leveraging the ro-
bust language comprehension capabilities of large
language models (LLMs) for the sequential rec-
ommendation. They adapt LLMs for sequential
recommenders through a series of auxiliary tasks,
further raising the performance ceiling of genera-
tive recommenders.

While the generative recommendation paradigm
has shown promising performance across vari-
ous public real-world datasets, several weaknesses
are blocking the availability and reliability of the
scheme. Firstly, since these generative recom-
menders are commonly trained with maximum like-
lihood estimation (MLE), the probability score as-
signed to the next target item is maximized given
a user interaction history. However, we argue that
in real-world scenarios, a user is often interested
in multiple items given their current interaction
state, and optimizing solely on the target item from
the interaction history often leads to suboptimal

performance. We demonstrate this phenomenon
using a representative baseline, TIGER, trained
with MLE loss (Rajput et al., 2023). In Figure 1
(left), the intra-list diversity of the top-10 recom-
mendations plateaus and even decreases as beam
width increases, suggesting that the generative rec-
ommender increasingly homogenizes its outputs
due to an excessive focus on a single item. While
leveraging LLMs with rich world knowledge to
align item identifiers with actual item semantics
can alleviate recommendation homogenization, the
substantial inference cost of LLM-based recom-
menders hinders their applicability in large-scale
online environments.

This work proposes LOHRec, Leveraging the
Order and Hierarchy in the generative sequential
Recommendation, to address the limitations men-
tioned above. Specifically, because generative rec-
ommenders use beam search at inference time and
rank candidate outputs based on cumulative prob-
ability, we propose introducing a learning-to-rank
objective during training to align the ordered rela-
tionships among multiple candidate items so that
the probability ranking matches the desired order-
ing. In this way, items assigned higher probabilities
at inference better reflect practical requirements,
improving overall recommendation performance.
On the other hand, considering the hierarchical se-
mantic nature of item identifiers, we propose a hier-
archical training paradigm that enables the model to
be aware of a broader set of potential items rather
than focusing solely on the target item, thereby
jointly accounting for recommendation accuracy
and diversity. To sum up, the main contributions of
this paper can be presented as follows:

• To the best of our knowledge, We are the first to
propose leveraging hierarchical semantics and
ordered relationships of quantized item identi-
fiers to explore the upper limits of model perfor-
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mance in the sequential recommendation with
the generative retrieval paradigm.

• We explored a range of approaches to enable
lightweight generative recommenders to effi-
ciently align with the preference of LLM-based
recommenders. Extensive experiments demon-
strate that with our scheme, a backbone with
13 million parameters can achieve overall per-
formance close to that of a 7 billion parameter
LLM-based recommender system.

• We conduct comprehensive experiments illus-
trating that all variants derived from LOHRec
consistently surpass previous strong baselines.
Furthermore, We provide ablation studies and
further analyses to substantiate the superior per-
formance of our method.

2 Preliminaries

2.1 Training Definition for Sequential
Recommendation

In general, sequential recommender systems aim
to predict a user’s next item interaction from their
chronologically ordered sequence of past interac-
tions. Given a user set U = {u1, u2, · · · , u|U|}
and item set V = {v1, v2, · · · , v|V|}, the inter-
action history of one user u can be written as
Su = [vu1 , v

u
2 , · · · , vuTu

], where Tu = |Su| and
vut ∈ V denotes the t-th interacted item in the
chronological sequence. Formally, the next item
prediction is defined as follows:

vuTu+1 = argmax
vu∈V

P (vu|Su; θ). (1)

2.2 RQ-VAE for Item Semantic IDs
As for the sequential recommendation, a key oper-
ation is how to represent each item in a large col-
lection of items in a distinguishable way. A vanilla
method is to associate each item with a random
unique ID. However, such a scheme usually intro-
duces a large vocabulary of item IDs when there is
a gigantic item set. Furthermore, this approach is
ill-suited to practical settings where the collection
of valid items must be dynamic and continuously
refreshed.

To address these problems, some works intro-
duce the Residual-Quantized Variational AutoEn-
coder (RQ-VAE), a multi-level vector quantizer
that recursively quantizes the residual vectors from
coarse to fine, to generate the semantic ID consist-
ing of several tokens (i.e., codewords), where each
discrete token can be shared by diverse items. The

basic idea is that similar items tend to be assigned
with a portion of common semantic codewords,
such that each unique semantic ID can be aligned
to latent semantics.

Following Zheng et al. (2024), to derive these
semantic IDs, the first step is to encode the text
information of items as dense embedding. Further,
the vector quantization approach is leveraged to
create discrete codewords based on item embed-
dings. Specifically, we take the item embeddings
as input and then train RQ-VAE, which consists
of the residual quantizer with D-level codebooks
and the DNN encoder-decoder, to generate item
IDs. Given an item embedding x, RQ-VAE first
encodes it into a latent representation z. During
the residual vector quantization, at the d-th level
(start from 0), we have a codebook Cd = {edn}Nd

n=1,
where Nd is the size of the d-th level codebook and
each codebook vector edn is learnable. Then the
residual quantization process can be expressed as:

cd = argmin
n
||rd − edn||, (2)

rd+1 = rd − edcd , (3)

where cd is the d-th codeword of the semantic item
ID and rd is the residual vector in the d-th level,
and we set r0 = z.

During the decoding stage, the quantization
representation of z can be obtained according to
ẑ =

∑D−1
d=0 edcd . Then ẑ will be used as decoder

input to reconstruct the item embedding x̂. The
overall loss function is as follows

Lrecon = ||x− x̂||2, (4)

Lcb =

D−1∑

d=0

||sg[rd]− edcd ||
2 + β||rd − sg[edcd ]||

2, (5)

LRQ-VAE = Lrecon + Lcb, (6)

where sg[·] is the stop-gradient operator, and the
straight-through estimator is used for the backprop-
agation through the RQ module. β is a loss co-
efficient, usually set to 0.25. Note that Lcb is the
sum of quantization errors from every level of the
residual quantizer. Lrecon is the reconstruction loss,
and Lcb is the residual quantization loss used to
minimize the distance between codebook vectors
and residual vectors.

3 Proposed Method

Specifically, this section first elucidates three train-
ing variants of generative recommendation that uti-
lize hierarchical semantics. Subsequently, we in-
troduce two- and one-stage methods that further
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enhance the recommender’s performance by incor-
porating ordered relationships.

3.1 Leveraging Hierarchical Semantics for
Generative Recommendation

Through the residual quantization operation, we
can acquire the corresponding codebook-based
identifier consisting of multiple tokens (i.e., multi-
ple codewords) for each item. Accordingly, we can
conduct the generative recommendation in an auto-
regressive manner. Mathematically, given a seman-
tic identifier sequence S = [v(1), v(2), · · · , v(|S|)],
where the i-th semantic item identifier with D code-
words v(i) = (c

(i)
1 , c

(i)
2 , · · · , c(i)D ) ∈ V , we model

the following conditional probability:

Pθ(v
(i)|S<i) =

D∏

j=1

p(c
(i)
j |v

(i)
<j ,S<i; θ), (7)

where S<i represents the sub-sequence prior to
the item v(i), v(i)<j contains these codewords before

c
(i)
j . Especially, v(i)<1 is a special begin-of-sequence

token. The training objective of generative rec-
ommendation can be transformed to minimize the
following negative log-likelihood loss (NLL):

Lnll = −
∑D

j=1 log p(c
(i)
j |v

(i)
<j ,S<i; θ)

D
, (8)

where the model is required to maximize the condi-
tional log-likelihood of the target item v(i).
Label Smoothing via Hierarchical Semantics.
As the NLL loss in Equation 8 tends to assign all
probabilities to the reference items, generative rec-
ommenders often only produce item IDs similar
to the target, while ignoring other types of items
the user may currently be interested in. To mit-
igate the phenomenon and regularize the model
for generalization, we can heuristically adjust the
standard generative objective to consider the condi-
tional probabilities of all possible codewords in the
item semantic space further:

Lls = −
∑D

j=1

∑V
k=1w

(i)
jk log p(ĉ

(i)
jk |v

(i)
<j , S<i; θ)

D
,

(9)
where V represents the number of all codewords
instead of the whole vocabulary size to reduce the
memory footprint during training. wjk is the con-
ditional weight:

w
(i)
jk =

{
1− ξj , ĉ

(i)
jk = c

(i)
j ;

ξj
V−1 , ĉ

(i)
jk ̸= c

(i)
j ,

(10)

where ξj adjusts the probabilities assigned to code-
words not in target items. While ξj at j-th level is
independent, to reduce the complexity of our ex-
periments, we consistently set it to 0.1.
Hierarchical Semantics from LLM-based Rec-
ommender. In this work, we propose a vocabulary-
agnostic method for efficiently leveraging the
hierarchical semantics from LLM-based recom-
menders. Specifically, unlike previous model distil-
lation methods, we collect the probability distribu-
tions only of the additional tokens (codewords) of
LLM-based recommenders by employing a teacher-
forcing strategy (Bengio et al., 2015). By using
these additional tokens as intermediaries, our rec-
ommender can efficiently learn the preferences
from the LLM-based recommender even if the ini-
tial vocabularies of these backbones are incompat-
ible. Considering that KL divergence and cross-
entropy are equivalent in training in this context,
following Equation 9, we can simplify the training
objective to:

Ldis = −
∑D

j=1

∑V
k=1 q

(i)
jk log p(ĉ

(i)
jk |v

(i)
<j , S<i; θ)

D
,

(11)

q
(i)
jk =

p(ĉ
(i)
jk |v

(i)
<j , S<i; θLLM)

∑V
k=1 p(ĉ

(i)
jk |v

(i)
<j , S<i; θLLM)

, (12)

where we were surprised to find that Equation 11
and 9 are highly similar; the main difference is
that in the distillation method, we use the LLM-
based recommender’s rich prior knowledge to as-
sign probabilities, rather than using a heuristic ap-
proach to fix the smoothing degree.

3.2 Coordinating Generative
Recommendation

To improve current generative recommenders be-
yond the standard generative recommendation
paradigm, we adopt a learning-to-rank objective
that can optimize the recommendation performance
on the positive ordered candidates instead of focus-
ing only on a single target item. Specifically, given
an input interaction sequence S and the correspond-
ing ordered collection of candidate semantic item
IDs {vci }ki=1, where vcp and vcq are in the candidate
set, and vcp is superior to vcq, ∀p < q. To perceive
the ordered correlation among the item collection,
we introduce a modification to Equation 7 in the
reference-free scenario. To be specific, given the

17971



generative sequential recommender θ, the model-
predicted probabilities M̂θ of the target semantic
ID vci with respect to the input sequence S can be
defined as follows:

M̂θ(v
c
i ,S) =

logPθ(v
c
i |S)

|vci |η
, (13)

where |vci | is the number of codewords for the item
ID vci and the hyper-parameter η controls the degree
of length penalty. Especially, as we use the equal-
length semantic IDs in our experiments, η is set to
1.0 uniformly. Accordingly, we note that the model-
predicted score M̂θ(v

c
i ,S) ranges from −∞ to 0.

Finally, we formulate the ranking objective:

Lrank =

k∑

i=1

k∑

j=i+1

max{M̂θ(v
c
j ,S)−

M̂θ(v
c
i ,S) + (j − i)× λ, 0}

(14)

where λ is the threshold judging whether the dif-
ference of model-predicted probability score of
diverse semantic IDs engages in backpropagation.
Constructing Order Prior. In generative recom-
mendation, a critical factor in leveraging benefits
from the aforementioned ranking paradigms lies in
constructing a well-ordered set of candidate items.
In this work, we demonstrate the effectiveness of
building ordered prior information based on rec-
ommendations from LLM-based recommenders.
Additionally, for comparative experiments as base-
lines, we also explore the effectiveness of two alter-
native schemes for constructing ordered candidate
sets (See Appendix B).

To construct prior information implying LLM
preference, we employ a representative LLM-based
recommender with the beam search strategy dur-
ing the inference phase to generate a candidate
semantic ID collection. As the generation process
uses cumulative probability for sampling, if the
beam width is greater than 1, these generated can-
didates can effectively align with the preference
of the LLM-based recommender, providing more
information relative to a single target item:

C1 = {vi}bi=1 = Beam_Search(b,S, θLLM),

C2 = {vci }ki=1 = Correct(C1),
(15)

where b represents the preset beam width, and S
is the user’s historical interaction sequence. Note
that the results recommended by the LLM are often
not optimal. We have implemented an additional
correction process to further improve them. In this

“Correct” process, we perform operations such as re-
moving invalid semantic IDs, placing the reference
at the forefront, removing duplicates, and select-
ing the top k items, to design a more reasonable
ordered list.

With the above setup, we can implement a rank-
ing module to obtain more robust ordered outputs.
In practice, this ranking module is highly adapt-
able and can be placed at various stages of the rec-
ommendation pipeline. In this work, we propose
both a two-stage scheme and a one-stage scheme
to demonstrate their flexibility.
Two-stage Generative Recommendation. Our
two-stage recommendation process comprises a re-
trieval stage and a ranking stage, employing two
lightweight generative models as the retriever and
the ranker, respectively. Specifically, for the re-
triever, we investigate the training objectives in
Equation 9 and 11 to enable the model to acquire
generative retrieval capabilities. For the ranker,
we use Equation 14 to train the model to learn
from the ordered results generated by the LLM,
thereby aligning with the LLM’s preferences. As-
sume that the retriever generates b candidate items
using beam search, which are then fed to the ranker
in a teacher-forcing manner, which selects the top
k items based on probability scores as the final rec-
ommendation results (b≫ k).
One-stage Recommendation with Ranking.
Since the multiple results generated by the au-
toregressive model using the beam search strat-
egy already exhibit an ordered relationship based
on probability scores, the ranking mechanism de-
scribed in Equation 14 can be integrated into the
standard autoregressive supervised paradigm for
multi-objective optimization. Therefore, we com-
bine the generative loss and the ranking loss into a
universal loss function:

Lall = Lgen + γLrank, (16)

where γ is the weight of the ranking loss and is set
to 1.0 in our experiments. Specifically, Lgen de-
notes one of the training objectives in Equations 9
and 11.

4 Experiments

4.1 Datasets and Baselines

We evaluate the proposed approach using three sub-
sets of Amazon review data: “Musical Instruments
(Instruments)”, “Arts, Crafts and Sewing (Arts)”,
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and “Video Games (Games)”. These datasets en-
compass user reviews from May 1996 to October
2018, with each item having a title and descrip-
tion. Consistent with previous research, we exclude
users and items with fewer than five interactions.
Subsequently, we generate user behavior sequences
in chronological order, setting the maximum item
sequence length uniformly to 20 to align with all
baseline requirements. The statistics of the prepro-
cessed datasets are shown in Table 3.

We employ several representative recommenda-
tion models as baselines for comparison, with de-
tails provided in the Appendix C.2. Among them,
FDSA (Zhang et al., 2019), S3-Rec (Zhou et al.,
2020), P5-CID (Geng et al., 2022; Hua et al., 2023),
and TIGER (Rajput et al., 2024) are some of the
strong baselines that have demonstrated state-of-
the-art results in previous studies.

4.2 Implementation Details
Semantic Quantization. For the generation of se-
mantic item IDs, following the setting of (Zheng
et al., 2024), we first use the pre-trained LLaMA
model to encode textual title and description of
items in the dataset as its embeddings of 4096 di-
mension and use mean pooling to aggregate multi-
ple token hidden representations. During the quan-
tization process, the level of semantic IDs is set to
4, with each level consisting of 256 codebook vec-
tors, and each vector has a dimension of 32. The
RQ-VAE contains three components: a DNN en-
coder that encodes the input semantic embedding
into a latent representation, a residual quantizer
that outputs a quantized representation, and a DNN
decoder that decodes the quantized latent represen-
tation back to the semantic input embedding space.
Both the encoder and decoder of RQ-VAE are
implemented as Multi-Layer Perceptrons (MLPs)
with ReLU activation functions. The model is op-
timized using the AdamW optimizer, employing a
learning rate of 0.001 and a batch size of 1024.
Ordered Candidate Construction. To gather
LLM preferences, following the LC-Rec setting
(Zheng et al., 2024), we first adapt LLaMA-7B into
a sequential recommender model using semantic
IDs during training. At the inference stage, the
recommender employs a beam search with a beam
width of 25 for sampling and outputs candidate se-
mantic item IDs based on cumulative probability
scores. Due to the lack of constraints during de-
coding, the generated collection of semantic IDs
may contain invalid IDs, and the reference item ID

might not exist or be in the first position. Therefore,
we correct the model’s output to remove invalid IDs
and ensure the target item is in the first position.
Finally, we select the top 16 semantic IDs as candi-
dates for each sample.
LOHRec Details. We utilize the open-source
Transformers library to implement our sequential
recommenders, adhering to the implementation
details provided by Rajput et al. (2024). In the
learning-to-rank paradigm of our LOHRec frame-
work, for each user interaction sequence, we use 16
candidate semantic IDs and employ margin rank-
ing loss (Liu et al., 2021) to enable the genera-
tive recommendation to learn ordered relationships
among them. All the training process is based on
the AdamW optimizer, alongside a cosine learning
rate scheduler with the warmup.

During inference, the sequential recommender
functions as a standard auto-regressive generator
and employs a beam search strategy to retrieve
multiple possible semantic IDs. Following pre-
vious works (Hua et al., 2023), we implement a
prefix tree-based constrained decoding approach
to ensure that all model outputs for item IDs are
valid. The detailed constrained decoding process
is elaborated in the Appendix A. Unless otherwise
specified, we uniformly set the beam width to 20
across all datasets.

4.3 Evaluation Metrics
To comprehensively evaluate the performance of
diverse sequential recommenders, we adopt two
widely used evaluation metrics, including top-K
Recall (Recall@K) and Normalized Discounted
Cumulative Gain (NDCG@K) with K = 5, 10.
In addition, we are also interested in measur-
ing and promoting diversity across recommended
items. Here we consider intra-list diversity for the
measure. Given the top-K recommended items
{vi}K

i=1 and the corresponding embedding list
[ev1 , ev2 , · · · , evK ], considering the paired item co-

sine similarity cos(evi , evj ) =
e⊤vievj

∥evi∥∥evj ∥
, the intra-

list diversity can be formulated as:

Diversity@K =
2

K(K + 1)

K∑

i=1

K∑

j=i

1− cos(evi , evj ), (17)

which takes values in [0, 1].

4.4 Performance Comparison
With the methodological designs outlined in Sec-
tion 3, we explore the experimental performance of
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METHODS
INSTRUMENTS ARTS GAMES

R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10

CASER .0543 .0710 .0355 .0409 .0379 .0541 .0262 .0313 .0367 .0617 .0227 .0307
HGN .0813 .1048 .0668 .0744 .0622 .0875 .0462 .0544 .0517 .0856 .0333 .0442
GRU4REC .0821 .1031 .0698 .0765 .0749 .0964 .0590 .0659 .0586 .0964 .0381 .0502
BERT4REC .0671 .0822 .0560 .0608 .0559 .0713 .0451 .0500 .0482 .0763 .0311 .0401
SASREC .0751 .0947 .0627 .0690 .0757 .1016 .0508 .0592 .0581 .0940 .0365 .0481
FMLP-REC .0786 .0988 .0638 .0704 .0757 .1046 .0541 .0634 .0571 .0930 .0361 .0476
FDSA .0834 .1046 .0681 .0750 .0734 .0933 .0595 .0660 .0644 .1041 .0404 .0531
S3-REC .0863 .1136 .0626 .0714 .0767 .1051 .0521 .0612 .0606 .1002 .0364 .0491
P5-CID .0827 .1016 .0708 .0768 .0724 .0902 .0607 .0664 .0506 .0803 .0342 .0437
TIGER .0863 .1064 .0738 .0803 .0788 .1012 .0631 .0703 .0599 .0939 .0392 .0501

SMOOTH .0882 .1086 .0752 .0810 .0807 .1030 .0645 .0717 .0618 .0962 .0415 .0522
+2.2% +2.1% +1.9% +0.9% +2.4% +1.8% +2.2% +2.0% +3.2% +2.5% +5.9% +4.2%

DISTILL .0949 .1151 .0814 .0870 .0914 .1113 .0725 .0799 .0680 .1018 .0435 .0540
+10.0% +8.2% +10.3% +8.3% +16.0% +10.0% +14.9% +13.7% +13.5% +8.4% +11.0% +7.8%

DTR .1021 .1254 .0875 .0920 .0970 .1212 .0795 .0860 .0729 .1103 .0515 .0586
+18.3% +22.5% +18.6% +14.6% +23.1% +19.8% +26.0% +22.3% +21.7% +17.5% +31.4% +17.0%

DWR .1013 .1230 .0868 .0912 .0945 .1202 .0766 .0842 .0716 .1088 .0499 .0569
+17.4% +15.6% +17.6% +13.6% +19.9% +18.8% +21.4% +19.8% +19.5% +15.9% +27.3% +13.6%

Table 1: Accuracy performance evaluation across all methods on the three datasets. The best results and best results
from previous baselines are denoted in bold and underlined, respectively. R@K represents Recall@K and N@K
represents NDCG@K.

four variants derived from the LOHRec framework.
These variants include generalization through label
smoothing (SMOOTH), model distillation (DIS-
TILL), distillation-then-rank (DTR, two stages),
and distillation with ranking (DWR, one stage).
We present the accuracy performance and diver-
sity performance of the sequential recommendation
models in Table 1 and Figure 3, respectively.

Considering these experimental results in Ta-
ble 1, we observe that our proposed variants can
significantly improve the accuracy performance
of generative sequential recommenders. Specifi-
cally, compared to the representative generative rec-
ommender TIGER, all four variants derived from
LOHRec outperform across the utilized metrics,
demonstrating the strong generalization and poten-
tial of our approach. Among them, the accuracy
performance of SMOOTH, DISTILL, and DWR in-
creases sequentially, with DTR showing a substan-
tial lead, indicating that LOHRec effectively aligns
with the preferences of LLM-based recommenders.
We believe that the leading performance of DTR
is due to generating more candidate items during
the retrieval stage, compared to DWR. Addition-
ally, we observe that DWR outperforms previous
state-of-the-art results across all metrics, indicating
that by leveraging LLM knowledge, our method
achieves the best performance even with compara-
ble model sizes.

On the other hand, by analyzing the experimental
results in Figure 3, we observe that the three vari-

ants exhibit similar superiority in diversity perfor-
mance compared to TIGER. Specifically, in addi-
tion to setting the beam width to 20, we conducted
additional diversity performance experiments with
beam widths of 10, 50, and 100. We observed
that TIGER’s diversity@10 results significantly de-
clined as the beam width increased, indicating that
standard generative recommenders are prone to
the problem of recommendation homogenization.
In contrast, our methods exhibit a slower overall
decline in diversity performance with increasing
beam width, demonstrating the effectiveness of
LOHRec in mitigating recommendation homoge-
nization. Moreover, unlike the leading position
of DTR in accuracy performance, we noticed that
DWR excels in diversity performance and is able to
maintain this advantage even as the beam width in-
creases. We believe this is because DWR integrates
the retrieval and ranking processes, resulting in fi-
nal recommendations that are less homogenized
compared to those of DTR that are selected from
retrieved candidate items.

4.5 Ablation Study

In this section, we investigate the contributions of
each component of DWR to the final recommenda-
tion performance. Specifically, DWR is composed
of two components: model distillation for genera-
tive recommendation (DISTILL) and ranking ob-
jective learning ordered correlation (RANK). To
investigate the contributions of each component,
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Figure 3: Diversity performance evaluation across
TIGER and three variants of LOHRec on the three
datasets, with beam width 10, 20, 50, and 100.

5 0 5 10 15 20 2520

15

10

5

0

5

10

15

20 LC-Rec
Distill
Smooth

Coverage Coordination0

10

20

30

40

50
Ref
Top
Random
Rank

Figure 4: (Left): 2D visualization of embeddings of
diverse item semantic IDs via UMAP. (Right): Compar-
ative analysis of different methods for aligning LLM-
based sequential recommender.

we independently removed each one. Moreover,
we concurrently eliminated both of them, thereby
regressing it to the state of standard generative se-
quential recommendation in an autoregressive man-
ner. As demonstrated in Table 2, compared with
“w/o DISTILL”, “w/o RANK”, and “w/o All”, we
have the following observations: (1) Employing hi-
erarchical semantics of LLM-based recommenders
for distillation can significantly enhance the overall
performance of generative recommendations; (2)
Utilizing our learning-to-rank paradigm for LLM
preference can significantly enhance the accuracy
and diversity of recommended results.

4.6 Further Analyses
Embedding Visualization Analysis. To further
investigate the effectiveness of our proposed frame-
work in aligning LLM preferences, we delve into
the relationships among embeddings of semantic
item IDs encoded by different sequential recom-
menders. In this work, we utilize UMAP (McInnes
et al., 2018) to visualize the item embeddings.

Specifically, the 4096-dimensional vectors from
the LLM-based recommender LC-Rec and the 384-
dimensional vectors from both LOHRec variants
SMOOTH and DISTILL are reduced to 2 dimen-
sions for visualization. In Figure 4 (Left), we can
observe that compared to SMOOTH, the item repre-
sentations of DISTILL are closer to the distribution
area of LC-Rec, indicating the effectiveness of DIS-
TILL to align with LC-Rec.
LLM Alignment Analysis In addition, we ex-
plored the impact of different strategies on learn-
ing LLM preferences. In the experiment, we used
the top 20 results recommended by LC-Rec as the
ground truth and compared the effects of the fol-
lowing four methods: (1) using the next item as
the label (Ref); (2) using the top 1 output of LC-
Rec as the label (Top); (3) randomly sampling one
from the LC-Rec outputs as the label (Random);
and (4) using our ranking paradigm to learn the
order relationships of the LC-Rec outputs (Rank).
Inspired by the commonly used metrics in NLG
tasks, ROUGE-1 and ROUGE-L (Lin, 2004), we
proposed two metrics, “Coverage” and “Coordina-
tion”, to measure the alignment effectiveness of
our model from the perspectives of the intersection
with the LLM recommended set and the longest
common subsequence, respectively. As observed
in Figure 4 (Right), the Rank method significantly
outperforms other methods in terms of alignment
performance, indicating the effectiveness of Equa-
tion 14 in aligning with LLM preferences.

5 Related Works

Large Language Model For Recommendation.
Large language models have gained attention in
recommendation systems, with various efforts to
use them for modeling user behavior (Kang et al.,
2023). LLMs have been employed in diverse rec-
ommendation tasks, including rating prediction,
sequential recommendation, and direct recommen-
dation (Bao et al., 2023; Zhang et al., 2023). Some
efforts also tried to utilize LLMs to model struc-
ture relations. However, most approaches directly
use LLMs as recommenders, which results in high
costs and makes practical application difficult (Ren
et al., 2024; Wei et al., 2024; Wang et al., 2023).
Sequential Recommendation. In the realm of se-
quential recommendation, the primary objective
is to recommend the next item based on the se-
quential patterns inherent in the user’s historical
interactions (Boka et al., 2024). An early solution
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is to treat the interacted item sequence as a Markov
Chain (He and McAuley, 2016), where the sequen-
tial recommender employs some recent items to
predict the next one. However, the weakness of
the method is hard to model the long-distance de-
pendency, which could waste part of the valuable
information in the whole sequence. Therefore, a
better solution based on recurrent neural networks
(RNNs) emerges since it is able to capture long-
and short-term correlations via neural memory op-
erations (Liu et al., 2016). However, RNN cannot
be paralleled and thus will reach their performance
bottleneck when dealing with a large volume of
sequential data (Villatel et al., 2018).

More recently, Transformer-based approaches
have rapidly flourished because of their conve-
nience for parallelization, carefully designed archi-
tecture of self-attention, and remarkable scalability
(Sun et al., 2019b; Rajput et al., 2023; Lin et al.,
2023). However, these methods only capture the
collaborative relationship between items from user-
item interactions, while ignoring the additional in-
formation rich in the item text content (e.g., title,
description, category). Therefore, several studies
are devoted to utilizing additional information as-
sociated with corresponding items to enhance the
item sequence modeling. In this paper, we aim to
enhance the performance and usability of the gener-
ative sequential recommendation model, which is
achieved through learning additional ordered prior
information.
Vector Quantization. We refer to Vector Quan-
tization as the process of converting a high-
dimensional vector into a low-dimensional tuple of
codewords. One of the most straightforward tech-
niques uses hierarchical clustering, such as the one
used in (Tay et al., 2022), where clusters created
in a particular iteration are further partitioned into
sub-clusters in the next iteration. An alternative
popular approach is Vector-Quantized Variational
AutoEncoder (VQ-VAE), which was introduced in
(Van Den Oord et al., 2017) as a way to encode
natural images into a sequence of codes.
Self-Supervised Learning in Recommendation
Recently, self-supervised learning has become pop-
ular in recommender system research. In collabora-
tive filtering (CF), SSL4Rec (Yao et al., 2021) em-
ploys data augmentation on item features and intro-
duces a contrastive pretraining objective to improve
learned representations in the two-tower model. In
knowledge-aware recommendation, KGCL (Yang
et al., 2022) develops a knowledge graph con-

trastive learning framework to aid denoising and
integration between CF learning and knowledge
graph encoding. For the socially-aware recommen-
dations, MHCN (Yu et al., 2021) designs a graph
task to accommodate cascading semantic informa-
tion from social graphs, enhancing user represen-
tation learning. In the field of sequential recom-
mendation, ICLRec (Chen et al., 2022) conducts
clustering and contrastive learning on user intents,
and it enhances sequential recommendation by im-
proving the representation of user interests.

6 Conclusion and Future Work

In this paper, we study improving generative recom-
mendation performance via leveraging the ubiqui-
tous ordered correlation and hierarchical semantics
in quantized item IDs. Specifically, we demon-
strate the effectiveness of LOHRec in aligning the
recommendation preferences of lightweight gen-
erative recommenders with those of LLM-based
recommenders. Additionally, since LOHRec only
uses additional tokens from the semantic item ID
set, it can be applied to models with incompati-
ble original vocabularies, demonstrating the sound
generalizability.

For future work, our approach can be naturally
extended to larger parameter scales and even vari-
ous pre-trained language models. Additionally, our
method can be applied to learning more types of
sequential information to adapt to specific down-
stream tasks.

Limitations

Due to the extra GPU memory required for learning
to rank candidate results in our framework, we were
only able to evaluate our method on lightweight
models. Experiments on larger models such as 7B
were infeasible, as out-of-memory (OOM) errors
occurred even with a batch size of 1. This limits the
validation of our approach on large language mod-
els (LLMs). Furthermore, although we validated
our method on three public datasets, evaluating the
method on more and larger datasets is necessary to
further demonstrate its generalizability.

Ethics Statement

All datasets used in this research are from pub-
lic benchmark open-access datasets, which are
anonymized and do not pose privacy concerns.
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Settings
Instruments Arts Games

Recall@10 NDCG@10 Div@10 Recall@10 NDCG@10 Div@10 Recall@10 NDCG@10 Div@10

DWR 0.1278 0.0944 0.3711 0.1288 0.0892 0.3740 0.1179 0.0639 0.3553

w/o DISTILL 0.1092 0.0821 0.3423 0.1036 0.0724 0.3490 0.0964 0.0534 0.3161
w/o RANK 0.1169 0.0877 0.3525 0.1176 0.0808 0.3533 0.1090 0.0535 0.3355
w/o All 0.1078 0.0797 0.2913 0.1030 0.0712 0.2971 0.0928 0.0492 0.3116

Table 2: Ablation study results on the development sets of all datasets. Performance changes compared with our
best model (DWR) are reported. Div@10 represents the intra-list diversity@10.

A Constrained Decoding via Hierarchy

In general, the autoregressive model samples possi-
ble tokens from the whole vocabulary space at each
time step during the decoding phase. However,
for the sequential recommenders that incorporate
generative retrieval paradigm and structured item
semantic IDs, directly using such a decoding strat-
egy often generates useless semantic IDs (i.e., no
corresponding real item) since there are many in-
valid codeword combinations, leading to a waste
of inference resources and low recommendation
performance. Considering the distinct hierarchical
structure of semantic item IDs via the residual quan-
tization of RQ-VAE, it is intuitive to leverage these
structured characteristics to constrain the sampling
process during the decoding phase. Specifically,
we first build a prefix tree based on the semantic
IDs of all effective items in the dataset. For each
node in the tree, we maintain a hash table from
codewords to the corresponding child nodes. Dur-
ing the inference phase, we apply a beam search
strategy for autoregressive decoding. Particularly,
at each time step, we sample from all keys (i.e., all
valid codewords currently) of the hash table of the
current node, rather than from the entire vocabulary
space. The more detailed process of our decoding
strategy is shown in Algorithm 1.

B More Constructions of Ordered Prior
as Baselines

In this paper, we mainly explore two additional
types of ordered information mining methods for
the generative sequential recommendation, lever-
aging the heuristic distance and global statistics,
respectively.

B.1 Ordered Priors with Heuristic Distance
As we mentioned above, we use RQ-VAE to con-
struct the semantic item ID, which has a coarse-
to-fine hierarchy. Accordingly, we can consider
that the earlier codewords in the semantic ID are

more important because errors in the earlier parts
greatly disrupt the semantic information that fol-
lows. Therefore, intuitively, we propose a heuristic
method to measure the distance between seman-
tic IDs. Specifically, given two semantic IDs of
length D, v(p) = (c

(p)
1 , c

(p)
2 , · · · , c(p)D ) and v(q) =

(c
(q)
1 , c

(q)
2 , · · · , c(q)D ), we measure their differences

by considering the matches and weights at corre-
sponding positions:

Distance =
D∑

i=1

2D−iI(c(p)i ̸= c
(q)
i ), (18)

where I(·) is the indicative function. The range
of distances is from 0 to 2D − 1. In other words,
given a reference semantic ID, we can construct a
pseudo-semantic ID list of length 2D − 1, ordered
by distance from smallest to largest.

B.2 Ordered Priors from Global Statistics

Sequential recommendation models tend to learn
local sequential patterns during the training phase.
We believe that enhancing the perception of their
association with globally ordered information can
improve the model’s performance. To this end,
we first construct the interaction matrix M ∈
R|U|×|V| between users and items by setting the
entry Mu,v = 1 if user u has interacted with item
v and Mu,v = 0 otherwise. With the operation
AG = M⊤M, we obtain the initial correlation
strength between items in AG based on their co-
interaction frequency. Then given the target item,
we apply top-k(·) function to collect the top-k rele-
vant items.

C More Experimental Details

C.1 Dataset Statistics

C.2 Baselines

We adopt the following representative models as
baselines for comparison.
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Algorithm 1 Beam Search with the Prefix Tree
1: Input: Top-k k, beam width b, prefix tree T
2: Output: Sequences {S1, S2, . . . , Sk}
3: Initialize with start token B = {(⟨s⟩, root of T, 1.0)}
4: repeat
5: B′ ← ∅
6: for all (sequence s, node n, prob p) ∈ B do
7: Get the hash table H from the current node n
8: codewords← keys of the hash table H
9: for all token t ∈ codewords do

10: s′ ← s concatenated with t
11: Compute probability P (t|s)× p for the new sequence s′

12: n′ ← next node after taking token t from H
13: Add (s′, n′, P (t|s)× p) to B′

14: end for
15: end for
16: B ← top b sequences from B′ by total probability
17: until Stopping condition
18: Sort B by probability in descending order
19: return Top k sequences from B

Dataset #Users #Items #Interactions Sparsity Avg. Length

Instruments 24,773 9,923 205,153 99.92% 8.32
Arts 45,142 20,957 390,832 99.96% 8.66
Games 50,547 16,860 452,989 99.95% 8.96

Table 3: Statistics of used datasets.

• Caser (Tang and Wang, 2018): It employs CNN
in both horizontal and vertical ways to model
high-order MCs for sequential recommendation

• HGN (Ma et al., 2019): It uses the hierarchical
gating network to capture the long- and short-
form interest from the user behavior sequence.

• GRU4Rec (Hidasi et al., 2016): It uses GRU
with ranking-based loss to model user sequences
for the session-based recommendation.

• BERT4Rec (Sun et al., 2019a): It adopts a bi-
directional Transformer-based model and com-
bines it with a mask prediction task for the mod-
eling of item sequences.

• SASRec (Kang and McAuley, 2018): It uses
a left-to-right Transformer language model to
model user behavior sequence and predict the
next item.

• FMLP-Rec (Zhou et al., 2022): It proposes an

all-MLP model with learnable filters, which en-
sures efficiency and reduces noise signals.

• FDSA (Zhang et al., 2019): It focuses on the
transformation patterns between item features,
modeling both item-level and feature-level se-
quences separately through self-attention net-
works.

• S3-Rec (Zhou et al., 2020): utilizes mutual
information maximization to pre-train a self-
supervised sequential recommendation model,
learning the correlation between items and attri-
butions.

• P5-CID (Geng et al., 2022; Hua et al., 2023):
The authors organize multiple recommendation
tasks in a text-to-text format, uniformly model-
ing these tasks using the T5 model. They then
investigate methods for constructing item IDs for
sequential recommendation, including sequen-
tial indexing and collaborative indexing. In our
work, we use P5 with collaborative indexing as
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the baseline, following the implementation pro-
vided by the authors.

• TIGER (Rajput et al., 2024): It adopts the gener-
ative retrieval paradigm for the sequential recom-
mendation and introduces the quantized seman-
tic IDs based on RQ-VAE to uniquely identify
items.

D Case Study

To further qualitatively analyze the effectiveness of
our method, we present two cases of recommenda-
tion results on the Amazon-Games test set using
the sequence recommendation models TIGER and
DWR. In Table 4, we observe that the recommen-
dation results generated by TIGER contain an entry
“ERROR” highlighted in red, indicating an invalid
semantic ID that cannot be mapped to the actual
item. Additionally, there is a repeated occurrence
of the item “Metroid: Other M” (highlighted in
orange), suggesting that TIGER, while avoiding
identical semantic IDs, still tends to recommend
highly similar semantic IDs that may map to the
same item instance. In contrast, DWR ensures
valid semantic IDs, with the recommendation re-
sults being more accurate and diverse. In Table 5,
the recommendation results from TIGER exhibit
severe repetition, whereas our recommender main-
tains good diversity in its recommendations.
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Case 1

Input Sequence:
Final Fantasy Crystal Chronicles: Echoes of Time - Nintendo Wii.
My Fitness Coach - Nintendo Wii.
Super Mario Galaxy 2.
Final Fantasy Fables: Chocobo’s Dungeon - Nintendo Wii.
Super Mario Galaxy.
Castlevania Judgment.
Kingdom Hearts Re:Chain of Memories.
Final Fantasy X-2.
The Legend of Zelda: Skyward Sword with Music CD.
Summoner.
Beyond Good & Evil.

Target:
Tales Of Symphonia: Dawn of the New World.

Results of TIGER:
Metroid: Other M.
Super Mario Galaxy 2.
Sin and Punishment: Star Successor - Nintendo Wii.
The Last Story - Nintendo Wii.
ERROR.
Super Paper Mario (Nintendo Selects).
Lunar: Dragon Song - Nintendo DS.
Metroid: Other M.
Knights in the Nightmare - Nintendo DS.
Super Smash Bros. Brawl.

Results of LOHRec-LLM:
The Legend of Zelda: Twilight Princess.
Final Fantasy IV.
Metroid: Other M.
The Legend of Zelda: The Wind Waker.
Super Mario Galaxy 2.
Final Fantasy Tactics A2: Grimoire of the Rift.
Rune Factory: Frontier - Nintendo Wii.
Final Fantasy XII.
Tales Of Symphonia: Dawn of the New World.
Dragon Quest IV: Chapters of the Chosen - Nintendo DS.

Table 4: Items recommended by TIGER and LOHRec-DWR trained on Amazon-Games dataset.
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Case 2

Input Sequence:
Vacation Quest: Australia - PC.
Mystery P.I. Portrait of a Thief - Nintendo DS.
Amazing Adventures: Around The World - PC.
Mystery P.I.: The Lottery Ticket - PC.
Amazing Adventures The Riddle Of Two Knights.
Mystery P.I.: The London Caper.
Amazing Adventures: The Forgotten Dynasty.
Mahjong Escape: Ancient China - PC.
Bejeweled - PC.

Target:
Escape the Emerald Star - PC/Mac.

Results of TIGER:
Ancient Secrets: Quest for the Golden Key.
Big Fish: Sable Maze 1: Sullivan River and Sable Maze 2: Norwich Caves - PC.
Dark Tales 3:Edgar Allen Poe’s The Premature Burial - PC.
Mystery P.I: The Curious Case of Counterfeit Cove.
Amazing Adventures: The Lost Tomb - PC.
Holiday Pack - 3 in 1 - Hidden Object Game [Download].
Chinatown Chronicles - Hidden Objects Game [Download].
Ancient Secrets: Quest for the Golden Key.
Big Fish: Sable Maze 1: Sullivan River and Sable Maze 2: Norwich Caves - PC.
Dark Tales 3:Edgar Allen Poe’s The Premature Burial - PC.

Results of LOHRec-LLM:
Mystery P.I: The Curious Case of Counterfeit Cove.
Vacation Quest: Australia - PC.
Mystery P.I.: The London Caper.
Golden Trails: The New Western Rush [Download].
Dark Tales 3:Edgar Allen Poe’s The Premature Burial - PC.
100% Hidden Objects [Download].
Awakening: Moonfell Wood.
Mystic Diary: Haunted Island.
Super Market - Hidden Object Game [Download].
Travel Pack - 3 in 1 - Hidden Object Game [Download].

Table 5: Items recommended by TIGER and LOHRec-DWR trained on Amazon-Games dataset.
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