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Abstract

Multi-hop question answering is a challeng-
ing task that requires capturing information
from different positions in multiple documents.
Recently, several methods propose to enhance
Large Language Models (LLMs) by incorpo-
rating structured knowledge, aiming to grasp
key information for solving this task. Despite
certain achievements, they still face the follow-
ing challenges: 1) The neglect of text-based
reasoning capabilities. 2) Information redun-
dancy between text and triples. 3) Information
loss during structured knowledge extraction.
To solve the above challenges, in this paper, we
propose Dynamic Combination of Structured
Knowledge (DCSK), a novel framework for in-
tegrating text-based and triple-based paradigms.
Following Occam’s Razor, DCSK dynamically
determine the necessity of structured knowl-
edge by the designed multi-faceted evaluation,
which systematically assess the correctness,
clarity, and informativeness of text-based pre-
diction. For questions that require structured
knowledge, we develop an iterative fact refiner
that screens for question-relevant triples, veri-
fies their factual adequacy, and thereby effec-
tively excludes irrelevant and redundant infor-
mation. Furthermore, based on the verification,
we construct an adaptive knowledge reasoner
that dynamically adjusts the need for text sup-
plementation, thus mitigating the information
deficiency in selected triples. Extensive exper-
iments on three MHQA datasets demonstrate
the efficiency and effectiveness of DCSK !.

1 Introduction

Multi-Hop Question Answering (MHQA) is a chal-
lenging task in the field of natural language pro-
cessing, which needs to capture relevant informa-
tion from multiple locations of the documents for
reasoning (Yang et al., 2024b). For example, to
answer “Arthur Marryatt is a member of a sports
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association that has whom as president?”, it is
essential to first identify the specific sports asso-
ciation to which “Arthur Marryatt” belongs, and
subsequently ascertain the identity of its president.
This process necessitates a certain level of combi-
natorial reasoning capability (Shi et al., 2024).

As large language models (LLMs) have demon-
strated excellent text understanding and reasoning
capabilities (Xu et al., 2025; Liu et al., 2024a; Zhao
etal., 2025b; Yuan et al., 2025), they have proven to
be indispensable in the MHQA task (Khalifa et al.,
2023; Zhong et al., 2023). Recently, several studies
propose to extract structured knowledge from docu-
ments by constructing triples (Panda et al., 2024; Li
and Du, 2023; Liu et al., 2024b). This triple-based
paradigm aims to assist LLMs in comprehending
the relationships between various entities and facil-
itating more reliable and interpretable reasoning.

Although the certain progress made, it still faces
the following challenges: (1) The neglect of text-
based reasoning capabilities. Previous work as-
sume that all questions must be addressed by in-
tegrating multi-step processed triples, which un-
doubtedly necessitates substantial computing re-
sources. However, even when only the original
unstructured text is available, LLMs possess suf-
ficient basic reasoning capabilities to accurately
answer certain questions, especially with the as-
sistance of some plugin methods (such as Chain
of Thought (CoT) (Wei et al., 2022)). As shown
in Figure 1 (a), the majority of questions can be
accurately addressed by both paradigms. In ac-
cordance with Occam’s Razor, this subset of data
does not necessitate additional complex process-
ing. Furthermore, it is evident that a considerable
number of problems remain solvable by only one
paradigm. This indicates that if the two paradigms
are appropriately integrated, it is possible to not
only conserve unnecessary computing resources
but also enhance performance to some extent.

(2) Information redundancy between text and
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Figure 1: (a) The distribution of the number of correct responses for the two paradigms across different datasets.
(b) The information redundancy between text and triples, which hinders LLMs to identify critical problem-solving
information. (c) The information loss occurring in extracting triples, which prevents LLMs from fully comprehending

implicit background information.

triples. Problem-solving processes typically re-
quire only a limited amount of critical information.
Nevertheless, when triples are used as supplemen-
tary input, as depicted in Figure 1 (b), they intro-
duce a significant volume of redundant information
that overlaps with the text. This not only increases
the length of the context but also potentially dis-
tracts the focus of LLMs. (3) Information loss
during structured knowledge extraction. In the
process of extracting triples, certain implicit back-
ground information is inevitably lost. When triples
are employed as the sole input, LLMs struggle to
acquire the comprehensive background knowledge
necessary to address the question. As shown in
Figure 1 (c), it causes LLMs to concentrate on
the explicit facts regarding the capital within the
triples, which may impede them to accurately infer
the current location of the capital.

To address the above challenges, we propose
Dynamic Combination of Structured Knowledge
(DCSK), a novel framework for integrating text-
based and triple-based paradigms that both in-
creases efficiency and the reasoning capabilities
of the LLMs. Specifically, we initially employ the
foundational reasoning capabilities of LLMs for
text-based inference. Subsequently, we leverage a
multi-faceted evaluation to systematically assess
the correctness, clarity, and informativeness of the
predictions. Through this mechanism, we are able
to identify the questions that genuinely necessi-
tate the structured knowledge. Within the triple-
based paradigm, given that answering questions
requires only core and critical steps, we design an
iterative fact refiner to eliminate irrelevant and re-
dundant information. This process initially selects
triples relevant to the question and subsequently
verifies the factual adequacy of the selected triples

to ascertain whether they provide sufficient infor-
mation. If verification fails, the process repeats
until it passes or the predefined maximum number
of attempts is reached. Finally, we construct an
adaptive knowledge reasoner, that dynamically de-
termines whether to incorporate the original text
as supplementary input based on the verification
results, thereby mitigating the issue of information
insufficiency in selected triples. Our main contri-
butions are as follows:

e We propose DCSK, a novel framework that dy-
namically integrates text-based and triple-based
paradigms, which not only enhances efficiency
but also significantly improves the reasoning ca-
pabilities of LLMs.

o We design an iterative fact refiner to eliminate
irrelevant and redundant information of triples.
Additionally, we construct an adaptive knowl-
edge reasoner to adaptively adjusts the need for
text supplementation, thus alleviating the infor-
mation deficiency in selected triples.

e We conduct extensive experiments on three
MHQA datasets (HotpotQA, 2WikiMultihopQA,
and Musique), which demonstrate the efficiency
and effectiveness of DCSK.

2 Related Work

Multi-Hop Question Answering (MHQA). With
the rapid advancement of deep learning technolo-
gies, existing methods have demonstrated excep-
tional performance in addressing direct questions
(Yuan et al., 2024; Zhao et al., 2024, 2025a). Con-
sequently, there is a growing interest in more chal-
lenging tasks such as Multi-Hop Question Answer-
ing (Lan et al., 2021; Zhong et al., 2023).
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Figure 2: The overall framework of DCSK, which dynamically integrating text-based and triple-based paradigms.

The traditional approaches encompass various
paradigms, such as: 1) Utilizing graph neural net-
works for encoding and reasoning to address ques-
tions (Qiu et al., 2019; Fang et al., 2020). 2) De-
composing the question into sub-questions and ad-
dressing them sequentially (Fu et al., 2021; Perez
et al., 2020). 3) Iteratively processing different con-
tent within hierarchical documents to tackle com-
plex questions (Sun et al., 2021). 4) Employing a
graph-based iterative retrieval method for inferring
pathways of reasoning (Asai et al., 2020).

Recent studies have sought to leverage the pow-
erful reasoning capabilities of LLMs to address
complex questions (Wang et al., 2024). For in-
stance, Press et al. (2023) investigated the capabil-
ity of LLMs in performing combinatorial reason-
ing tasks, further enhancing the chain of thought
through self-ask. Zhang et al. (2024) proposed
an end-to-end beam retriever to expand the search
space and reduce the risk of omitting relevant pas-
sages, thereby enhancing the responses. Shi et al.
(2024) repeated the processes of prompting LLMs
generate sub-questions and answers, as well as
modifying incorrect predictions based on retrieved
documents, ultimately leading to the final answer.

However, the original unstructured text contains
a large amount of noisy content and the key in-
formation is scattered, which requires further opti-

mization in complex scenarios.

Leveraging Structured Knowledge for MHQA.
Considering the challenges in unstructured docu-
ments, some studies utilized structured information
extraction from original documents as a solution
(Li and Du, 2023; Panda et al., 2024).

By utilizing structured triples, the model can
more effectively capture the relationships among
multiple entities, thereby facilitating more reliable
reasoning (Liu et al., 2024b). However, the process
of constructing these triples requires substantial
computational resources and inevitably introduces
ambiguities and information loss. Furthermore,
when both documents and triples are used as input,
such as StructQA (Li and Du, 2023) and ERA-
CoT (Liu et al., 2024b), it can lead to information
redundancy and cause LLMs to shift their focus.

Unlike existing approaches, our DCSK frame-
work can dynamically integrate the text-based with
the triple-based paradigm to optimize resource uti-
lization and enhance performance, and address the
aforementioned problems by iteratively selecting
and verifying triples related to the question.

3 Methodology

As shown in Figure 2, we propose DCSK, a novel
framework for integrating text-based and triple-
based paradigms. Under the text-based paradigm,
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DCSK utilizes the basic reasoning ability of LLMs
and employs multi-faceted evaluation to dynami-
cally determine the necessity of structured knowl-
edge. For triple-based paradigm, DCSK excludes
irrelevant and redundant information by the de-
signed iterative fact refiner. After, through the
adaptive knowledge reasoner, DCSK dynamically
adjusts the need for text supplementation to miti-
gate the information deficiency in triples.

3.1 Task Definition

In this paper, we tackle the MHQA task in a zero-
shot setting without training, which makes the prob-
lem more challenging and practical (Zhao et al.,
2023). Given a multi-hop question ¢ and a series
of candidate documents D, this task demands cap-
turing the inter-document association information
to provide an answer a. The candidate documents
Dy = {Dy, ..., Dy }, where each document D}, en-
compasses a title ¢; and a context c;.

3.2 Proposed Method (DCSK)

Vanilla Reasoner. Given that CoT approach can
stimulate the incremental thinking ability of LLMs,
it not only leads to performance improvements but
also enables the visualization of the reasoning logic,
thereby facilitating a more accurate evaluation of
the correctness of their responses. Additionally, the
resource consumption by CoT is only marginally
different from that of standard prompt. Therefore,
we adopt the CoT as our default setup. Given a
multi-hop question g;, support document set Dy,
we prompt the LLM Mj to generate an answer a,,
and reasoning process 1, via:

Qg5 Tq; :MQ(IAaqi7DQi>7 (])

where 14 denotes the task instruction for reasoning,
the details can be found in Appendix A.2.1.

Multi-Faceted Evaluation. To identify uncer-
tain responses within the text-based paradigm, i.e.,
questions that genuinely require structured knowl-
edge for accurate answers, we further instruct
LLMs to systematically assess their predictions
in terms of correctness, clarity, and informative-
ness, building upon the prior step. For correctness,
a score ranging from O to 10 is assigned. Since
the answers are not specific options, we set scoring
indicators reflecting varying degrees of correctness
for LLMs as a reference. When LLMs determine
that an answer is completely correct with no er-
rors or omissions, they will award a score of 10; if

they consider that the prediction is almost entirely
correct but may differ slightly in phrasing, they
will accordingly reduce the score by 1 to 2 points.
Similar adjustments apply in other cases as well.
Since correctness is the primary criterion, if the
probability of a response being correct is exceed-
ingly low, it is unnecessary to assess its clarity or
informativeness. Consequently, subsequent evalua-
tions are only performed on answers that surpass
the predefined correctness threshold 7. In terms
of clarity, the desired outcome is a concise and un-
ambiguous response devoid of superfluous elabo-
ration. For example, when addressing the question
“Who is the father-in-law of Queen Hyojeong?”,
model might responds with “Crown Prince Hy-
omyeong (posthumously named Ikjong)’. How-
ever, for clarity purposes, the simplified response
“Crown Prince Hyomyeong” suffices. Additionally,
we expect the predictions to provide specific and
concrete information rather than evading the ques-
tion or offering vague and generalized descriptions.
For example, responses such as “Unknown” or “It
is not mentioned” are considered uninformative.
The detailed prompts are in Appendix A.2.2.
Through the above systematic assessment, we
can select the questions that truly require structured
knowledge to be re-answered. For each question
and its correctness score S, clarity score s, infor-
mativeness score s;, we define the process as:

0 {U{qi},

Usczo,sizo{%‘}, else

if s, < 7T
ne )

where ()4 is the entire question set and ¢; € Q4.
Structured Knowledge Extractor. In this step,
we perform information extraction on the selected
questions Qs and corresponding documents Dy,
in order to derive structured knowledge.

Firstly, we conduct entity extraction. Given a
document D, we prompt the LLMs to extract enti-
ties set /. However, due to limitations in the zero-
shot information extraction capabilities of LLMs
(Xu et al., 2024a; Chen et al., 2024), we follow
StructQA by incorporating examples into task in-
struction to enhance the extraction performance.

Next, we need to extract the relationships to con-
struct triples. Traditional relation extraction typi-
cally employs brief phrases of one or two words to
describe these relationships. For instance, from the
sentence “Vilnius County is the largest of the 10
counties of Lithuania”, it might identify “(Vilnius
County, part of, Lithuania)”. However, what we
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require is a more contextually informative one like
“(Vilnius County; largest of 10 counties of; Lithua-
nia)”. Consequently, we instruct LLMs to describe
the relationship in a meaningful and contextually
appropriate manner while avoiding generic predi-
cates. This instruction aims to maximize informa-
tional content. Similar to entity extraction, we also
include examples within our task instructions. For
a document D, the triples set could formulated as:

r= U

€;j [SIORINSY )

{(ej;rejek-;ek)}7 (3)

where r denotes the relation between entities.

Finally, to effectively harness the implicit knowl-
edge within the question and guide the subsequent
iterative processes, we direct LLMs to extract the
key elements, encompassing the significant objects
as well as the reasoning steps necessary for resolv-
ing multi-hop questions. The full instructions of
this step can be found in Appendix A.2.3.
Iterative Fact Refinement. Triples are a further
refinement of the text, extracting the main infor-
mation from it. When both triples and documents
are used simultaneously, it not only significantly
increases the input length but also repeats a large
amount of redundant information. Consequently,
the focus of LLMs may shift, making it difficult
for them to accurately identify key reasoning infor-
mation in the vast amount of content. Conversely,
when directly using triples, due to the inevitable
loss of some implicit background information, the
model cannot fully understand the context, which
in turn leads to incorrect predictions.

Therefore, we design an iterative process to
identify triples relevant to the question and verify
whether they contain sufficient information to an-
swer the question. Specifically, for each question,
guided by the key elements extracted from previous
steps, we instruct LLMs to utilize their semantic
analysis capabilities to select sub-triples that are
directly or implicitly related to the corresponding
question. To leverage the lessons learned from
prior attempts and prevent redundant operations,
we incorporate a memory area into the instruction.
This allows LLMs to optimize their current deci-
sions based on prior selections and verification re-
sults throughout the iterative process. Formally, for
question ¢; and its key elements kg, , the selection
process on iteration j can be formulated as:

T;z‘Ub = M9(Is’%lcququi_l)z 4)

where I represents the base instruction for this
process, while ngl denotes the memory from the
previous iteration (which is empty in first iteration).
Then, we instruct the LLMs to evaluate the se-
lected triples T;i“b and determine whether they con-
tain sufficient information to address the question
¢;- Similarly, the instruction for the verification
process also integrated key elements of the ques-
tion along with memory from previous iterations,
ensuring logical consistency in verification while
referencing earlier outcomes to enrich current anal-
ysis. The verification process of iteration j is as:

Vi = Mo(Ly, @i, Kg, T, MI7Y). (5)

In the scenario of information loss, it becomes
evident that no matter how many iterations are per-
formed, it is impossible to fully identify a sufficient
number of triples to support a correct reasoning
path. Therefore, we set a maximum number of it-
eration limit v. When V,, is True or the number of
iteration j > -, the iterative process will conclude.
The detailed instructions are in Appendix A.2.4.
Adaptive Knowledge Reasoner. In this step,
based on the previous verification results, we adap-
tively determine whether to incorporate original
text as supplementation, thereby mitigating the in-
formation deficiency in triples. When the verifi-
cation result is True, we deem that the selected
triples possesses sufficient information to answer.
Conversely, when the result is False or when the
maximum number of iterations is exceed, we in-
terpret this as an indication that there is missing
information within the current triples, rendering it
insufficient for independently answering the ques-
tion; thus, assistance from original text is required.

Formally, for each question ¢; € g, along
with its corresponding verification result V,,, we
can further partition the question set:

Qr = U {ai},

i €Qsk,Vq;=True (6)
Qia = Qs — Q1

where (); and ;4 denote respectively the set of
questions that can be answered merely by selected
triples and the set of questions that demand addi-
tional documents. Then, for each question ¢; € Q;
and ¢; € Q¢q, we obtain the corresponding answers
agq; and a,4; in a manner similar to Equation (1), and
thereby form the answer sets A; and A;4. The final
complete answer set is as follows:

At = Acot UAL U Ay (7
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Methods HotpotQA 2WikiMultihopQA Musique
EM F1 P R EM F1 P R EM F1 P R
GPT-40-mini
Base 0.538 0.692 0.690 0.805 0484 0.631 0.597 0.787 0.285 0.456 0.425 0.705
CoT 0.623 0.778 0.795 0.807 0.682 0.801 0.779 0.860 0.463 0.618 0.619 0.668
CoT-SC@5 0.639 0.783 0.798 0.805 0.687 0.813 0.790 0.874 0.481 0.641 0.645 0.689
RE2 0.634 0.781 0.801 0.804 0.684 0.800 0.778 0.859 0.480 0.628 0.631 0.677
StructQA 0.646 0.780 0.797 0.799 0.694 0.821 0.807 0.862 0.511 0.648 0.662 0.674
ERA-CoT  0.666 0.801 0.827 0.807 0.692 0.815 0.799 0.866 0.482 0.636 0.642 0.673
DCSK ¢, 0.682 0.819 0.841 0.830 0.741 0.828 0.813 0.871 0.515 0.670 0.679 0.702
DCSK s 0.689 0.822 0.844 0.828 0.744 0.832 0.818 0.874 0.527 0.683 0.690 0.708
DCSK rg2 0.686 0.817 0.843 0.822 0.747 0.829 0.813 0.873 0.529 0.678 0.689 0.705
Owen2.5-7B

Base 0.568 0.704 0.737 0.723 0.549 0.630 0.632 0.657 0.340 0.465 0.495 0.508
CoT 0.588 0.724 0.757 0.736 0.594 0.667 0.663 0.703 0.330 0.444 0.467 0471
CoT-SC@5 0.599 0.734 0.769 0.738 0.622 0.701 0.695 0.737 0.345 0.466 0.494 0.481
RE2 0.585 0.723 0.758 0.732 0.596 0.668 0.660 0.707 0.318 0.439 0.465 0.469
StructQA 0.604 0.730 0.756 0.739 0.646 0.717 0.708 0.748 0.350 0.476 0.495 0.491
ERA-CoT  0.577 0.710 0.721 0.735 0.606 0.700 0.690 0.738 0.334 0.467 0.502 0478
DCSK ¢, 0.642 0.775 0.804 0.780 0.696 0.784 0.776 0.823 0.457 0.585 0.600 0.614
DCSK s¢c 0.649 0.779 0.809 0.785 0.705 0.794 0.780 0.833 0.452 0.576 0.591 0.603
DCSK rg2 0.635 0.770 0.798 0.777 0.697 0.784 0.770 0.825 0.445 0.572 0.585 0.602

Table 1: Multi-Hop Question Answering performance comparison of different methods. The best results are in bold.

4 [Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on three
common-used multi-hop question answering
datasets: HotpotQA (Yang et al., 2018), 2WikiMul-
tihopQA (Ho et al., 2020), and Musique (Trivedi
et al., 2022). Each question contains at least ten
candidate documents, which include both golden
documents and noise documents. Unlike Struc-
tQA (Li and Du, 2023), which exclusively utilizes
golden documents, we focus on simulating com-
plex scenarios that reflect real-world conditions by
incorporating noise documents as input (Trivedi
et al., 2022). However, to reduce resource con-
sumption, we limit the number of candidate docu-
ments for each question to five and adopt Qwen2.5
to process structured knowledge for all experi-
ments. Moreover, we have doubled the dataset
based on StructQA, randomly sampling 1,000 ques-
tions from each dataset to serve as the test set.

Evaluation Metrics. Follow previous work (Li
and Du, 2023), we adopt the Exact-Match (EM),
F1-score, Precision and Recall as the evaluation
metrics. And we use the same post-processing
method to calculate metrics to ensure fairness.

Baselines. To comprehensively evaluate our ap-

proach, we compare DCSK to the following base-
lines: Base (standard prompt), Chain-of-Thought
(CoT) (Wei et al., 2022), CoT Self-Consistency @5
(CoT-SC@5) (Wang et al., 2023), RE2 (Xu et al.,
2024b), StructQA (Li and Du, 2023), and ERA-
CoT (Liu et al., 2024b). The detailed descriptions
of these baselines are in Appendix A.1.1.
Implementation Details. We choose two LLMs as
the backbone, namely GPT-40 mini > (Hurst et al.,
2024), and Qwen2.5-7B-Instruct 3 (Yang et al.,
2024a). For LLMs, we set the temperature to 1.0,
and the max-token for generation is 1024. For other
hyper-parameters of our method, we set threshold
T to 8, maximum iteration y to 3. To ensure fair-
ness, our method and the triple-based baselines are
compared using the same triples throughout the
experiments. In addition, to show the compatibil-
ity of our framework, we select three methods to
enhance the text-based paradigm, denoted DCSK
cor> DCSK g¢ and DCSK ggo, respectively.

4.2 Main Results

Table 1 shows the comprehensive performance
comparison of our proposed DCSK and baselines.

2gpt-40-mini-2024-07-18
3https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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Specifically, we can observe that: (1) The triple-
based baselines generally exhibit better perfor-
mance compared to other methods in most cases, in-
dicating that the incorporation of structured knowl-
edge can enhance multi-hop reasoning. (2) DCSK
significantly outperforms all baselines across three
datasets and two LLMs, thereby demonstrating the
effectiveness of our approach. Furthermore, DCSK
consistently exhibits performance enhancements
when combined with the three text paradigms re-
spectively, thereby not only confirming its superior
transferability (i.e., its ability to be seamlessly in-
corporated into other text-based methods). (3) The
performance of ERA-CoT in different LLMs ex-
hibit considerable inconsistency. When employing
Qwen2.5, its performance was not notably different
from the CoT. But when utilizing the more pow-
erful GPT-40-mini, the performance increase was
conspicuous. We contend that this is because ERA-
CoT, apart from exploiting documents and triples,
also deduces a number of implicit relations for each
document as additional inputs. When the quantity
of documents grows, this renders the input more
noisy and redundant, causing less robust models to
be subjected to more severe interference.

Overall, DCSK demonstrates consistent im-
provements and robust resilience in more challeng-
ing noisy scenarios. Moreover, its synergistic per-
formance when integrated with various text-based
methods highlights its exceptional transferability.

4.3 Ablation Study

Methods HotpotQA 2Wiki. Musique
EM Fl1 EM F1 EM Fl1
DCSK cor 0.642 0.775 0.696 0.784 0.457 0.585
w/o DC 0.626 0.751 0.689 0.779 0.435 0.562
w/o Verification 0.609 0.728 0.676 0.766 0.393 0.527
w/o Selection 0.595 0.723 0.639 0.721 0.368 0.472

Table 2: The performance comparison of ablation study.
2Wiki. denotes the 2WikiMultihopQA dataset.

To assess the effectiveness of each module, we
conduct ablation experiments under Qwen2.5 and
introduce the following variations of DCSK ¢,7:
1) w/o Dynamic Combination (DC) means remov-
ing the multi-faceted evaluation, and answering all
questions by the triple-based paradigm. 2) w/o Ver-
ification refers to the elimination of the verification
in iterative fact refiner, indicating the question is an-
swered directly after the selection. 3) w/o Selection
indicates the removal of the selection stage.

As shown in Table 2, each module we designed
plays a crucial role. When the DC is removed,
all questions must rely on structured knowledge
for answering, which not only consumes substan-
tial resources (refer to Section 4.4.1 for specific
statistics) but also diminishes overall performance.
This is because DC not only identifies questions
solvable by both paradigms but also incorporates
issues that are exclusively resolvable by the text-
based paradigm and remain intractable for the
triple-based paradigm. Additionally, the removal
of the selection and verification processes leads
to a significant decline in performance, indicating
that these two modules are effective in mitigating
interference from noise and redundant information
within structured knowledge.

4.4 Comparative Analysis

In this section, we conduct a further analysis with
Qwen2.5 from the following perspectives:

* The comprehensive efficiency of DCSK.

* The detailed analysis of decision for dynamic
combination.

» The impact of correctness score and threshold in
multi-faceted evaluation.

¢ The influence of the maximum iteration limit.

@ Text-based [ Triple-based

77% 61% o
o 23% o 399, 32% 68%
HotpotQA 2WikiMultihopQA Musique

Figure 3: Detailed statistics on the number of questions
addressed by different paradigms of our DCSK.

Methods HotpotQA  2Wiki.  Musique Avg.
#Token |  #Token| #Token]| EMT FI1
StructQA 10030 8909 9653 0.530 0.641
ERA-CoT 25062 22738 24498  0.506 0.626
DCSK ¢, w/o DC 13721 12644 14769  0.583 0.697
DCSK ¢cor 5599 6476 11268  0.598 0.715

Table 3: The efficiency comparison based on the triple-
based methods. #Token represents the average number
of tokens used for each question. “Avg.” is the abbrevia-
tion for “average”.
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4.4.1 Efficiency Analysis

In order to comprehensively demonstrate the effi-
ciency of our dynamic combination, we present the
specific statistics of answering questions using the
two paradigms in Figure 3. It is evident that our
method introduce structured knowledge for only
23% and 39% of the questions on the HotpotQA
and 2WikiMultihopQA datasets, respectively. This
significantly reduces computational resources. In
contrast, for the more challenging Musique, a sec-
ondary response was necessary for 68% of the ques-
tions. This adaptive adjustment to varying levels
of difficulty not only conserves resources but also
ensures performance reliability.

Furthermore, we present a comparison of DCSK
and its variant with other triple-based methods in
terms of token consumption in Table 3. From this,
it can be observed that our DCSK maintains a lead-
ing overall performance while significantly reduc-
ing resource consumption on the HotpotQA and
2WikiMultihopQA datasets. In contrast, the ERA-
CoT method incurs a notable increase in resource
consumption due to the necessity of inferring sev-
eral implicit relationships for each document and
scoring them sequentially. This process not only
leads to significant increases in resource usage
but also results in considerable redundancy in in-
put data, thereby adversely affecting performance.
Moreover, when DCSK eliminates dynamic com-
bination, there is a substantial increase in resource
consumption accompanied by a slight decline in
performance. This finding underscores the ratio-
nale behind our approach: not all questions neces-
sitate intervention from structured knowledge.

Dataset Same Better Worse
HotpotQA 51% 35% 11%
2WikimultihopQA  54% 40% 6%
Musique 48% 39% 13%

Table 4: The decision analysis under structured knowl-
edge versus text-based reasoning in subset of questions
where the triple-based paradigm is selected after dy-
namic combination.

4.4.2 Detailed Analysis of Decision

To illustrate the effectiveness of our dynamic com-
bination, we further analyzed the subset of ques-
tions routed to the triple-based paradigm with
Qwen, comparing performance under structured
knowledge versus text-based reasoning. The out-

comes were categorized as follows: We categorized
the outcomes as follows: 1) Same: Both paradigms
yield the same performance. 2) Better: Structured
knowledge produces better result. 3) Worse: Text-
based reasoning produces better results, indicating
an error in routing by the dynamic combination.
As shown in Table 4, the proportion of erroneous
decisions (Worse) remains relatively low across all
datasets, while the performance gains from correct
decisions (Better) substantially outweigh the neg-
ative impact of occasional misjudgments. These
results confirm the effectiveness and robustness of
decisions by our dynamic combination strategy.

4.4.3 Impact of Correctness

75 605 0.78
0.80
152
0.65 42 0.77
= =
0.50
0.76
0.35
126
2| .
0-20 0~4 5~7 8 9 10 0.75 6 7 8 9 10

Correctness Score Correctness Threshold

Figure 4: Left sub-figure: The distribution of F1 value
corresponding to the correctness scores in multi-faceted
evaluation, where the numbers atop the bars repre-
sent the count of questions for each score interval.
The dashed line denotes performance across the entire
dataset for comparative reference. Right sub-figure: In-
fluence of varying thresholds.

Since correctness is the primary criterion, we fur-
ther investigate the impact of correctness score and
threshold in multi-faceted evaluation on the Hot-
potQA, as illustrated in Figure 4. We can observe
that predictions with higher scores tend to exhibit
better F1 value, and the top two scoring segments
account for 68% of the total. This observation
aligns perfectly with the premise of our approach,
which posits that LLMs can address many ques-
tions effectively with unstructured text. For such
questions, further processing is unnecessary.
Furthermore, by integrating the two sub-figures,
we can observe a certain degree of overthinking
phenomenon. In the left sub-figure, the F1 with a
score of 8 did not reach the average F1 of the total.
Logically, when this part of the questions are com-
bined with more effective triples-based predictions,
it should have led to a better performance. How-
ever, from the comparison of thresholds 8 and 9 in
the right sub-figure, we can see that the actual situ-
ation is contrary to the ideal one. We posit that this
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discrepancy arises because, in this specific subset,
the overall superior structured knowledge exhibits
inferior performance compared to plain text. This
also indicates why our dynamic combination strat-
egy continues to enhance performance.

Metrics @1 @2 ~@3 ~y@4 ~@5
EM 1 0.436 0.448 0.457 0.454 0.449
F1 1 0.572 0.582 0.585 0.587 0.588
#Token | 1759 2376 2793 3225 3697

Table 5: The influence of maximum number v of it-
eration. yv@n denotes the specified value. #Token is
the average token consumption for each question in the
iterative process.

4.4.4 Influence of Maximum Iteration Limit

Table 5 illustrates the variation of metrics with re-
spect to different maximum number of iterations,
denoted as v, on the Musique. We can observe
that although the resource consumption in the first
iteration is minimal, its performance is notably sub-
optimal. In contrast, from the second iteration on-
ward, there is a discernible upward trend in model
performance, indicating its capacity to optimize
current decisions based on prior processes. How-
ever, despite some metrics continuing to improve
with an increased number of iterations, it is impor-
tant to consider both the marginal gains and rising
costs. Therefore, we have set a maximum itera-
tion limit of 3 to strike a balance between resource
consumption and performance.

5 Conclusion

In this paper, we proposed Dynamic Combination
of Structured Knowledge (DCSK), a novel frame-
work for integrating text-based and triple-based
paradigms to address the multi-hop question an-
swering. DCSK dynamically determined whether
the question requires the intervention of structured
knowledge through the multi-faceted evaluation,
which assess the correctness, clarity, and informa-
tiveness of text-based prediction. For questions that
require intervention, we designed an iterative fact
refiner to select and verify the triples related to the
question, thereby excluding redundant information.
Additionally, based on the verification, we con-
structed an adaptive knowledge reasoner to adjust
the need for text supplementation to address the
information deficiency in triples. Extensive experi-
ments demonstrated the effectiveness of DCSK.

Limitations

In certain scenarios, our work has some limitations.
First, our approach is a further improvement on
the previous triple-based paradigm work, which re-
quires leveraging the inherent capabilities of LLMs
to extract structured knowledge. However, when
the model parameters are insufficiently large (for
instance, 220M or 1B), may encounter limitations
due to the bottleneck in information extraction ca-
pability. In future work, we plan to investigate a
dedicated extraction model to enhance adaptabil-
ity across models with varying parameter sizes.
Second, in multi-faceted evaluation, considering
that simultaneously outputting answers and scores
would affect the model’s performance (Zhao et al.,
2023), our method requires additional model calls,
leading to unavoidable expenses. Moving forward,
we aim to explore aspects of internal interpretabil-
ity within LLMs to mitigate such costs.
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A Appendix

A.1 Supplementary Experimental Setup

A.1.1 Descriptions of Baselines

We compare our DCSK with following two kinds
of baselines.
(i) Text-based methods:

e Base denotes the standard prompting method.

o CoT (Wei et al., 2022) prompts the LLMs to
engage in step-by-step reasoning, thereby de-
riving answers through a systematic process.

e CoT-SC@5 (Wang et al., 2023) samples the
reasoning paths of five responses based on
CoT and selects the most consistent one as the
final answer.

e RE2 (Xu et al., 2024b) is a plug-and-play
method that enhances the reasoning capabili-
ties of LLMs by repeating questions to obtain
bidirectional understanding.

(i1) Triple-based methods:

e StructQA (Li and Du, 2023) constructs se-
mantic graphs by extracting structured knowl-
edge to facilitate the semantic understanding
of documents, thereby achieving a more faith-
ful reasoning process and improved model
performance in MHQA.

e ERA-CoT (Liu et al., 2024b), on the basis
of extracting structured triples, enables the
model to analyze and infer the implicit rela-
tions among entities, thereby enhancing the
reasoning performance in zero-shot scenarios.

A.2 Prompts
Here we provide the specific prompts DCSK used.

A.2.1 Reasoner

Evaluate your prediction for the given question
based on the Document in previous step. You are
an expert evaluator for question-answering
systems, and your task is to assess the
correctness of the prediction. Your evaluation
should consider the following scoring indicators:

Scoring Indicators:

1. 10 (Fully Correct):
- The prediction is fully correct, matching
the document’s information exactly or through
valid reasoning.
- It captures all essential details with no
errors or omissions.

2. from 8 to 9 (Mostly Correct):
- The prediction is almost entirely correct
but may differ slightly in phrasing or omit
minor details.
- Example: Synonyms, alternate phrasing, or
minor extra words.

3. from 5 to 7 (Partially Correct):

- The prediction contains correct information
but misses key details or introduces notable
errors.

- Example: Captures part of the answer but

not all essential elements.

4. from 1 to 4 (Mostly Incorrect):
- The prediction is loosely related to the
document but is largely incorrect or contains
major errors.

5. @ (No Answer or Completely Incorrect):
- The prediction is either completely
unrelated to the document or fails to provide
any meaningful answer.
- This includes cases where the model
predicts that the answer does not exist in
the document, which is incorrect because the
answer is guaranteed to be present.

Instructions:

1. Carefully compare the prediction with the

document, considering both explicit and implicit
information.

2. Pay special attention to cases where the

model provides no answer or incorrectly claims

the answer is not in the document.

3. Use the scoring indicators to assign a score

from @ to 10.

Clarity

Based on the provided information and your own
knowledge, answering the question by thinking
step by step.

Input: {3}

Question: {}

A.2.2 Multi-Faceted Evaluation

Correctness

You are an expert in evaluating prediction
clarity for question-answering systems. Your
task is to assess whether the prediction is
clear, concise, and free from unnecessary
explanation or background information. A clear
prediction should be direct and without extra
commentary.

Scoring Criteria:
- 1 (Clear): The prediction is concise and
direct, with no unnecessary information.
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- @ (Not Clear): The prediction includes
redundant background, is overly wordy, or could
be expressed more directly.

Exampls:

Question: What city is home to the university
attended by the founder of SpaceX?

Prediction: Elon Musk, the founder of SpaceX,
attended the University of Pennsylvania, which
is located in Philadelphia, a major city in the
state of Pennsylvania.

Score: 0

Question: What city is home to the university
attended by the founder of SpaceX?
Prediction: Philadelphia

Score: 1

Question: What is the nationality of the foreign

born victim of Singapore’s caning punishment
before Oliver Fricker experienced the same?
Prediction: The foreign-born victim who was
caned in Singapore before Oliver Fricker was
American, as in the case of Michael Fay in 1994.
Score: @

Question: What is the nationality of the foreign
born victim of Singapore’s caning punishment

before Oliver Fricker experienced the same?

Prediction: American

Score: 1

Question: {}
Prediction: {}

Examples:

Question: What is the name of the actor who
played Marty Castillo in Miami Vice?

Prediction: Not specified in the given documents
Score: @

Question: What is the name of the actor who
played Marty Castillo in Miami Vice?
Prediction: Edward James Olmos

Score: 1

Question: {3}
Prediction: {3}

A.2.3 Structured Knowledge Extraction
Entity Extraction

Informativeness

You are an expert in evaluating prediction
informativeness for question-answering systems.
Your task is to assess whether the prediction
provides concrete information. Prediction that
avoid answering (explicitly or implicitly) or
include vague, generic statements do not count
as informative.

Scoring Criteria:

- “1¢ (Informative):
The prediction includes a substantive,
specific answer.

- ‘Q0‘ (Uninformative):

The prediction does not provide useful content.

It avoids answering, provides only vague or
general remarks, or explicitly indicates the
information is unavailable using phrases such
as:

- None

- null

- Not specified in the given documents
- Not mentioned

- Not provided

- Unknown

- Not explicitly stated

Given the sentence, please refer to the possible
entity types and extract all the named entities
from the sentence.

Possible types: [person name, organization,

location, medical code, time expression (e.g.,

dates, times), quantities (e.g., numbers,

amounts), monetary value, percentage, other
relevant entity (if applicable)]

Use the following examples to understand the
task:

Examples:

title: Ferragosto in bikini

sentence: Ferragosto in bikini is a 1960 Italian
comedy film directed by Marino Girolami. The
film is named after a hit song of musical group
Quartetto Cetra, who also makes a brief cameo
appearance.

entities: {Ferragosto in bikini; 1960; Italian;
Marino Girolami; Quartetto Cetra}

title: Heo Keon

sentence: Heo Keon( born 3 January 1988) is a
South Korean footballer who plays as midfielder
for Bucheon FC 1995 in K League Challenge.
entities: {Heo Keon; 3 January 1988; South
Korean; Bucheon FC 1995; K League Challenge}

Now you need to output the entities based on the
following sentence in same format as examples.

Relation Extraction

Given a sentence and a set of entities, extract
the relationships between the entities and
represent them as triples (subject; predicate;
object).

Instructions for the task:

1. Only consider the entity provided in the
Entities set.

2. Identify all relevant relationships between
the entities.

3. Describe each relationship using a
contextually relevant predicate that accurately
and comprehensively reflects the content of the
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sentence. Use meaningful verbs or descriptive

phrases to define the connection (e.g., "plays
as a midfielder for, "is known for, "was born on
"

4. Format your output as a list of triples,
where each triple is formatted as: ‘(subject;
predicate; object)‘. Multiple triples should be
separated by a new line.

Use the following examples to understand the
task:

Examples:

Title: barry mcguire

Sentence: Barry McGuire (born October 15, 1935)
is an American singer-songwriter. He is known
for the hit song ’Eve of Destruction’, and later
as a pioneering singer and songwriter of
contemporary Christian music.

Entities set: {Barry McGuire; October 15, 1935;

American; Eve of Destruction; contemporary
Christian music}

Extracted triples:

(Barry McGuire; was born on; October 15, 1935)
(Barry McGuire; is a singer-songwriter of;

American)

(Barry McGuire; is known for; Eve of Destruction
)
(Barry McGuire; is a pioneering singer and
songwriter of; contemporary Christian music)

Title: Ferragosto in bikini

Sentence: Ferragosto in bikini is a 1960 Italian
comedy film directed by Marino Girolami. The
film is named after a hit song of musical group

Quartetto Cetra, who also makes a brief cameo
appearance.

Entities set: {Ferragosto in bikini; 1960;
Italian; Marino Girolami; Quartetto Cetra}
Extracted triples:

(Ferragosto in bikini; is a comedy film of;
1960)

(Ferragosto in bikini; is a film of; Italian)
(Ferragosto in bikini; was directed by; Marino
Girolami)

(Ferragosto in bikini; is named after a hit song
of'; Quartetto Cetra)

(Quartetto Cetra; makes a cameo appearance in;
Ferragosto in bikini)

Now, apply the above method to extract the
relationships for the given sentence and
entities.

Output:
{
"Objects”: [
"Mary Lou Marzian",
"Charles Gonthier, Prince Of Schwarzburg-
Sondershausen”,
"birth dates of both individuals”
1,
"Contextual Links": [
"Step 1: Identify Mary Lou Marzian’s birth
date.”,
"Step 2: Identify Charles Gonthier’s birth
date.”,
"Step 3: Compare the two birth dates to
determine who was born earlier.”
]
}

Question 2:

Where was the place of death of Alessandro
Ruspoli, 2Nd Prince Of Cerveteri’s father?
Output:

"Objects”: [
"Alessandro Ruspoli, 2Nd Prince Of Cerveteri
"father of Alessandro Ruspoli”,
"place of death of Alessandro Ruspoli’s
father”

:l:

"Contextual Links": [
"Step 1: Identify who is the father of
Alessandro Ruspoli, 2Nd Prince Of Cerveteri
"Step 2: Locate the place where Alessandro
Ruspoli’s father died.”

Now, apply this method to the following question:

Question: {3}

A.2.4 TIterative Fact Refiner

Selection

Query Breakdown

You are an expert in question decomposition and
semantic analysis. Your task is to analyze a
given question and extract key contextual
elements, focusing on both the objects mentioned

in the question and the detailed reasoning
steps needed to answer the question.

Examples:

Question 1:

Who was born first, Mary Lou Marzian or Charles
Gonthier, Prince Of Schwarzburg-Sondershausen?

You are an expert in identifying relevant
information from structured data. Your task is

to analyze a set of fact tuples and select only

those that are directly or indirectly relevant

to answering the given question. You will also

be provided with a query breakdown to guide your
reasoning process.

If available, you can also access a memory of
previously selected and verified tuples to
support your decision-making.

Task Instructions:
1. Leverage Query Breakdown:
- Follow the breakdown steps to determine
which tuples are necessary for each reasoning
step.
- Select tuples based on both explicit
relevance and simple implicit associations:
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- Explicit relevance: Tuples that directly
match the query breakdown steps or provide
clear information needed to answer the
question.

- Simple implicit associations: Tuples that
do not directly match the breakdown steps
but are contextually related, such as cause-
effect, attribute extension, or related
entities.

2. Leverage Memory (if available):

- Memory contains tuples and reasoning from

previous iterations. Use it to:
- Identify tuples that may have been missed
in the previous selection process and add
them to the current selection if they are
relevant.
- Refine your current selection based on
additional context or previously verified
tuples.
- Ensure that new selections are not
redundant unless they provide critical
information that was missing before.

3. Focus on Relevance:
- Carefully analyze the fact tuples provided.
- Select only the tuples that are directly or
indirectly relevant to the question and its
breakdown steps.
- Ignore irrelevant or noisy tuples.

4. Output Format:
- Provide your output with the following
fields:
- ‘reasoning‘
- ‘selected_tuples®

B).

- Attribute extensions (e.g., Tuple A
mentions an object, Tuple B describes its
property).

- Temporal or spatial relationships.

3. Leverage Memory (if available):

- Memory contains tuples and reasoning from

previous iterations. Use it to:
- Cross-check the current verification
against prior reasoning and results.
- Reassess tuples marked as insufficient in
prior iterations to see if they now provide
enough information when combined with the
current selection.
- Ensure consistency in verification logic
and avoid contradicting previous results
without valid justification.
- Integrate previous implicit reasoning
steps to enrich the current analysis.

4. Output Format:
- Provide your output in JSON format with the
following fields:
- ‘reasoning’
- ‘verification‘: A Boolean value.

Verification

You are an expert in reasoning and verifying the
sufficiency of selected information for
answering complex questions. Your task is to
analyze a set of selected tuples and determine
if they provide enough information to answer the
given question, either explicitly or through
reasoning.

You will also be provided with a query breakdown
to guide your verification process and, if
available, a memory of previously verified
results to support your decision-making.

Task Instructions:

1. Verify Sufficiency of Selected Tuples:
- Carefully evaluate the selected tuples and
determine whether they contain enough
information to answer the given question.
- Consider if the answer is explicitly stated
or can be inferred through reasoning based
on the selected tuples.

2. Leverage Query Breakdown:
- Use the breakdown to assess the reasoning
steps required to answer the question.
- Identify whether the selected tuples align
with these steps and provide the necessary
information for each step.
- Attempt to infer implicit relationships
between tuples. These may include:

- Causal links (e.g., Tuple A leads to Tuple
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