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Abstract

Factual completeness is a general term that
captures how detailed and informative a fac-
tually correct text is. For instance, the fac-
tual sentence “Barack Obama was born in the
United States” is factually correct, though less
informative than the factual sentence “Barack
Obama was born in Honolulu, Hawaii, United
States”. While LLMs possess a tendency to hal-
lucinate and generate factually incorrect text,
they may also generate text that is indeed factu-
ally correct and yet less informative than other,
more informative choices. In this work, we
tackle this problem by proposing an informa-
tiveness alignment mechanism. This mecha-
nism takes advantage of recent factual bench-
marks and introduces an informativeness align-
ment objective. This objective prioritizes an-
swers that are both correct and informative. A
key finding of our work is that when training a
model to maximize this objective or optimize
its preference, we can improve not just infor-
mativeness but also factuality.1

1 Introduction

Large language models (LLMs) are known to cap-
ture and store extensive amounts of factual knowl-
edge (Petroni et al., 2019; Brown et al., 2020;
Roberts et al., 2020; Cohen et al., 2023a; Pan et al.,
2023), as they are trained on vast quantities of text,
which includes a significant body of factual knowl-
edge. However, they often hallucinate or generate
factually incorrect text (Maynez et al., 2020; De-
varaj et al., 2022; Tam et al., 2023; Kaddour et al.,
2023; Huang et al., 2024; Cohen et al., 2025).

Although the way LLMs represent their knowl-
edge remains unclear (Rai et al., 2024), it can be
effectively accessed via prompting (Veseli et al.,
2023). For example, modern LLMs are likely
to correctly complete the input prompt “Barack

1We release our code and data at https://github.com/
roi-hpi/informativeness-alignment.

Figure 1: Illustration that an LLM knows a more infor-
mative answer than its initial answer.

Obama was born in” with multiple different an-
swers – United States, Hawaii and Kapiolani Med-
ical Center for Women & Children. While these
answers are all factually correct, they differ greatly
in specificity and significantly in the level of their
informativeness. This highlights an important gap:
even when LLMs do not hallucinate, they often fail
to provide the most informative answer. Therefore,
in this work, our focus extends beyond the factual
correctness of the LLMs by examining the infor-
mativeness of correct responses among an LLM’s
outputs. An answer is considered highly informa-
tive if it includes either the most specific response
or all correct responses.2

Our main assumption and motivation for this
work is that an LLM might indeed have correct and
informative parametric knowledge about a given
query, yet generate a less informative answer – as

2In this study, we assume that, unless stated otherwise, the
most informative answer that is also fully correct is preferred.
While other preferences may be chosen for different users or
applications, we argue that to produce increasingly reliable,
trustworthy, and knowledgeable models it is advantageous to
possess both maximal informativeness and factuality.
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illustrated in Figure 1. This might occur due to
statistical or even spurious correlations between the
input text (prompts or questions) and the correct
yet less informative answer. For example, “Barack
Obama” and “The United States” is more likely to
substantially co-occur than “Barack Obama” and

“Kapiolani Medical Center for Women & Children”
in the training data, leading to the LLM preferring
the less specific but more frequent answer.

While the distinction between factuality and in-
formativeness may appear subtle, its practical im-
plications are substantial. Underspecified answers,
though factually correct, can introduce ambiguity
or reduce the usefulness of responses in real-world
applications. For instance, in the GRANOLA QA
dataset, the question “Where is Knott Rigg located?”
could be answered with “Lake District”, which is
correct but ambiguous given multiple “Lake Dis-
tricts” worldwide. A more informative answer such
as “Lake District, North West England, United
Kingdom” resolves this ambiguity and enhances
utility. Similar considerations arise in high-stakes
settings: in healthcare, an answer like “cancer
drugs” to the question “What drugs target the
EGFR gene?” is factually true but insufficiently
specific, whereas “Tyrosine kinase inhibitors; Gefi-
tinib, Erlotinib, Afatinib, Osimertinib” provides
actionable information. Likewise, in domains such
as law, education, and tutoring, informativeness
ensures clarity and reliability. This motivates our
focus on aligning LLMs not only to be factually
correct but also maximally informative.

Therefore, we aim to align the model to prefer
the most informative or specific answer the LLM
knows. Additionally, we also address the well-
known existing factual precision problem of the
LLMs (Augenstein et al., 2023) by incorporating
this into our alignment mechanism.

To this end, we begin by formulating the informa-
tiveness evaluation task and propose a novel frame-
work to create a general informativeness dataset.
In this dataset, each question or input text is paired
with a set of answers associated with a hierarchi-
cal set of labels, representing different levels of
informativeness. This dataset structure, which in-
cludes the informativeness metadata for each label
is incorporated directly into the training.

Building on this dataset, we propose the novel
training framework InFACT, to align a pre-trained
or instruction-tuned LLM model to generate more
informative and complete facts. This procedure

consists of two stages – Structure Tuning and In-
formativeness Alignment. The Structure Tuning
phase aims to teach the model to consider the in-
formativeness problem setup as well as to abstain
from generating misinformation, whereas the In-
formativeness Alignment seeks to train the model
to answer with the most informative and complete
factual answers to the questions.

Our contributions can be summarized as follows:

1. We formulate a factual informativeness eval-
uation task, which is integrated into both the
training and evaluation pipeline. Empirical
results show that our method leads to more
informative answers, validating the effective-
ness of this evaluation formulation.

2. We propose a novel two-stage training frame-
work called InFACT, enhancing the model to
generate more informative answers.

3. We evaluate our proposed framework with dif-
ferent models and demonstrate that it is effec-
tive in both improving information and fac-
tual accuracy. Our findings show significant
improvement in factual precision, suggesting
that the model learned to refrain from answer-
ing questions it would have made mistakes on,
while overall high factual recall is preserved
despite minor drops.

4. Finally, we conduct in-depth analyses of both
techniques individually and examine potential
spurious correlations. Our results confirm that
the proposed framework outperforms several
strong baselines focused on factual accuracy
alone, enhancing both informativeness and
factual reliability simultaneously.

2 Informativeness Problem Setup

2.1 Background
We first rigorously define a general setup of the
informativeness evaluation task, which is the foun-
dation of our alignment model. In factual question
answering, each question qi, e.g., 1 What is the
location of the capital of Australia?” has a cor-
rect answer ti (e.g., the city of Canberra”), which
may appear in different string representations but
conventionally refers to the same real-world entity.
However, for a given factual question qi, there may
be several different correct answers. We distin-
guish the following three scenarios (see Fig. 2 for
details):
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1. Multiple-Answer Questions. A question
with multiple correct answers – such as the
question “What are the awards received by
Barack Obama?”, which has several correct
answers referring to different entities.

2. Descriptive QA. Responses may differ in
their verbosity, yet point to the same real-
world entity. For example – the text “The
city is located inland, about 150 kms from
the coast, and is surrounded by picturesque
mountains ...“ is a correct answer to 1 .

3. Granularity-based QA. Answers to certain
questions may have a varying level of com-
pleteness yet be factually correct; for instance,
the valid answers to the question “Where was
Barack Obama born?” would be “Kapiolani
Medical Center for Women & Children”, or

“Honolulu”, where the hospital is located, or
“United States”, where the city is located, or all
of them, depending on the level of granularity.

Considering these types of QA, we formulate the
dataset and the evaluation.

2.2 Dataset Formulation

An informativeness evaluation question-answering
dataset is composed of a collection of questions,
where we define a hierarchy of factually correct
answers with varying levels of informativeness for
each question. For a given question qi, Level 1 in-
cludes the most informative answers, while Li has
the least informative ones; Li being the number of
levels in the hierarchy of answers. More formally,
we define a general informativeness-evaluation
dataset as D = {(qi, Hi)}Ni=1, where N is the num-
ber of questions in the dataset, qi is the i-th ques-
tion in the dataset, and Hi = (A1, . . . , ALi) is
the corresponding hierarchy of answers. A given
Aj = {a1, ..., abj} represents the j-th level in such
a hierarchy, which is a set of all the possible an-
swers at this level. For example, in Figure 1, the
answer Kapiolani Medical Center for Women &
Children, Honolulu, Hawaii, United States is con-
sidered to be in set A1, Honolulu, Hawaii, United
States in A2, and United States in A3, reflecting
the descending order of informativeness.

3 Informativeness Alignment

In this section, we present a detailed overview of
our proposed method, InFACT, which leverages the

informativeness evaluation dataset introduced in
the last section to improve both the informativeness
and factual correctness of LLM outputs.

3.1 Baseline Mechanism
In the baseline model, we select the most informa-
tive set of answers, for instance A1, as the gold
label for each question, and fine-tune the LLM us-
ing a randomly chosen answer from the selected
set A1. The goal is to train the model to learn the
structure, preferring the most informative answer,
such that it follows this structure during testing.

3.2 Abstention Detection
Prior to our Informativeness Training (see Sec-
tion 3.4), we introduce an automated LLM agnostic
abstention detection mechanism to detect when an
LLM abstains from answering a question. This
is needed because when the LLM abstains from
answering instead of answering incorrectly, we
provide a higher reward for the model, thereby
enhancing factual reliability. We define a function
that accepts natural language text and determines
whether the LLM output is any form of absten-
tion from answering. In this work, we leveraged
GPT-4, a powerful LLM in an in-context learning
setup. A wide range of in-context data for absten-
tion detection is collected from the LLM outputs
of our experiments. For a given text x, we con-
sider x ∈ ABSTAIN, if and only if our abstention
detection mechanism classifies it as a text that is in
abstaining form. This mechanism encourages the
model to prefer to err on the side of caution.

3.3 Structure Tuning
For efficient training, we first tune the model for
the following:

1. Optimizing the model to consistently generate
the most factual and informative answers;

2. Learning to abstain more accurately, which
most of the existing models lack without any
additional training, often generating misinfor-
mation instead.

Therefore, prior to the informativeness-tuning
phase, in structure tuning, we conduct the follow-
ing training: For every question qi in our training
set, we first let the model generate its answer. If
the answer is correct, namely, it appears in one of
the levels of Hi, then we train the model with a ran-
dom answer from the level above it, i.e., the model
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is encouraged to learn a more informative answer.
Otherwise, if the answer is in the highest level, i.e.,
it is the most informative answer according to our
dataset, we take no further action, as the model
has achieved the desired outcome. If the answer
is incorrect, we teach the model to abstain. More
formally – for a model M and a question qi, the
gold label, LG(M, qi), is defined by:

LG(M, qi)=





RANDOM(Aj−1) if ∃j ≥ 2 : ŷ ∈ Aj

SKIP if ŷ ∈ A1

IDK otherwise.

(1)

Here, IDK denotes a response such as “I don’t
know the answer”.

3.4 Informativeness Alignment

To fully leverage the hierarchical structure of our
dataset, we introduce a preference-based training
mechanism to reward the model for a more informa-
tive and correct answer. Additionally, we enhance
abstention for potentially incorrect or misleading
LLM outputs. As mentioned earlier, our dataset
consists of a hierarchy of answers for each ques-
tion, which is exploited to design a reward function
to train an LLM as a policy to maximize its reward.
Recall that for each question qi in our dataset, there
is a corresponding hierarchy of answers Hi as de-
fined earlier. Let M be our LLM and M(qi) = ŷ
be the model’s answer to the question qi. We define
the following reward function:

R(M, ŷ) =





1√
j

if ∃j : ŷ ∈ Aj

0 if ŷ ∈ ABSTAIN

−1 otherwise.

(2)

Observe that as long as there exists j such that
ŷ ∈ Aj , this means that ŷ is correct, and thus
we provide the model with a positive reward. The
magnitude of the reward depends on the level in the
hierarchy in which this correct answer is located;
i.e., the more informative the answer, the larger the
reward. In cases of the model output being wrong,
meaning, its answer ŷ is not at any level of the
hierarchy, the model receives a negative reward,
i.e., it is penalized to prevent hallucinations and
factual errors.

Having defined our reward function, we use RL
techniques – specifically PPO – to train an LLM as
a policy to maximize the reward. We also consider
the reward function as a preference score and use

Statistic Value
Total number of examples 3,000
Average number of levels per example 8.9
Average number of answers per level 4.6

Table 1: Summary statistics of the dataset.

a preference-training algorithm, specifically DPO
in our experiments. This approach effectively bal-
ances completeness and correctness, resulting in
more informative and factually reliable outputs.

3.5 Overall Framework
To summarize, our overall training mechanism of
InFACT is as follows: 1 Initialization: We begin
with any foundation model, which can be either a
pre-trained or an instruction-tuned LLM. 2 We
deploy our Structure Tuning mechanism (Sec-
tion 3.3) to extract relevant information and lay
the ground work for the Informativeness Align-
ment training. 3 Finally, we introduce the second
training phase, the Informativeness Alignment
technique (Section 3.4) to optimize the model to
generate more informative and factually correct
outputs.

4 Experimental Setup

In this section, we describe our experimental setup,
including the investigated models, our baselines,
and experimental details of our training procedure.

Models. In our experiments, for both the base-
line and the full completeness training, we use the
following models: Llama-3.2-1B, Llama-3.2-3B,
Llama-3.1-8B, and Llama-3.1-8B-Instruct
(Touvron et al., 2023; Dubey et al., 2024),
Mistral-7B-v0.1 (Jiang et al., 2023) and
Qwen2.5-7B (Bai et al., 2023; Yang et al., 2024).

Training Data. In order to create our training
dataset, we follow the setup in Section 2, as well
as the formulation in Section 2.2. To construct
our training set, we use the following datasets:
GRANOLA QA (Yona et al., 2024), QAMPARI
(Amouyal et al., 2023), and RoMEQA (Zhong
et al., 2022). Specifically, we randomly sample
1k examples from each. The examples from GRA-
NOLA QA are already organized in the way we
defined in Section 2.2, i.e., as a hierarchy of an-
swers consisting of a sequence of answer levels.
For the examples from QAMPARI and RoMEQA,
we adjust the structure in the following way: In
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each of these two datasets, each question has a list
of answers. We construct our hierarchy with all
single answers as the gold answers in the lowest
level, followed by all possible pairs, triplets, and
so on – culminating in the full list of answers with
all permutations as the most informative response.
Table 1 shows the statistics about the dataset. The
main takeaway is the average number of levels per
example, which is 8.9, as demonstrating that each
of the questions is associated with a broad range
of different informative answers. Table 8 in Ap-
pendix A.2 presents two sample examples from
the dataset, along with the corresponding training
details provided in the same section.

Evaluation Data. For informativeness evalua-
tion, we consider the test split of the benchmarks
we used to build our training data from (GRA-
NOLA QA, QAMPARI and RoMEQA). For factual
accuracy, we consider several other QA datasets:
TriviaQA (Joshi et al., 2017), PopQA (Mallen et al.,
2022), TruthfulQA (Lin et al., 2021), Natural Ques-
tions (Kwiatkowski et al., 2019), and PIQA (Bisk
et al., 2019). These cover a wide range of questions,
for example, general knowledge trivia questions
(TriviaQA), subject-relation-object facts phrased
as questions (PopQA), real-world user queries (Nat-
ural Questions), questions about human falsehoods
(TruthfulQA), and physical commonsense reason-
ing questions (PIQA). We consider the closed-book
open-ended setting, where we do not provide any
context or answer choices to the model.

Baselines. For informativeness evaluation, we
compare the informativeness-tuned model with
its original base model without any further training.
For factuality evaluation, we proceed similarly, but
consider three different baselines:

1. Confidence Threshold baseline: We use the
predicted probability of the first generated
token from the LM’s modeling head as a
confidence score, following Yoshikawa and
Okazaki (2023). If this confidence score is
greater than a fixed threshold, we consider it
as a valid generation; otherwise, we consider
this as an uncertainty expression (analogous
to abstention in our model). To create a strong
baseline, we find the best threshold via hyper-
parameter tuning on the development set.

2. Prompting baseline: We adopt a zero-shot
approach where we instruct the model to be

more informative in its answers but also to
abstain in cases it does not know the answer.
We use the following prompt: “Please answer
the following question. Please answer with
the most informative answer you can. Please
refrain form answering if you don’t know the
correct answer. The question is: ”.

3. ICL baseline: We adopt a few-shot approach
by implicitly instructing the model to be more
informative in its answers, using in-context
demonstrations. Specifically, we sample 8
examples from our training set, and use the
most informative answers as gold answers.

4. P(True) baseline (Kadavath et al., 2022):
Given an input sentence to complete, say I ,
we use the original model to generate the com-
pletion, A. We then concatenate I and A and
ask the model: “Please answer either with

‘true’ or ‘false’ only. Is it true that: IA”. If the
model answer is not ‘true’, we consider this
specific example as unknown for the model –
similar to our model’s abstention.

5. Semantic Entropy baseline (Kuhn et al.,
2023; Aichberger et al., 2024): We sample
K text generations from the model, encoding
them using a state-of-the-art semantic encoder
and cluster their encodings. If the largest clus-
ter size is larger than K

2 , we take a random
generation from this cluster as the model’s
answer; otherwise, consider it as an unknown.

6. FT Baseline: This is described in Section 3.1.
This baseline evaluation distinguishes the ef-
fects of our proposed informativeness align-
ment method and the created training set.

Evaluation. We assess the effect of our proposed
model by measuring its informativeness, factual-
ity, and knowledge retention. For informativeness,
we adopt the metrics that have been used in the
original benchmarks. For example, GRANOLA
QA provides a specific evaluation metric for in-
formativeness that takes into account the location
of the model’s answer in the hierarchy of answers.
QAMPARI and RoMEQA measure the precision
and recall of the list of answers given by the model.
For factuality and knowledge recall, we use the
following metrics: 1 Precision: the portion of
factually correct answers out of all the questions
that have a non-abstaining answer (as determined
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GRANOLA QA QAMPARI RoMEQA

Accuracy Informativeness P R F1 P R F1

Llama-3.2-1B 45.1 37.5 20.4 3.1 5.4 24.4 1.5 2.8
Llama-3.2-1B + prompting 50.6 39.1 17.7 6.4 9.4 19.0 2.9 5.0
Llama-3.2-1B + FT 51.1 45.2 20.6 7.1 10.6 23.5 4.9 8.1
Llama-3.2-1B+ informativeness-alignment 56.7 51.9 23.9 10.8 14.9 25.9 10.4 14.8

+ PPO 52.1 52.4 24.7 10.7 14.9 24.1 11.2 15.3

Llama-3.2-3B 51.3 42.9 23.1 4.3 7.2 23.6 2.3 4.2
Llama-3.2-3B + prompting 55.9 46.0 19.6 7.7 11.0 21.8 6.7 10.2
Llama-3.2-3B + FT 57.2 50.3 23.0 7.5 11.3 23.7 7.1 10.9
Llama-3.2-3B+ informativeness-alignment 62.6 56.8 22.4 11.5 15.2 23.8 11.8 15.8

Llama-3.1-8B 61.1 53.4 22.4 8.9 12.3 30.4 4.9 15.8
Llama-3.1-8B + prompting 71.2 56.8 21.5 9.5 13.2 32.5 6.6 10.2
Llama-3.1-8B + ICL 63.1 58.5 22.7 13.9 17.2 32.4 8.6 13.6
Llama-3.1-8B + FT 71.5 58.0 22.5 12.9 16.4 32.5 13.1 18.7
Llama-3.1-8B+ informativeness-alignment 74.8 64.2 22.7 17.4 19.7 32.5 13.1 18.7

- Structure-Tuning 64.5 61.1 21.3 11.8 15.2 26.7 8.3 12.7
- Informativeness-Alignment 64.8 57.4 21.5 9.7 13.4 29.4 6.4 10.5

Mistral-7B-v0.1 59.9 53.9 21.0 8.6 12.2 30.1 5.5 9.3
Mistral-7B-v0.1 + ICL 65.1 60.0 22.8 10.4 14.3 30.3 7.9 12.5
Mistral-7B-v0.1 + FT 62.5 61.3 21.7 11.9 15.4 29.6 10.4 15.4
Mistral-7B-v0.1+ informativeness-alignment 72.5 64.1 22.9 13.6 17.1 30.8 12.9 18.2

Qwen2.5-7B 55.5 51.7 22.4 5.2 8.4 28.6 4.9 8.4
Qwen2.5-7B + ICL 56.5 53.9 22.9 5.8 9.3 28.5 7.1 11.4
Qwen2.5-7B + FT 56.4 55.5 22.7 6.9 10.5 28.4 9.9 14.7
Qwen2.5-7B + informativeness-alignment 68.8 60.7 22.8 11.5 15.3 28.6 10.9 15.8

Table 2: Evaluation scores of Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B, Mistral-7B-v0.1 and Qwen2.5-7B
on our informativeness evaluation QA benchmarks.

.

by our abstention detection model, see Section 3.2),
i.e., the questions that the model was certain about,
and tried to be factually complete. 2 Recall:
the portion of factually correct answers out of all
the questions in the dataset, namely, the portion
of knowledge retention the model has, out of the
entire test set. 3 F1: the harmonic mean of preci-
sion and recall. In the case of base models without
additional calibration methods, the precision, recall,
and F1-scores all correspond to their accuracy.

5 Results

We present the main results obtained in our exper-
iments, focusing on testing the influence of our
method on the factual accuracy and informative-
ness of the answers generated by the models.

5.1 Informativeness.

To measure the informativeness dynamics post-
training, we evaluate the model using the test set
of the three different datasets used to build our
training data: GRANOLA QA, QAMPARI, and
RoMEQA, using the original metrics proposed for

each dataset. Table 2 summarizes the results. Eval-
uating Granola QA, the informativeness measure-
ment clearly goes up, as does the recall of the an-
swers on QAMPARI and RoMEQA. We thus can
conclude that overall, our models demonstrate a
substantial improvement at each of these bench-
marks, suggesting that the aligned model has in-
deed captured the concept of informativeness and
has improved in it. Moreover, comparing to our FT
baseline, we observe substantial improvements in
results demonstrating the significance of our align-
ment method in obtaining these improved results.

5.2 Factual Accuracy.

Tables 3, 4, 5, 6, and 9 present the performance of
our models, as well as the relevant baselines, on
our QA benchmarks. As can be seen, across all
model sizes and all benchmarks, the overall F1 per-
formance of our models is the highest. These gains
are mostly a result of the increase in precision, that
is, the model has learned to generate significantly
fewer incorrect answers and to refrain where ap-
propriate. In addition, recall performance tends to
not show any major drop, which implies that with
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TriviaQA PopQA TruthfulQA Natural Questions PIQA

P R F1 P R F1 P R F1 P R F1 P R F1

Llama-3.2-1B 48.1 48.1 48.1 35.0 35.0 35.0 29.5 29.5 29.5 20.5 20.5 20.5 71.9 71.9 71.9
Llama-3.2-1B + Confidence Threshold 60.4 38.3 46.9 42.9 25.1 31.6 45.8 14.9 22.5 33.0 11.4 16.9 78.0 55.8 65.0
Llama-3.2-1B + prompting 51.8 40.8 45.6 34.1 22.8 27.3 39.4 21.0 27.4 35.5 14.9 20.1 76.9 59.6 67.1
Llama-3.2-1B + P(True) 54.4 40.5 46.4 39.6 22.0 28.3 44.4 20.7 30.0 36.2 15.5 21.7 79.3 60.1 68.4
Llama-3.2-1B + Semantic Entropy 57.8 41.0 48.0 41.2 21.9 28.6 44.9 21.1 28.7 35.3 18.4 24.2 78.5 65.1 71.2

Llama-3.2-1B + FT 49.1 46.5 47.8 32.4 37.0 34.5 40.1 24.9 30.7 20.4 23.8 22.0 73.5 69.8 71.6

Llama-3.2-1B+ informativeness-alignment 63.8 40.6 49.6 47.6 31.0 37.5 49.8 24.5 32.8 35.9 20.0 25.7 78.1 70.5 74.1
+ PPO 61.5 43.0 50.6 47.2 31.5 37.8 50.1 24.8 33.2 34.1 20.4 25.5 76.6 71.2 73.8
- Structure-Tuning 54.2 41.2 46.8 40.5 30.7 34.9 43.2 23.8 30.7 32.9 20.2 25.0 73.2 70.8 72.0
- Informativeness-Alignment 54.2 31.0 39.4 49.8 24.5 32.8 35.9 20.0 25.7 31.9 18.1 23.1 74.6 67.8 71.0

Table 3: Precision (P), Recall (R), and F1-scores for Llama-3.2-1B. Our informativeness-aligned model achieves
the best precision with minor decreases in recall, outperforming previous work.

.

TriviaQA PopQA TruthfulQA Natural Questions PIQA

P R F1 P R F1 P R F1 P R F1 P R F1

Llama-3.2-3B 50.2 50.2 50.2 36.1 36.1 36.1 32.4 32.4 32.4 26.0 26.0 26.0 75.4 75.4 75.4
Llama-3.2-3B + Confidence Threshold 58.9 40.1 47.7 37.2 29.2 32.7 34.8 25.8 29.6 34.6 20.0 25.3 78.5 66.7 72.1
Llama-3.2-3B + prompting 52.3 43.9 47.7 36.2 33.4 34.7 32.1 32.6 32.3 29.7 25.4 27.4 79.0 68.2 73.2
Llama-3.2-3B + P(True) 58.2 42.5 49.1 36.7 31.0 33.6 35.5 26.1 30.1 34.4 24.9 28.9 76.6 69.7 73.0
Llama-3.2-3B + Semantic Entropy 56.5 44.1 49.5 39.0 29.7 33.7 38.9 25.7 30.1 34.0 25.3 29.0 76.6 71.4 73.7

Llama-3.2-3B + FT 47.2 47.2 47.2 39.5 36.7 38.0 36.6 30.8 33.4 27.8 27.2 27.5 77.5 74.9 76.1

Llama-3.2-3B+ informativeness-alignment 64.0 42.9 51.4 44.0 33.7 38.2 45.5 29.8 36.0 48.1 25.4 33.2 83.2 72.5 77.5
- Structure-Tuning 55.7 43.1 48.6 36.9 34.4 35.6 37.4 28.4 32.3 33.3 25.0 28.6 75.2 73.4 74.3
- Informativeness-Alignment 56.8 40.3 47.8 37.6 30.1 33.4 37.2 24.6 29.6 26.9 24.3 29.3 76.8 67.6 71.4

Table 4: Precision (P), Recall (R), and F1-scores for Llama-3.2-3B. Our informativeness-aligned model achieves
the best precision with minor decreases in recall, outperforming previous work.

high probability, a substantial portion of the knowl-
edge remains preserved in the model’s parameters
after our training. Overall, our results are promis-
ing, as they demonstrate that the informativeness
of the answers generated by the model has also
increased – that is, we can improve both accuracy
and informativeness without a tradeoff between the
two. Notably, similar to the informativeness re-
sults, our alignment method leads to a significant
improvement in factual precision compared to the
fine-tuned (FT) baseline, highlighting the impact
of our approach.

5.3 PPO vs. DPO

As discussed in Section 3.4, to train our models,
we can use both policy-optimization methods like
PPO and preference-based algorithms such as DPO.
Here we compare these two in terms of results. Ta-
bles 2 and 3 include the results of our model us-
ing the PPO algorithm, with Llama-3.2-1B. As
observed, the resulting gap between these two algo-
rithms is not compelling enough to be statistically
significant. We thus use only DPO for the larger
models, due to resource considerations.

5.4 Ablation Study

As outlined earlier, our method is composed of two
components: Structure Tuning (Section 3.3) and
Informativeness Alignment (Section 3.4). Here we
study the specific impact of each of them separately.
We follow the same experimental setup, yet we ap-
ply it to two different models: one only trained via
Structure Tuning and one trained via Informative-
ness Alignment. Tables 2, 3, 4, and 5 show these
results for the different model sizes on the different
evaluation datasets we have used. The pattern is
evident – omitting the Structure Tuning degrades
the factual precision of the resulting model. We
attribute this decline to foundation models’ lim-
ited ability to effectively abstain, which frequently
leads to the production of misinformation.

No-Informativeness Rewarding. To further dis-
entangle the contribution of our method’s compo-
nents, we also tested a variant where the Informa-
tiveness Alignment step is modified such that in-
formativeness rewarding is removed. Specifically,
all positively rewarded answers are mapped to 1,
abstentions remain rewarded with 0, and halluci-
nations are penalized with -1 (with DPO training
adapted accordingly). Table 7 presents the results
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TriviaQA PopQA TruthfulQA Natural Questions PIQA

P R F1 P R F1 P R F1 P R F1 P R F1

Llama-3.1-8B 53.5 53.5 53.5 38.5 38.5 38.5 34.9 34.9 34.9 28.9 28.9 28.9 80.2 80.2 80.2
Llama-3.1-8B + Confidence Threshold 61.6 39.5 48.1 50.8 31.2 38.6 55.6 21.9 31.4 49.6 18.7 27.2 84.8 61.3 71.2
Llama-3.1-8B + prompting 64.2 46.1 53.7 51.4 31.9 39.4 52.5 26.8 35.5 46.4 24.1 31.7 82.5 67.4 74.2
Llama-3.1-8B + ICL 65.3 46.1 54.0 58.4 33.8 42.8 52.4 28.9 37.2 55.7 21.4 30.9 83.4 67.8 74.8
Llama-3.1-8B + P(True) 65.4 44.5 53.0 54.9 30.7 39.4 55.2 23.7 33.2 50.2 21.5 30.1 82.2 68.5 74.7
Llama-3.1-8B + Semantic Entropy 64.5 45.8 53.6 55.5 31.4 40.1 50.9 24.6 33.2 51.2 22.3 31.1 79.1 68.9 73.6

Llama-3.1-8B + FT 54.7 54.7 54.7 37.1 37.1 37.1 40.1 32.1 35.6 27.2 29.8 28.4 79.9 80.2 80.0

Llama-3.1-8B+ informativeness-alignment 70.1 47.2 56.4 65.5 35.9 46.4 59.4 26.2 36.4 61.7 21.5 31.8 86.9 75.1 80.6
- Structure-Tuning 59.5 49.1 53.8 58.0 35.6 44.1 51.3 26.0 32.7 50.0 21.8 30.4 81.0 68.5 74.2
- Informativeness-Alignment 57.1 49.9 53.2 49.8 35.1 41.2 46.8 26.7 34.0 43.0 22.1 29.2 84.1 64.8 73.2

Table 5: Precision (P), Recall (R), and F1-scores for Llama-3.1-8B. Our informativeness-aligned model achieves
the best precision with minor decreases in recall, outperforming previous work.

TriviaQA PopQA TruthfulQA Natural Questions PIQA

P R F1 P R F1 P R F1 P R F1 P R F1

Mistral-7B-v0.1 53.1 53.1 53.1 35.5 35.5 35.5 33.2 33.2 33.2 27.8 27.8 27.8 77.8 77.8 77.8
Mistral-7B-v0.1 + prompting 60.5 45.6 52.0 47.8 34.3 39.9 44.9 30.1 36.0 48.7 22.2 30.5 79.4 68.9 73.8
Mistral-7B-v0.1 + ICL 48.5 56.1 52.0 56.9 27.6 37.2 32.5 34.9 33.7 50.5 21.5 30.2 72.6 79.5 75.9

Mistral-7B-v0.1 + FT 57.6 50.2 53.6 42.0 34.8 38.0 33.5 31.1 32.3 32.8 22.8 26.9 77.9 76.8 77.3

Mistral-7B-v0.1 + informativeness-alignment 66.7 49.5 56.8 60.2 34.6 43.9 48.8 30.9 37.8 55.8 21.8 31.4 83.6 74.4 78.7

Table 6: Precision (P), Recall (R), and F1-scores for Mistral-7B-v0.1. Our informativeness-aligned model
achieves the best precision with minor decreases in recall, outperforming previous work.

Model Variant Precision Recall

Full model (ours) 68.7 41.2
FT baseline 47.8 46.8
Structure-Tuning only 60.0 40.2
No informativeness rewarding 56.2 39.7

Table 7: Ablation results disentangling the contribution
of informativeness rewarding. We report average factu-
ality precision and recall across all factuality evaluation
datasets. Removing informativeness rewarding leads to
substantial drops compared to the full model.

of Llama-3.1-8B. We find that this variant substan-
tially underperforms the full model, with factuality
precision dropping by 4–9 points across datasets,
and recall degrading even more severely. These
findings confirm that the informativeness training
signal is essential not only for informativeness it-
self but also for achieving improved factuality.

5.5 Error Analysis

To better assess our model’s generations, we con-
ducted two experiments: We randomly sampled
200 factual mistakes made by the model, and 40
from each of the factual evaluation datasets. We
then compared the responses of our model with the
original model. Our findings are as follows:

1. For 84% of the questions, the original model
generated a wrong answer, which suggests

that most of the mistakes are very likely due
to the lack of parametric knowledge.

2. For 3%, the model abstained from answering,
but our automatic mechanism did not recog-
nize it.

3. For the remaining 13%, our models’ answers
were significantly longer (in terms of words).
We assume that the model might have learned
a spurious correlation from the proposed train-
ing that longer answers are more informative.

6 Related Work

Informativeness Evaluating the informativeness
of dialogue agents and LLMs is a crucial research
goal because of their widespread use. Some studies
focus on evaluating the informativeness of dialogue
model responses (Freitas et al., 2020; Thoppilan
et al., 2022; Lu et al., 2023), and some on factual
sentence completions (Huang et al., 2022). More
recent work proposes a benchmark for evaluating
the factual granularity of model responses (Yona
et al., 2024), which we use in this work for both
training and evaluation. External tools are also used
for better informativeness and correctness (Schick
et al., 2023). In this work, we take a model align-
ment approach to tackle these open challenges.

Factuality Factuality has been widely studied
lately from various different perspectives (Augen-
stein et al., 2023). One way to approach it is via
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the task of factual error detection, where a binary
prediction model is provided instead of a continu-
ous probability. This is also related to the setting
of selective prediction, where models can abstain
from answering a query (Varshney et al., 2022; Ka-
math et al., 2020). Another approach is to adopt
model calibration (Guo et al., 2017). The goal
is to provide a measure of the probability that a
prediction is incorrect alongside the actual predic-
tion. Common techniques for calibration include
performing various transformations on a model’s
output logits (Desai and Durrett, 2020; Jiang et al.,
2021) and measuring uncertainty (e.g., see Kuhn
et al., 2023). More recent work has studied the use
of LMs for providing calibration by training them
on statements known to be factually correct or not.
This “supervised” approach has been explored via
fine-tuning (Kadavath et al., 2022; Lin et al., 2022),
in-context learning (Cohen et al., 2023a; Alivanis-
tos et al., 2022), zero-shot instruction-oriented (Co-
hen et al., 2023b; Dhuliawala et al., 2023; Feng
et al., 2024), and consistency sampling (Yoran
et al., 2023) techniques. Further recent studies
(Azaria and Mitchell, 2023) use the internal state
of the model for classifying whether it is certain
or not, use a new token for unanswerable inputs
(Lu et al., 2022) or for uncertainty representation
(Cohen et al., 2025), or construct a specific dataset
for effectively tuning the model for answering re-
fusal (Zhang et al., 2024). Our work addresses the
factuality problem by aligning an LLM for better
informativeness and correctness simultaneously.

7 Conclusion

We propose a novel method InFACT, which aims
to improve both the correctness and informative-
ness of LLM’s responses. This mechanism takes
advantage of factual questions that can be correctly
answered at various levels of informativeness and
aligns the LLM to exhibit a preference for more
informative, yet still correct answers.

An in-depth evaluation across diverse QA bench-
marks suggests that this mechanism upgrades both
the factual precision of the model’s answers, by
more effectively abstaining rather than generating
wrong facts, as well as the informativeness of its
answers, by generating a larger amount of correct
answers (higher recall of multiple-answer ques-
tions), including answers that are more descriptive
and of more appropriate granularity.

This work has the potential to facilitate several

intriguing follow-up studies. One of them is the
curation of a new unified and qualitative dataset for
informativeness evaluation, which may have the
potential to further improve the factual consistency
of the LLMs.

Limitations

We note a few limitations of our method. First,
it depends on the availability of sufficient labeled
data. For this data, there must be some notion
of informativeness, as our method requires an
informativeness-based hierarchy of labels for each
input example, as discussed in Section 2.2. For
certain domains, this could be hard to obtain. In
general, however, such data can be procured from
numerous sources. When existing datasets lack
explicit answer hierarchies, they can be extended
using external knowledge sources such as KGs or
crowd annotations. This highlights the flexibility
of our framework, enabling the transformation of
flat QA datasets into more informative training re-
sources.

Second, as discussed in Section 5.5, the model
might learn undesirable spurious correlations
through the proposed alignment process, such as
with the answer length, as the goal of the method is
to teach the model to extract the most informative
answer. This can be mitigated with careful tuning.

Third, the design of our method was motivated
by the assumption that one would rather obtain
fully correct answers only. In this setting, it may
occur that the model generates answers that are
partially correct, but we then teach it to abstain
instead. Thus, the method design as well as the
evaluation might need to be customized to tailor to
the needs in specific application setups or domains.

‘
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A Additional Details

A.1 Task and Data Details
Figure 2 clarifies the different types of ques-
tion–answer scenarios discussed in our paper. Ta-
ble 8 provides two examples from our training
dataset.

A.2 Experimental Details
Training Details We use a maximum learning
rate of 2 × 10−5 with a linear warmup for 10%
of the training steps and a cosine decay down to
2×10−6. We use a batch size of 256, weight decay
of 0.05, gradient clipping of 1.0, and AdamW β
values (0.9, 0.95). We train for 256 optimization
steps. Regarding infrastructure, we use 4 NVIDIA
A100 40G GPUs. We use the same parameters and
constraints for both stages - structure-tuning and
informativeness-alignment.

Additional Results Table 9 provides additional
experimental results.

17887

https://doi.org/10.18653/v1/2022.findings-acl.158
https://doi.org/10.18653/v1/2022.findings-acl.158
https://doi.org/10.18653/v1/2022.findings-acl.158
https://api.semanticscholar.org/CorpusID:257632108
https://api.semanticscholar.org/CorpusID:257632108
https://doi.org/10.18653/v1/2024.acl-long.365
https://doi.org/10.18653/v1/2024.acl-long.365
https://doi.org/10.18653/v1/2024.acl-long.365
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.findings-eacl.150
https://doi.org/10.18653/v1/2023.findings-eacl.150
https://doi.org/10.18653/v1/2023.findings-eacl.150
https://doi.org/10.18653/v1/2024.naacl-long.394
https://doi.org/10.18653/v1/2024.naacl-long.394
https://api.semanticscholar.org/CorpusID:253116788
https://api.semanticscholar.org/CorpusID:253116788


Figure 2: Different Types of Question Answers

Example (a): Where was Luke Prokopec born?

Level Answer Description

A1 Blackwood Specific town (most fine-grained answer)
A2 Caerphilly County Borough Local administrative district
A3 Wales Country within the UK
A4 United Kingdom Sovereign state (most general)

Example (b): Where are newspapers owned at some point in time by Voice Media Group published?

Level Answer(s) Description

A4 {Houston, Dallas, Palm Beach, Phoenix, Denver} Individual cities (fine-grained locations)
A3 {"Houston and Dallas", "Phoenix and Denver", ...} Pairs of cities (small groupings)
A2 {"Dallas, Phoenix and Denver", ...} Medium-sized groupings of cities
A1 {"Houston, Dallas, Palm Beach, Phoenix and Denver"} All cities grouped as a single set

Table 8: Hierarchical answer representations for two different questions, from specific (A1) to more abstract
(A4/A5).

TriviaQA PopQA TruthfulQA Natural Questions PIQA

P R F1 P R F1 P R F1 P R F1 P R F1

Qwen2.5-7B 52.7 52.7 52.7 30.8 30.8 30.8 30.2 30.2 30.2 25.3 25.3 25.3 78.6 78.6 78.6
Qwen2.5-7B + prompting 54.8 50.5 52.5 45.5 30.4 36.4 42.1 27.9 33.5 44.5 19.7 27.3 80.4 66.7 72.9
Qwen2.5-7B + ICL 48.6 53.7 51.0 49.2 25.8 33.8 27.0 30.1 28.5 45.9 22.2 29.9 72.4 79.9 76.0

Qwen2.5-7B + FT 52.0 55.9 53.8 31.8 34.2 33.0 35.1 34.5 34.8 30.3 29.9 30.1 75.8 79.9 77.8

Qwen2.5-7B + informativeness-alignment 60.9 51.2 55.6 54.8 30.1 38.9 49.1 27.6 35.3 48.7 24.0 32.2 80.5 72.7 76.4

Table 9: Precision (P), Recall (R), and F1-scores for Qwen2.5-7B. Our informativeness-aligned model achieves the
best precision with minor decreases in recall, outperforming previous work.
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