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Abstract

Recent developments in Large Language Mod-
els (LLMs) have shifted from pre-training
scaling to post-training and test-time scal-
ing. Across these developments, a key unified
paradigm has arisen: Learning from Rewards,
where reward signals act as the guiding stars
to steer LLM behavior. It has underpinned a
wide range of prevalent techniques, such as
reinforcement learning (RLHF, RLAIF, DPO,
and GRPO), reward-guided decoding, and post-
hoc correction. Crucially, this paradigm en-
ables the transition from passive learning from
static data to active learning from dynamic feed-
back. This endows LLMs with aligned prefer-
ences and deep reasoning capabilities for di-
verse tasks. In this survey, we present a com-
prehensive overview of learning from rewards,
from the perspective of reward models and
learning strategies across training, inference,
and post-inference stages. We further discuss
the benchmarks for reward models and the pri-
mary applications. Finally we highlight the
challenges and future directions. !

1 Introduction

Recent years have witnessed the rapid advancement
of Large Language Models (LLMs), such as Chat-
GPT (OpenAl, 2023), Claude (Anthropic, 2025),
and Llama (Meta, 2023, 2024). These models are
initially empowered by pre-training scaling (Ka-
plan et al., 2020), which trains LLMs on massive
corpora through next-token prediction. While this
approach enables broad linguistic and knowledge
representations, it suffers from several fundamen-
tal limitations: misalignment with human values
(Bai et al., 2022b; Zhang et al., 2023b; Deshpande
et al., 2023), difficulty in adapting to various task
objectives (Lyu et al., 2023; Wang et al., 2023a),
and deficiencies in deep reasoning (Mirzadeh et al.,
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Figure 1: Illustration of the scaling phases of LLMs.
The learning-from-rewards paradigm plays a pivotal
role in the post-training and test-time scaling.

2024; Wu et al., 2024b). As a result, these confine
pre-trained models to surface-level tasks, falling
short of the long-term goal of robust and general
Al. To address these limitations, recent efforts have
turned to post-training and test-time scaling, which
seek to further refine LLMs after pre-training.
Across the post-training and test-time scaling,
a critical unified paradigm has emerged as illus-
trated in Figure 1: Learning from Rewards, which
leverages reward signals to guide model behav-
ior through diverse learning strategies. For post-
training scaling, this paradigm has underpinned
several key techniques, including preference align-
ment through Reinforcement Learning from Hu-
man Feedback (RLHF, Ouyang et al., 2022) or
Al Feedback (RLAIF, Bai et al., 2022b) with
scalar rewards and PPO (Schulman et al., 2017),
and DPO (Rafailov et al., 2023) with implicit re-
wards. For test-time scaling, this paradigm sup-
ports eliciting long Chain-of-Thoughts reasoning
via GRPO (Shao et al., 2024) with rule-based
rewards, generate-then-rank (Cobbe et al., 2021;
Lightman et al., 2023), reward-guided decoding
(Deng and Raffel, 2023; Khanov et al., 2024),
and post-hoc correction (Akyurek et al., 2023;
Madaan et al., 2023). Through these techniques,
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Figure 2: A unified framework of learning from rewards. The language model generates outputs; the reward model
evaluates the outputs and provides reward signals; the learning strategy leverages the rewards to either fine-tune the
language model or refine the outputs, occurring at the training, inference, or post-inference stages.

this paradigm enables LLMs to learn actively from
dynamic feedback, in contrast to learning pas-
sively from static data. As such, this endows
LLMs with aligned preferences and deep reasoning
and planning abilities, leading to more intelligent
agents. In consequence, this paradigm has inspired
many applications, such as mathematical reason-
ing (DeepSeek-Al, 2025), code generation (Zhu
et al., 2024), multimodality (Liu et al., 2025h), and
agents (OpenAl, 2025).

Due to this growing prevalence, we comprehen-
sively survey the learning from rewards for LLMs.
We first introduce a taxonomy that categorizes ex-
isting works with a unified conceptual framework
regarding reward model design and learning strate-
gies (Sec. 2). Then we review representative tech-
niques across three main stages: training with re-
wards, inference with rewards, and post-inference
with rewards (Sec. 3 to 5). We additionally sum-
marize primary applications, recent reward model
benchmarks, and key challenges and promising di-
rections for future research (Appendices A to C).

2 A Taxonomy of Learning from Rewards
for LLMs

We first introduce a unified conceptual framework
that captures the key components and interactions
to understand learning from rewards systemically.
Building upon this framework, we categorize the
primary dimensions along which existing methods
vary: (i) Reward Source; (ii) Reward Model,;
(iii)) Learning Stage; (iv) Learning Strategies.

Each dimension reflects a distinct aspect of how re-
ward signals are acquired, represented, and utilized
in language models.

2.1 A Unified Conceptual Framework

We present a unified conceptual framework for
learning from rewards in Figure 2. It abstracts
the key components and interactions involved in
learning from rewards for language models. In this
framework, the language model generates outputs
conditioned on the inputs; the reward model then
provides rewards to evaluate the output quality; the
learning strategy leverages the reward signals to
update the language model or adjusts the outputs.

Language Model. A language model M : X —
Y generates an output j € Y given aninputx € X.
This formulation covers a wide range of tasks, such
as question answering, summarization, and image
captioning.

Reward Model. A reward model evaluates the
quality of an output ¢ given an input x and produces
a reward signal r that reflects desired properties,
such as helpfulness, safety, or task-specific correct-
ness. In different contexts, a reward model may be
referred to as a verifier and an evaluator. We em-
phasize that here we adopt a broad definition of the
reward model: it can be model-based or model-free.
We will discuss these later.

Learning Strategy. A learning strategy uses re-
ward signals to adjust the behavior of the lan-
guage model. Here we consider both the training-
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based (updating model parameters) and training-
free strategies (directly refining model outputs).

2.2 Reward Source

Reward signals originate from two primary sources:
Human Feedback and Automated Feedback.
Each offers trade-offs in terms of reliability, scala-
bility, and cost. We introduce them respectively as
follows.

Human Feedback. Human feedback provides
high-quality reward signals grounded in human
judgment and intent. It typically collects human
annotations through pairwise comparisons between
alternative model outputs, e.g., chosen and rejected
responses. The collected preference data can be
used to train explicit reward models like RLHF
(Ouyang et al., 2022) or directly fine-tune the lan-
guage model like DPO (Rafailov et al., 2023).
While effective, this approach is resource-intensive
and may not scale easily across domains or tasks.

Automated Feedback. To reduce the cost of hu-
man annotations and scale up the reward model
training, automated feedback has been increasingly
explored as an alternative. The automated feedback
mainly includes (i) Self-Rewarding, where the lan-
guage model critiques its own outputs (Yuan et al.,
2024b; Wang et al., 2024d); (ii) Trained Models,
such as powerful LLMs following the LLM-as-a-
Judge design (Bai et al., 2022b; Lee et al., 2023);
(iii) Predefined Rules, i.e., verifiable rewards, such
as accuracy and format rules used in DeepSeek-
R1 (Shao et al., 2024; DeepSeek-Al et al., 2025).
(iv) Knowledge, such as structured knowledge base
or Wikipedia (Peng et al., 2023; Tian et al., 2023).
(v) Tools, such as program compilers and inter-

active systems (Le et al., 2022; Liu et al., 2023).
The automated feedback enables scalable reward
generation but may introduce limitations in inter-
pretability, generality, and alignment quality.

2.3 Reward Model

Reward models are the central foundation of learn-
ing from rewards. As shown in Figure 3, we or-
ganize the design space of reward model into four
key dimensions: (i) Base Architecture; (ii) Re-
ward Format; (iii) Scoring Pattern; (iv) Reward
Granularity.

Base Architecture. As shown in Figure 3(a), this
refers to the base architecture of a reward model.
Here we consider a broad view of reward models,
including both model-based and model-free archi-
tectures.

* Model-based Architecture. A dedicated reward
model is trained to evaluate outputs. Common
variants include
(a) Scalar Reward Models. These models as-
sign a scalar score to a candidate response, indi-
cating its quality. Typically, they are built upon
Transformer backbones (e.g., GPT or BERT vari-
ants) with a value head that outputs scalars. They
are trained with preference data via pairwise
ranking losses such as the Bradley-Terry loss
(Nakano et al., 2021; Ouyang et al., 2022; Liu
et al., 2024a).

(b) Generative Reward Models. These models
generate natural language critiques as reward sig-
nals. They commonly follow LLM-as-a-Judge
with general models (Zheng et al., 2023) or train-
ing specialized models (Li et al., 2023a; Cao
et al., 2024; Ye et al., 2024; McAleese et al.,
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2024). They have become more popular recently
because they can leverage the deep reasoning ca-
pabilities of large reasoning models and provide
finer-grained supervision (Huang et al., 2025a;
Guo et al., 2025a).

(¢) Semi-scalar Reward Models. These mod-
els combine scalars with critiques, offering both
quantitative and qualitative assessment (Yu et al.,
2024a; Zhang et al., 2025f). Their architectures
usually involve two heads, one for scalar rewards
and another for critique rewards.

* Model-free Architecture. Instead of an ex-
plicit reward model, model-free approaches de-
rive reward signals directly from diverse feed-
back sources, such as preference data, tools, or
knowledge. The resulting rewards can be scalar,
critique, or implicit signals. For example, DPO
(Rafailov et al., 2023) circumvents the need to
train a reward model by directly aligning the
language model with preference data through
fine-tuning. Similarly, GRPO (DeepSeek-Al
etal., 2025) adopts rule-based rewards from hand-
crafted constraints and task-specific heuristics.

Model-based and model-free approaches each
present distinct trade-offs in reward specifica-
tion and practical applicability. Model-based ap-
proaches provide flexible and generalizable reward
evaluation. Once trained, reward models can be
reused across tasks and enable iterative optimiza-
tion. However, they require costly preference data,
are prone to overfitting, and may introduce bias
or reward hacking issues. Model-free methods
avoid training a separate reward model, offering a
simpler, sample-efficient, and usually more stable
pipeline. However, they are typically task-specific,
lack generalization, and offer limited flexibility for
downstream reuse.

In order to align with previous literature, we
hereafter refer to the reward model as the
model-based by default.

Reward Format. As shown in Figure 3(b), this
describes the specific format of reward signals:

* Scalar Rewards, numerical scores that quantify
the quality of model outputs. They are the most
commonly used format due to their simplicity
and compatibility with learning strategies such
as reinforcement learning. Their limitation lies
in the sparsity and interpretability.

* Critique Rewards, natural language feedback
that evaluates the quality of outputs (Saunders

et al., 2022; Kwon et al., 2023), such as “The
score of this response is 3 out of 5”. They are
more expressive and interpretable than scalar re-
wards, enabling finer-grained guidance, but they
may require additional processing to be used in
certain learning algorithms.

* Implicit Rewards are signals implicitly embed-
ded in the source without explicit supervision,
such as preference data in DPO (Rafailov et al.,
2023; Meng et al., 2024). This format simplifies
the implementation but places more burden on
the learning strategies to infer appropriate opti-
mization signals.

Scoring Pattern. As shown in Figure 3(c), this
dimension determines how responses are scored:

* Pointwise Scoring assigns a score to each re-
sponse independently. It is the most widely used
scoring pattern in reward models.

 Pairwise Scoring compares response pairs and
selecting the preferred one. The pairwise scor-
ing can be expressed as a scalar score indicating
relative preference or a natural language critique
such as “Response 1 is better than Response 2.

Reward Granularity. As shown in Figure 3(d),
we identify two kinds of reward granularity: reward
granularity reflects the level of resolution at which
feedback is provided:

* Outcome Reward Models evaluate the holistic
quality of outputs, treating it as a single unit.

* Process Reward Models evaluate intermediate
steps within the reasoning process of outputs, en-
abling fine-grained supervision during generation
(Lightman et al., 2023; Wang et al., 2023b).

2.4 Learning Stage

Learning from rewards can occur at different stages
of the language model lifecycle, including Train-
ing, Inference, and Post-Inference.

* Training with Rewards. At the training stage,
reward signals can be transformed into optimiza-
tion signals by training algorithms to fine-tune
the language model, which is the most exten-
sively explored in the literature. It can support
post-training alignment with human preference
(Ouyang et al., 2022; Bai et al., 2022b) and test-
time scaling by eliciting the language models’
deep reasoning capabilities through long Chain-
of-Thoughts (CoT) (DeepSeek-Al et al., 2025).
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* Inference with Rewards. During inference, re-
ward signals can guide the decoding of model out-
puts without modifying model parameters. This
enables test-time scaling by searching in a larger
decoding space, such as Best-of-N and tree search
(Cobbe et al., 2021; Snell et al., 2025).

* Post-Inference with Rewards. This stage uses
rewards to refine model outputs after genera-
tion without modifying model parameters. Post-
inference with rewards also supports test-time
scaling by iteratively refining the outputs (Shinn
et al., 2023).

2.5 Learning Strategy

Various learning strategies have been developed to
incorporate reward signals to steer model behavior.
These strategies are commonly divided into two
types: Training-based and Training-free.

* Training-based Strategies. Training-based
strategies optimize the language model by con-
verting reward signals into gradient-based up-
dates. The optimization mainly depends on Rein-
forcement Learning (RL) where language models
act as policy models, or Supervised Fine-Tuning
(SFT). Representative examples include Proxi-
mal Policy Optimization (PPO, Schulman et al.,
2017; Ouyang et al., 2022), Direct Preference
Optimization (DPO, Rafailov et al., 2023; Meng
et al., 2024), Group Relative Policy Optimiza-
tion (GRPO, Shao et al., 2024), and Rejection-
Sampling Fine-Tuning (RSFT, Nakano et al.,
2021; Yuan et al., 2023a; Dong et al., 2023)

* Training-free Strategies. Training-free strate-
gies leverage reward signals to guide or refine
model outputs without updating the language
model parameters. They include generate-then-
rank, such as Best-of-N (Cobbe et al., 2021;
Lightman et al., 2023), reward-guided decoding
(Deng and Raffel, 2023; Khanov et al., 2024),
and post-inference correction (Shinn et al., 2023;
Pan et al., 2023a). These methods provide a
relatively lightweight mechanism for improving
model outputs, and some are highly compatible
with various model architectures. They are partic-
ularly useful when model fine-tuning is infeasible
or computationally expensive.

The above presents a detailed taxonomy of learn-
ing from rewards for LLMs. We will review the rep-
resentative studies across the three learning stages:
training, inference, and post-inference with rewards
in the following Sec. 3 to 5.

3 Training with Rewards

In this section, we introduce the methods for train-
ing LL.Ms with rewards. They contribute to post-
training scaling for preference alignment and test-
time scaling by eliciting long CoT abilities.

3.1 Training with Scalar Rewards

Training the language model with scalar rewards
is the most extensively studied strategy in the liter-
ature. We classify these methods based on human
and automated feedback as follows.

Scalar Rewards from Human Feedback. Hu-
man feedback is a key source for constructing
scalar rewards. The most prominent example is
RLHF (Ziegler et al., 2019; Ouyang et al., 2022;
Bai et al., 2022a; Glaese et al., 2022). RLHF trains
a scalar reward model on human preference data
(pairwise comparisons with chosen and rejected
responses). The reward models commonly adopt
the Transformer architecture with a value head that
outputs scalars, and their training objectives follow
the Bradley-Terry loss (Bradley and Terry, 1952),
which maximizes the reward differences between
preferred and dispreferred outputs. The trained re-
ward model assigns evaluative scalar scores to the
model outputs, serving as a proxy for human judg-
ment. With the reward model, RLHF fine-tunes
the language model through PPO to align it with
human preferences, such as harmlessness and help-
fulness. Various variants have been explored, such
as Safe RLHF (Dai et al., 2023) and Fine-Grained
RLHF (Wu et al., 2023).

Scalar Rewards from Automated Feedback. A
growing body of work explores automated feed-
back as a substitute to provide scalar rewards,
which bypasses expensive human annotations. A
prominent example is RLAIF (Bai et al., 2022b).
RLATIF uses an LLM as a proxy judge to generate
preference data following the idea of LLM-as-a-
Judge (Zheng et al., 2023; Yu et al., 2025a). RLAIF
also trains a scalar reward model on them and then
uses it to fine-tune the language model. Automated
feedback can also come from other models (Wang
et al., 2024d; Dutta et al., 2024; Ahn et al., 2024)
and various tools, such as code compilers (Liu et al.,
2023; Dou et al., 2024; Gehring et al., 2024).

3.2 Training with Critique Rewards

Another line of work explores training with cri-
tique rewards. They commonly rely on generative
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reward models, and some could provide explana-
tions and refinement suggestions through reason-
ing. For instance, Auto-J (Li et al., 2023a) gener-
ates critiques that support pointwise and pairwise
evaluation. It adopts GPT-4 to produce evaluation
judgments as the training data. CompassJudger-1
(Caoetal., 2024) and Con-J (Ye et al., 2024) follow
a similar design. SFR-Judges (Wang et al., 2024c)
fine-tunes an LLLM on the response deduction task
to improve its judging ability.

3.3 Training with Implicit Rewards

Besides, many methods adopt implicit rewards for
training. The reward signals are not provided di-
rectly but are implicitly embedded in the structure
of the training data, such as preference pairs. Some
use a scalar reward model to construct training
data, but not for fine-tuning. Their reward signals
for fine-tuning are encoded in the training data, so
we treat them as training with implicit rewards.

Implicit Rewards from Human Feedback. A
pioneering approach using implicit rewards from
human feedback is DPO (Rafailov et al., 2023).
DPO encodes implicit rewards via the log-
likelihood difference between preferred and dis-
preferred responses. As such, DPO effectively
reduces complicated RLHF into supervised fine-
tuning. Several variants have been proposed based
on DPO to further simplify the training or expand
its applicability, such as SimPO (Meng et al., 2024)
and KTO (Ethayarajh et al., 2024).

Apart from the DPO style, another line of work
follows a Rejection-Sampling Fine-Tuning (RSFT)
scheme. They typically select high-quality samples
from a large number of candidate data for SFT.
Representative work includes RAFT (Dong et al.,
2023), ReST (Gulcehre et al., 2023), RSO (Liu
et al., 2024b), and RRHF (Yuan et al., 2023b).

Implicit Rewards from Automated Feedback.
Implicit rewards can originate from diverse auto-
mated feedback as well, such as Al feedback, feed-
back from external knowledge and external tools.
Al feedback is a common source of implicit re-
wards, including self-rewarding and other trained
models. Self-Rewarding (Yuan et al., 2024b) lever-
ages the language model to evaluate its own out-
puts and construct preference data for fine-tuning
with iterative DPO. Meta-Rewarding (Wu et al.,
2024a) additionally evaluates its own judgments.
Zhang et al. (2025c¢) extend self-rewarding to the
process-level. Instead of direct self-assessment,

some methods depend on self-consistency to model
implicit rewards, like SCPO (Prasad et al., 2024)
and PFPO (Jiao et al., 2024a). External knowl-
edge and tools can provide feedback to model
implicit rewards. Tian et al. (2023) and FLAME
(Lin et al., 2024a) construct preference pairs by
checking whether model outputs are supported by
Wikipedia. TRICE (Qiao et al., 2023), CodeLutra
(Tao et al., 2024), and Xiong et al. (2025) leverage
tool execution results to construct preference data.

3.4 Training with Rule-based Rewards

Recently, training with rule-based rewards has
gained prominence, since DeepSeek-R1 shows they
can elicit long CoT abilities for LLMs (DeepSeek-
Al et al., 2025). Rule-based rewards are derived
by verifying outputs against specific rules, such as
format constraints and evaluation metrics. Rule-
based rewards are also referred to as verifiable
rewards/outcomes due to their clean evaluation
criteria. In detail, DeepSeek-R1 (DeepSeek-Al
et al., 2025) defines two types of rule-based re-
wards: accuracy rewards and format rewards. With
these rule-based rewards, it fine-tunes the language
model through the RL algorithm GRPO (Shao et al.,
2024). GRPO eliminates the dependence on the
reward and value model in PPO and the prefer-
ence data construction in DPO. Later, many follow-
ing studies have been proposed. DAPO (Yu et al.,
2025b) and Open-R1 (Face, 2025) introduce open-
source training frameworks, and some extended
GRPO algorithms are introduced (Xu et al., 2025b;
Zuo et al., 2025; Feng et al., 2025c; Zhang et al.,
2025b).

3.5 Training with Process Rewards

An emerging line of work focuses on training with
process rewards.Figure 3(d) shows these methods
commonly employ a Process Reward Model (PRM)
to assess the intermediate steps of model outputs.
This provides more fine-grained supervision, which
especially benefits complex reasoning tasks.

Process Rewards from Human Feedback.
Early studies leverage human annotations to train
PRMs. For instance, Uesato et al. (2022); Light-
man et al. (2023) train PRMs using human annota-
tions on intermediate mathematical reasoning steps.
Uesato et al. (2022) then use the trained PRM to
fine-tune the language model via reinforcement
learning to improve its math reasoning.
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Process Rewards from Automated Feedback.
Recent efforts leverage automated feedback to su-
pervise PRM’s training at scale and avoid intensive
step-level human annotations. One major direction
leverages strong LLMs to generate step-level anno-
tations, such as WizardMath (Luo et al., 2023) and
ActPRM (Duan et al., 2025). Alternatively, other
methods estimate process rewards without explicit
annotations, including Monte Carlo estimation like
Math-Shepherd (Wang et al., 2023b) and Jiao et al.
(2024b), ranking estimation (Li and Li, 2024), and
trajectory sampling like OmegaPRM (Luo et al.,
2024) and HRM (Wang et al., 2025b). Others at-
tempt to derive process rewards from outcome re-
wards, such as Yuan et al. (2024a), PRIME (Cui
et al., 2025), and OREAL (Lyu et al., 2025). Others
design generative PRMs with reasoning processes,
such as GenPRM (Zhao et al., 2025b), R-PRM (She
et al., 2025) and ThinkPRM (Khalifa et al., 2025).

4 Inference with Rewards

After the training stage, inference with rewards
offers a flexible and lightweight mechanism to
adapt and steer the model behavior without modify-
ing model parameters. We identify two primary
inference-with-rewards strategies: (i) Generate-
then-Rank and (ii) Reward-Guided Decoding.
These strategies play a critical role for achieving
test-time scaling: They allow the language model
to search, reflect, and revise its outputs on the fly.

4.1 Generate-then-Rank

The generate-then-rank approach, usually referred
to as Best-of-N, easily scales test-time compute
to improve model outputs. It samples a number
of candidate responses from the language model,
scores them with a reward model, and selects the
best one as the final output by ranking or voting
(Wang et al., 2022). Based on the reward gran-
ularity, we distinguish two kinds of methods: (i)
ranking by outcome rewards and (ii) ranking by
process rewards as shown in Figure 4(a,b).

Ranking by Outcome Rewards. As shown in
Figure 4(a), this method adopts an outcome reward
model (ORM) to assess the holistic quality of candi-
date responses. Early work by Cobbe et al. (2021)
trains a binary ORM to evaluate the correctness of
candidate math solutions and selects the top-ranked
one as the final output. Uesato et al. (2022) adopt
the same idea and conduct comprehensive experi-
ments on ranking outputs by ORMs. LEVER (Ni
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Figure 4: Illustrations of strategies for Inference with
Rewards. (a,b): Generate-then-rank with outcome and
process rewards. (c): Reward-guided decoding at the
token and step level with search algorithms.

et al., 2023) trains a binary classifier as the ORM
with code execution results as supervision. V-STaR
(Hosseini et al., 2024) trains a verifier as the ORM
on preference pairs through DPO to rank candi-
date math/code solutions during inference. GenRM
(Zhang et al., 2024c) follows a generative way us-
ing the token generation probability. Fast Best-of-N
(Sun et al., 2024a) accelerates this following a spec-
ulative rejection scheme.

Ranking by Process Rewards. As aforemen-
tioned, outcome reward models may struggle to
discern the nuance among candidate responses.
Thus many methods adopt process reward models
(PRMs) for the generate-then-rank strategy. These
methods score intermediate steps of candidate re-
sponses through a PRM and aggregate these step-
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level scores through multiplication or minimum
to compute an overall score for ranking or voting
(Zhang et al., 2025g). Early work by Lightman
et al. (2023) trains a PRM to rank candidate math
solutions by the product of their step-level scores.
More extensions are also proposed, including DI-
VERSE (Li et al., 2023b), Math-Shepherd (Wang
et al., 2023b), and VisualPRM (Wang et al., 2025c¢).

4.2 Reward-Guided Decoding

The above generate-then-rank decouples genera-
tion from evaluation; In contrast, reward-guided de-
coding tightly incorporates reward signals to guide
the generation of language models. Figure 5(c)
shows that it guides the language model’s token-
level or step-level decoding based on the reward
signals through a search algorithm, such as greedy
search, beam search, or MCTS. This enables fine-
grained control over output quality and can foster
reasoning and planning abilities.

Token-level Guidance. Token-level guidance
steers language model generation by incorporat-
ing reward signals into the token decoding. This
strategy commonly combines the token likelihoods
with the reward signals from a reward model to
select the next token, such as RAD (Deng and Raf-
fel, 2023), ARGS (Khanov et al., 2024), PG-TD
(Zhang et al., 2023c), ARM (Troshin et al., 2024),
and FaRMA (Rashid et al., 2025).

Step-level Guidance. Beyond token-level guid-
ance, step-level guidance operates on intermediate
steps of generation. Figure 4(d) shows the genera-
tion is decomposed into multiple intermediate steps.
At each step, a search algorithm, such as beam
search and MCTS, explores the output space and
selects appropriate steps guided by reward signals.
This mechanism enables the model to recover from
earlier errors and enhance reasoning. Representa-
tive work includes GRACE (Khalifa et al., 2023),
Xie et al. (2023), Snell et al. (2025), ORPS (Yu

.
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Figure 6: Illustration of Benchmarking Reward Models.
Pointwise or pairwise annotations originate from human
annotators or Al annotators with human verification.

et al., 2024b) and RSD (Liao et al., 2025). Some
studies guide the decoding based on the step-level
value, i.e., cumulative future rewards, such as Tree-
of-Thoughts (Yao et al., 2023) and OVM (Yu et al.,
2023a). Other methods use reward signals to guide
MCTS, including RAP (Hao et al., 2023), STILL-
1 (Jiang et al., 2024), and rStar (Qi et al., 2024).
Several extensions leverage process reward models
to precisely guide MCTS, such as ReST-MCTS*
(Zhang et al., 2024a), LE-MCTS (Park et al., 2024),
and rStar-Math (Guan et al., 2025).

5 Post-Inference with Rewards

Post-inference with rewards aims to correct and
refine the model outputs after they have been gen-
erated. This approach enables iterative enhance-
ment without updating model parameters, offering
a lightweight and compatible mechanism for test-
time scaling. It commonly incorporates critique
rewards as augmented contexts to revise outputs,
which provide fine-grained signals for correction,
such as error locations and revision suggestions.
We categorize these methods into two kinds: Self-
Correction and Correction with external rewards.
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5.1 Self-Correction

Figure 5(a) depicts that self-correction leverages
the language model itself as a generative reward
model to evaluate and revise its own outputs, simi-
lar to the aforementioned self-rewarding strategy.
Early work Self-Refine (Madaan et al., 2023) fol-
lows this design. Similarly, Reflexion (Shinn et al.,
2023) generates reflection feedback through the
language model itself. It additionally maintains a
memory bank to store previous feedback, outputs,
and scalar feedback from evaluation metrics. CoVe
(Dhuliawala et al., 2023) prompts the language
model to generate and answer verification ques-
tions to identify factual errors in its own outputs.
Others train the language model to improve its self-
correction capability, such as SCoRE (Kumar et al.,
2024) and RISE (Qu et al., 2024).

5.2 Correction with External Feedback

Prior studies argue that general language models
struggle to identify and correct their errors without
external feedback (Huang et al., 2023; Kamoi et al.,
2024; Madaan et al., 2023; Pan et al., 2023b). Ow-
ing to this, increasing attention has been devoted to
incorporating external feedback as reward signals
as shown in Figure 5(b). We classify these works
based on the feedback source: trained models, ex-
ternal knowledge, and external tools.

Trained Model. Many methods rely on more
capable trained models (commonly referred to as
critic models) to provide feedback as reward sig-
nals. The early work CodeRL (Le et al., 2022)
uses a trained critic model to predict the functional
correctness of the generated code. Following this,
various studies are proposed, for instance, Welleck
et al. (2022) for toxicity control; RL4AF (Akyurek
et al., 2023) for summarization; Shepherd (Wang
et al., 2023c) and A2R (Lee et al., 2024) for fac-
tuality; CTRL (Xie et al., 2025b) and CriticGPT
McAleese et al. (2024) for code generation. More-
over, some studies focus on step-level feedback for
correction, such as REFINER (Paul et al., 2023)
and AutoMathCritique (Xi et al., 2024). Others fol-
low the multi-agent debate design, where critiques
from peer agents support reflection and improve-
ment, such as MAD (Liang et al., 2023), Cohen
et al. (2023), and Du et al. (2023).

External Knowledge and Tools. External knowl-
edge mainly provides factual critiques along with
retrieved evidence to improve factuality and re-

duce hallucinations. Several methods follow this
idea, such as RARR (Gao et al., 2022), ReFeed (Yu
et al., 2023c), LLM-Augmenter (Peng et al., 2023),
Varshney et al. (2023), and FACTOOL (Chern et al.,
2023). External tools can execute and verify the
model outputs, and their feedback can work as
reward signals for correction. A primary tool is
code compilers. They provide execution feedback
to guide the refinement, such as Self-Edit (Zhang
et al., 2023a) and Self-Evolve (Jiang et al., 2023).
Self-Debug (Chen et al., 2023) and CYCLE (Ding
et al., 2024) extend them with more feedback, for
instance, unit test results and program explanations.
Other tools can provide feedback, such as logic
reasoner (Pan et al., 2023a), symbolic interpreter
(Qiu et al., 2023), proof checker (First et al., 2023),
search engines (Gou et al., 2023; Kim et al., 2023).

6 Benchmarking Reward Models

Rigorous and diverse benchmarks are essential for
evaluating the performance of reward models. As
illustrated in Figure 6, recent benchmarks primarily
rely on human annotators or Al annotators followed
by human verification. The resulting annotations
are mainly pointwise (e.g., scalar scoring) or pair-
wise (e.g., selecting the preferred response given
two options). RewardBench (Lambert et al., 2024)
is the first comprehensive benchmarks for reward
models. It aggregates preference data from existing
datasets to evaluate reward model performance in
chatting, reasoning, and safety. RM-Bench (Liu
et al., 2024d) and RMB (Zhou et al., 2024a) extend
it to more scenarios. Some focus on PRMs, like
ProcessBench (Zheng et al., 2024), MR-Ben (Zeng
et al., 2024), and PRMBench (Song et al., 2025b).

Due to the page limitation, we discuss more
about benchmarks, applications, challenges, and
future directions in Appendices A to C.

7 Conclusion

We comprehensively survey the emerging paradigm
of learning from rewards. We introduce its land-
scape from three key stages: training, inference,
and post-inference, each reflecting a distinct way
to integrate reward signals into steering LLMs’ be-
havior. In addition, we summarize recent progress
in benchmarking reward models and applications.
Finally we identify core challenges and outline
promising future directions. We hope this survey
provides a structured understanding of the field and
inspires future research.
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Limitations

This paper comprehensively surveys the emerg-
ing paradigm of learning from rewards in the post-
training and test-time scaling of LLMs, but we
believe there are some limitations:

* Due to the page constraints, we cannot cover the
full technical details of all methods. Based on our
comprehensive survey, we encourage interested
readers to refer to the original papers for in-depth
explanations and implementation specifics.

* We primarily focus on the representative methods
and recent trends associated with learning from
rewards. As a result, we may omit some earlier
approaches and domain-specific techniques.

References

David Abel, André Barreto, Benjamin Van Roy, Doina
Precup, Hado P van Hasselt, and Satinder Singh.
2023. A definition of continual reinforcement learn-
ing. Advances in Neural Information Processing
Systems, 36:50377-50407.

Daechul Ahn, Yura Choi, Youngjae Yu, Dongyeop
Kang, and Jonghyun Choi. 2024. Tuning large
multimodal models for videos using reinforce-
ment learning from ai feedback. arXiv preprint
arXiv:2402.03746.

Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan,
Peter Clark, Derry Tanti Wijaya, and Niket Tandon.
2023. RLAF: Generating natural language feedback
with reinforcement learning for repairing model out-
puts. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7716-7733, Toronto,
Canada. Association for Computational Linguistics.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. 2016.
Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

Anthropic. 2025. Introducing deep research.

Alisson Azzolini, Hannah Brandon, Prithvijit Chat-
topadhyay, Huayu Chen, Jinju Chu, Yin Cui, Jenna
Diamond, Yifan Ding, Francesco Ferroni, Rama
Govindaraju, et al. 2025. Cosmos-reasonl: From
physical common sense to embodied reasoning.
arXiv preprint arXiv:2503.15558.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022a. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, et al. 2022b. Constitutional Al:
Harmlessness from Al feedback. arXiv preprint
arXiv:2212.08073.

BIG bench authors. 2023. Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning
Research.

Michael Bowling and Esraa Elelimy. 2025. Rethinking
the foundations for continual reinforcement learning.
arXiv preprint arXiv:2504.08161.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324—
345.

Maosong Cao, Alexander Lam, Haodong Duan, Hong-
wei Liu, Songyang Zhang, and Kai Chen. 2024.
Compassjudger-1: All-in-one judge model helps
model evaluation and evolution. arXiv preprint
arXiv:2410.16256.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen
Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, Yao
Wan, Pan Zhou, and Lichao Sun. 2024a. Mllm-as-
a-judge: Assessing multimodal Ilm-as-a-judge with
vision-language benchmark. In Forty-first Interna-
tional Conference on Machine Learning.

Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and
Vinci. 2025a. R1-v: Reinforcing super generalization
ability in vision-language models with less than $3.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,
Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen
Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and
Weipeng Chen. 2025b. Research: Learning to rea-
son with search for llms via reinforcement learning.
arXiv preprint arXiv:2503.19470.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Zhaorun Chen, Yichao Du, Zichen Wen, Yiyang Zhou,
Chenhang Cui, Zhenzhen Weng, Haoqin Tu, Chaoqi
Wang, Zhengwei Tong, Qinglan Huang, et al. 2024b.
Mj-bench: Is your multimodal reward model really
a good judge for text-to-image generation? arXiv
preprint arXiv:2407.04842.

I Chern, Steffi Chern, Shigi Chen, Weizhe Yuan, Kehua
Feng, Chunting Zhou, Junxian He, Graham Neubig,
Pengfei Liu, et al. 2023. Factool: Factuality detec-
tion in generative ai—a tool augmented framework
for multi-task and multi-domain scenarios. arXiv
preprint arXiv:2307.13528.

Sanjiban Choudhury. 2025. Process reward models
for Ilm agents: Practical framework and directions.
arXiv preprint arXiv:2502.10325.

17856


https://arxiv.org/pdf/2307.11046
https://arxiv.org/pdf/2307.11046
https://arxiv.org/pdf/2402.03746
https://arxiv.org/pdf/2402.03746
https://arxiv.org/pdf/2402.03746
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://arxiv.org/pdf/1606.06565
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/pdf/2503.15558
https://arxiv.org/pdf/2503.15558
https://arxiv.org/pdf/2204.05862
https://arxiv.org/pdf/2204.05862
https://arxiv.org/pdf/2212.08073
https://arxiv.org/pdf/2212.08073
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/pdf/2504.08161
https://arxiv.org/pdf/2504.08161
https://www.jstor.org/stable/2334029
https://www.jstor.org/stable/2334029
https://www.jstor.org/stable/2334029
https://arxiv.org/pdf/2410.16256
https://arxiv.org/pdf/2410.16256
https://arxiv.org/pdf/2402.04788
https://arxiv.org/pdf/2402.04788
https://arxiv.org/pdf/2402.04788
https://github.com/Deep-Agent/R1-V
https://github.com/Deep-Agent/R1-V
https://arxiv.org/pdf/2503.19470
https://arxiv.org/pdf/2503.19470
https://arxiv.org/pdf/2304.05128
https://arxiv.org/pdf/2304.05128
https://arxiv.org/pdf/2407.04842
https://arxiv.org/pdf/2407.04842
https://arxiv.org/pdf/2307.13528
https://arxiv.org/pdf/2307.13528
https://arxiv.org/pdf/2307.13528
https://arxiv.org/pdf/2502.10325
https://arxiv.org/pdf/2502.10325

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Roi Cohen, May Hamri, Mor Geva, and Amir Glober-
son. 2023. Lm vs Im: Detecting factual errors via
cross examination. arXiv preprint arXiv:2305.13281.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
Qixin Xu, Weize Chen, et al. 2025. Process rein-
forcement through implicit rewards. arXiv preprint
arXiv:2502.01456.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.
2023. Safe rlhf: Safe reinforcement learning from
human feedback. arXiv preprint arXiv:2310.12773.

DeepSeek-Al. 2025. Deepseek-prover-v2: Advanc-
ing formal mathematical reasoning via reinforcement

learning for subgoal decomposition. arXiv preprint
arXiv:2504.21801.

DeepSeek-Al et al. 2025. Deepseek-rl: Incentivizing
reasoning capability in 1lms via reinforcement learn-
ing. arXiv preprint arXiv:2501.12948.

Haikang Deng and Colin Raffel. 2023. Reward-
augmented decoding: Efficient controlled text gen-
eration with a unidirectional reward model. arXiv
preprint arXiv:2310.09520.

Carson Denison, Monte MacDiarmid, Fazl Barez, David
Duvenaud, Shauna Kravec, Samuel Marks, Nicholas
Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan,
et al. 2024. Sycophancy to subterfuge: Investigating
reward-tampering in large language models. arXiv
preprint arXiv:2406.10162.

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpuro-
hit, Ashwin Kalyan, and Karthik Narasimhan. 2023.
Toxicity in chatgpt: Analyzing persona-assigned lan-
guage models. arXiv preprint arXiv:2304.05335.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-
son Weston. 2023. Chain-of-verification reduces hal-
lucination in large language models. arXiv preprint
arXiv:2309.11495.

Yangruibo Ding, Marcus J Min, Gail Kaiser, and
Baishakhi Ray. 2024. Cycle: Learning to self-refine
the code generation. Proceedings of the ACM on
Programming Languages, 8(OOPSLA1):392418.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. 2023. Raft:
Reward ranked finetuning for generative foundation
model alignment. arXiv preprint arXiv:2304.06767.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong,
Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. 2024. Step-
coder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint
arXiv:2402.01391.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Keyu Duan, Zichen Liu, Xin Mao, Tianyu Pang,
Changyu Chen, Qiguang Chen, Michael Qizhe Shieh,
and Longxu Dou. 2025. Efficient process reward
model training via active learning. arXiv preprint
arXiv:2504.10559.

Sujan Dutta, Sayantan Mahinder, Raviteja Anantha,
and Bortik Bandyopadhyay. 2024. Applying RLAIF
for code generation with API-usage in lightweight
LLMs. In Proceedings of the 2nd Workshop on Nat-
ural Language Reasoning and Structured Explana-
tions (@ACL 2024), pages 3945, Bangkok, Thai-
land. Association for Computational Linguistics.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. KTO: model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Tom Everitt, Marcus Hutter, Ramana Kumar, and Vic-
toria Krakovna. 2021. Reward tampering problems
and solutions in reinforcement learning: A causal
influence diagram perspective. Synthese, 198(Suppl
27):6435-6467.

Hugging Face. 2025. Open rl: A fully open reproduc-
tion of deepseek-rl.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. 2025a. Retool: Reinforce-
ment learning for strategic tool use in llms. arXiv
preprint arXiv:2504.11536.

Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo,
Yibing Wang, Tianshuo Peng, Benyou Wang, and Xi-
angyu Yue. 2025b. Video-rl: Reinforcing video rea-
soning in mllms. arXiv preprint arXiv:2503.21776.

Zihao Feng, Xiaoxue Wang, Ziwei Bai, Donghang Su,
Bowen Wu, Qun Yu, and Baoxun Wang. 2025c. Im-
proving generalization in intent detection: Grpo with
reward-based curriculum sampling. arXiv preprint
arXiv:2504.13592.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy
Brun. 2023. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of
the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 1229-1241.

17857


https://arxiv.org/pdf/2110.14168
https://arxiv.org/pdf/2110.14168
https://arxiv.org/pdf/2305.13281
https://arxiv.org/pdf/2305.13281
https://arxiv.org/pdf/2502.01456
https://arxiv.org/pdf/2502.01456
https://arxiv.org/pdf/2310.12773
https://arxiv.org/pdf/2310.12773
https://arxiv.org/pdf/2504.21801
https://arxiv.org/pdf/2504.21801
https://arxiv.org/pdf/2504.21801
https://arxiv.org/pdf/2501.12948
https://arxiv.org/pdf/2501.12948
https://arxiv.org/pdf/2501.12948
https://arxiv.org/pdf/2310.09520
https://arxiv.org/pdf/2310.09520
https://arxiv.org/pdf/2310.09520
https://arxiv.org/pdf/2406.10162
https://arxiv.org/pdf/2406.10162
https://arxiv.org/pdf/2304.05335
https://arxiv.org/pdf/2304.05335
https://arxiv.org/pdf/2309.11495
https://arxiv.org/pdf/2309.11495
https://arxiv.org/pdf/2403.18746
https://arxiv.org/pdf/2403.18746
https://arxiv.org/pdf/2304.06767
https://arxiv.org/pdf/2304.06767
https://arxiv.org/pdf/2304.06767
https://arxiv.org/pdf/2402.01391
https://arxiv.org/pdf/2402.01391
https://arxiv.org/pdf/2402.01391
https://arxiv.org/pdf/2305.14325
https://arxiv.org/pdf/2305.14325
https://arxiv.org/pdf/2305.14325
https://arxiv.org/pdf/2504.10559
https://arxiv.org/pdf/2504.10559
https://aclanthology.org/2024.nlrse-1.4/
https://aclanthology.org/2024.nlrse-1.4/
https://aclanthology.org/2024.nlrse-1.4/
https://arxiv.org/pdf/2402.01306
https://arxiv.org/pdf/2402.01306
https://arxiv.org/pdf/1908.04734
https://arxiv.org/pdf/1908.04734
https://arxiv.org/pdf/1908.04734
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/pdf/2504.11536
https://arxiv.org/pdf/2504.11536
https://arxiv.org/pdf/2503.21776
https://arxiv.org/pdf/2503.21776
https://arxiv.org/pdf/2504.13592
https://arxiv.org/pdf/2504.13592
https://arxiv.org/pdf/2504.13592
https://arxiv.org/pdf/2303.04910
https://arxiv.org/pdf/2303.04910

Evan Frick, Tianle Li, Connor Chen, Wei-Lin Chiang,
Anastasios N Angelopoulos, Jiantao Jiao, Banghua
Zhu, Joseph E Gonzalez, and Ion Stoica. 2024. How
to evaluate reward models for rlhf. arXiv preprint
arXiv:2410.14872.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, et al. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. arXiv preprint arXiv:2410.07985.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vin-
cent Y Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan,
et al. 2022. Rarr: Researching and revising what
language models say, using language models. arXiv
preprint arXiv:2210.08726.

Minghe Gao, Xuqi Liu, Zhongqi Yue, Yang Wu, Shuang
Chen, Juncheng Li, Siliang Tang, Fei Wu, Tat-Seng
Chua, and Yueting Zhuang. 2025. Benchmarking
multimodal cot reward model stepwise by visual pro-
gram. arXiv preprint arXiv:2504.06606.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard
Mella, Taco Cohen, and Gabriel Synnaeve. 2024.
RLEF: grounding code llms in execution feed-
back with reinforcement learning. arXiv preprint
arXiv:2410.02089.

Amelia Glaese, Nat McAleese, Maja Trebacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
Rauh, Laura Weidinger, Martin J. Chadwick, Phoebe
Thacker, Lucy Campbell-Gillingham, Jonathan Ue-
sato, Po-Sen Huang, Ramona Comanescu, Fan
Yang, Abigail See, Sumanth Dathathri, Rory Greig,
Charlie Chen, Doug Fritz, Jaume Sanchez Elias,
Richard Green, Sona Mokra, Nicholas Fernando,
Boxi Wu, Rachel Foley, Susannah Young, Iason
Gabriel, William Isaac, John Mellor, Demis Hass-
abis, Koray Kavukcuoglu, Lisa Anne Hendricks, and
Geoffrey Irving. 2022. Improving alignment of dia-
logue agents via targeted human judgements. arXiv
preprint arXiv:2209.14375.

Anna Goldie, Azalia Mirhoseini, Hao Zhou, Irene Cai,
and Christopher D Manning. 2025. Synthetic data
generation & multi-step rl for reasoning & tool use.
arXiv preprint arXiv:2504.04736.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alexa Ahern, Miaosen

Wang, Chenjie Gu, Wolfgang Macherey, A. Doucet,
Orhan Firat, and Nando de Freitas. 2023. Reinforced
self-training (rest) for language modeling. arXiv
preprint arXiv:2308.08998.

Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun
Wu, Shaohan Huang, and Furu Wei. 2025a. Reward
reasoning model. arXiv preprint arXiv:2505.14674.

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang
Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
2025b. Improving vision-language-action model
with online reinforcement learning. arXiv preprint
arXiv:2501.16664.

Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng
Zhao, Peng Gao, Hongsheng Li, and Pheng-Ann
Heng. 2025c. Can we generate images with cot?
let’s verify and reinforce image generation step by
step. arXiv preprint arXiv:2501.13926.

Srishti Gureja, Lester James V. Miranda, Shayekh Bin
Islam, Rishabh Maheshwary, Drishti Sharma, Gusti
Winata, Nathan Lambert, Sebastian Ruder, Sara
Hooker, and Marzieh Fadaee. 2024. M-rewardbench:
Evaluating reward models in multilingual settings.
arXiv preprint arXiv:2410.15522.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. arXiv preprint arXiv:2402.06457.

Hui Huang, Yancheng He, Hongli Zhou, Rui Zhang,
Wei Liu, Weixun Wang, Wenbo Su, Bo Zheng,
and Jiaheng Liu. 2025a. Think-j: Learning to
think for generative llm-as-a-judge. arXiv preprint
arXiv:2505.14268.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng
Cao, Zheyu Ye, Fei Zhao, Yao Hu, and Shaohui Lin.
2025b. Vision-rl: Incentivizing reasoning capability

17858


https://arxiv.org/pdf/2410.14872
https://arxiv.org/pdf/2410.14872
https://arxiv.org/pdf/2410.07985
https://arxiv.org/pdf/2410.07985
https://arxiv.org/pdf/2410.07985
https://arxiv.org/pdf/2210.08726
https://arxiv.org/pdf/2210.08726
https://arxiv.org/pdf/2504.06606
https://arxiv.org/pdf/2504.06606
https://arxiv.org/pdf/2504.06606
https://arxiv.org/pdf/2410.02089
https://arxiv.org/pdf/2410.02089
https://doi.org/10.48550/arXiv.2209.14375
https://doi.org/10.48550/arXiv.2209.14375
https://arxiv.org/pdf/2504.04736
https://arxiv.org/pdf/2504.04736
https://arxiv.org/pdf/2305.11738
https://arxiv.org/pdf/2305.11738
https://arxiv.org/pdf/2501.04519
https://arxiv.org/pdf/2501.04519
https://arxiv.org/pdf/2308.08998
https://arxiv.org/pdf/2308.08998
https://arxiv.org/pdf/2505.14674
https://arxiv.org/pdf/2505.14674
https://arxiv.org/pdf/2501.16664
https://arxiv.org/pdf/2501.16664
https://arxiv.org/pdf/2501.13926
https://arxiv.org/pdf/2501.13926
https://arxiv.org/pdf/2501.13926
https://arxiv.org/pdf/2410.15522
https://arxiv.org/pdf/2410.15522
https://arxiv.org/pdf/2305.14992
https://arxiv.org/pdf/2305.14992
https://arxiv.org/pdf/2402.14008
https://arxiv.org/pdf/2402.14008
https://arxiv.org/pdf/2402.14008
https://arxiv.org/pdf/2402.14008
https://arxiv.org/pdf/2103.03874
https://arxiv.org/pdf/2103.03874
https://arxiv.org/pdf/2402.06457
https://arxiv.org/pdf/2402.06457
https://arxiv.org/pdf/2505.14268
https://arxiv.org/pdf/2505.14268
https://arxiv.org/pdf/2310.01798
https://arxiv.org/pdf/2310.01798
https://arxiv.org/pdf/2503.06749

in multimodal large language models. arXiv preprint
arXiv:2503.06749.

Erik Jenner and Adam Gleave. 2022. Preprocessing
reward functions for interpretability. arXiv preprint
arXiv:2203.13553.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi
Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou
Wang, and Yaodong Yang. 2023. Beavertails: To-
wards improved safety alignment of 1lm via a human-
preference dataset. Advances in Neural Information
Processing Systems, 36:24678-24704.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang
Sun, Jia Deng, Wayne Xin Zhao, et al. 2024. Enhanc-
ing llm reasoning with reward-guided tree search.
arXiv preprint arXiv:2411.11694.

Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu
Tian, SeongKu Kang, Zifeng Wang, Jimeng Sun,
and Jiawei Han. 2025. Deepretrieval: Hacking real
search engines and retrievers with large language
models via reinforcement learning. arXiv preprint
arXiv:2503.00223.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. Self-
evolve: A code evolution framework via large lan-
guage models. arXiv preprint arXiv:2306.02907.

Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F
Chen, Shafiq Joty, and Furu Wei. 2024a. Prefer-
ence optimization for reasoning with pseudo feed-
back. arXiv preprint arXiv:2411.16345.

Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F
Chen, and Shafiq Joty. 2024b. Learning planning-
based reasoning by trajectories collection and
process reward synthesizing. arXiv preprint
arXiv:2402.00658.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang,
Hamed Zamani, and Jiawei Han. 2025. Search-
rl: Training llms to reason and leverage search en-
gines with reinforcement learning. arXiv preprint
arXiv:2503.09516.

Zhuoran Jin, Hongbang Yuan, Tianyi Men, Pengfei Cao,
Yubo Chen, Kang Liu, and Jun Zhao. 2024. Rag-
rewardbench: Benchmarking reward models in re-
trieval augmented generation for preference align-
ment. arXiv preprint arXiv:2412.13746.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han,
and Rui Zhang. 2024. When can llms actually cor-
rect their own mistakes? a critical survey of self-
correction of llms. Transactions of the Association
for Computational Linguistics, 12:1417-1440.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Muhammad Khalifa, Rishabh Agarwal, Lajanugen Lo-
geswaran, Jackyeom Kim, Hao Peng, Moontae Lee,
Honglak Lee, and Lu Wang. 2025. Process reward
models that think. arXiv preprint arXiv:2504.16828.

Muhammad Khalifa, Lajanugen Logeswaran, Moon-
tae Lee, Honglak Lee, and Lu Wang. 2023. Grace:
Discriminator-guided chain-of-thought reasoning.
arXiv preprint arXiv:2305.14934.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li.
2024. Args: Alignment as reward-guided search. In
The Twelfth International Conference on Learning
Representations.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
Advances in Neural Information Processing Systems,

36:39648-39677.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal,
Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Igbal, Colton Bishop, Rebecca Roelofs,
et al. 2024. Training language models to self-
correct via reinforcement learning. arXiv preprint
arXiv:2409.12917.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. 2023. Reward design with language
models. arXiv preprint arXiv:2303.00001.

Xin Lai, Zhuotao Tian, Yukang Chen, Sengiao Yang,
Xiangru Peng, and Jiaya Jia. 2024. Step-DPO: Step-
wise preference optimization for long-chain reason-
ing of llms. arXiv preprint arXiv:2406.18629.

Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and
Xiaofeng Yang. 2025. Med-rl: Reinforcement learn-
ing for generalizable medical reasoning in vision-
language models. arXiv preprint arXiv:2503.13939.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi,
et al. 2024. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint
arXiv:2403.13787.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314-21328.

Dongyub Lee, Eunhwan Park, Hodong Lee, and Heui-
Seok Lim. 2024. Ask, assess, and refine: Rectifying
factual consistency and hallucination in llms with
metric-guided feedback learning. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2422-2433.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, and
Sushant Prakash. 2023. RLAIF vs. RLHF: Scaling

17859


https://arxiv.org/pdf/2503.06749
https://arxiv.org/pdf/2203.13553
https://arxiv.org/pdf/2203.13553
https://arxiv.org/pdf/2307.04657
https://arxiv.org/pdf/2307.04657
https://arxiv.org/pdf/2307.04657
https://arxiv.org/pdf/2411.11694
https://arxiv.org/pdf/2411.11694
https://arxiv.org/pdf/2503.00223
https://arxiv.org/pdf/2503.00223
https://arxiv.org/pdf/2503.00223
https://arxiv.org/pdf/2306.02907
https://arxiv.org/pdf/2306.02907
https://arxiv.org/pdf/2306.02907
https://arxiv.org/pdf/2411.16345
https://arxiv.org/pdf/2411.16345
https://arxiv.org/pdf/2411.16345
https://arxiv.org/pdf/2402.00658
https://arxiv.org/pdf/2402.00658
https://arxiv.org/pdf/2402.00658
https://arxiv.org/pdf/2503.09516
https://arxiv.org/pdf/2503.09516
https://arxiv.org/pdf/2503.09516
https://arxiv.org/pdf/2412.13746
https://arxiv.org/pdf/2412.13746
https://arxiv.org/pdf/2412.13746
https://arxiv.org/pdf/2412.13746
https://arxiv.org/pdf/2406.01297
https://arxiv.org/pdf/2406.01297
https://arxiv.org/pdf/2406.01297
https://arxiv.org/pdf/2001.08361
https://arxiv.org/pdf/2504.16828
https://arxiv.org/pdf/2504.16828
https://arxiv.org/pdf/2305.14934
https://arxiv.org/pdf/2305.14934
https://arxiv.org/pdf/2402.01694
https://arxiv.org/pdf/2303.17491
https://arxiv.org/pdf/2409.12917
https://arxiv.org/pdf/2409.12917
https://arxiv.org/pdf/2303.00001
https://arxiv.org/pdf/2303.00001
https://arxiv.org/pdf/2406.18629
https://arxiv.org/pdf/2406.18629
https://arxiv.org/pdf/2406.18629
https://arxiv.org/pdf/2503.13939
https://arxiv.org/pdf/2503.13939
https://arxiv.org/pdf/2503.13939
https://arxiv.org/pdf/2403.13787
https://arxiv.org/pdf/2403.13787
https://arxiv.org/pdf/2207.01780
https://arxiv.org/pdf/2207.01780
https://arxiv.org/pdf/2207.01780
https://aclanthology.org/2024.eacl-long.149/
https://aclanthology.org/2024.eacl-long.149/
https://aclanthology.org/2024.eacl-long.149/
https://arxiv.org/pdf/2309.00267

reinforcement learning from human feedback with
Al feedback. arXiv preprint arXiv:2309.00267.

Bolian Li, Yifan Wang, Ananth Grama, and Rugqi
Zhang. 2024a. Cascade reward sampling for ef-
ficient decoding-time alignment. arXiv preprint
arXiv:2406.16306.

Jiazheng Li, Yuxiang Zhou, Junru Lu, Gladys Tyen, Lin
Gui, Cesare Aloisi, and Yulan He. 2025a. Two heads
are better than one: Dual-model verbal reflection at
inference-time. arXiv preprint arXiv:2502.19230.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan,
Hai Zhao, and Pengfei Liu. 2023a. Generative
judge for evaluating alignment. arXiv preprint
arXiv:2310.05470.

Lei Li, Yuancheng Wei, Zhihui Xie, Xuqing Yang, Yi-
fan Song, Peiyi Wang, Chenxin An, Tianyu Liu,
Sujian Li, Bill Yuchen Lin, et al. 2024b. Vlre-
wardbench: A challenging benchmark for vision-
language generative reward models. arXiv preprint
arXiv:2411.17451.

Lihe Li, Ruotong Chen, Zigian Zhang, Zhichao Wu, Yi-
Chen Li, Cong Guan, Yang Yu, and Lei Yuan. 2024c.
Continual multi-objective reinforcement learning via
reward model rehearsal. In Proceedings of the Thirty-
Third International Joint Conference on Artificial
Intelligence, pages 44344442,

Lin Li, Wei Chen, Jiahui Li, and Long Chen. 2025b.
Relation-r1: Cognitive chain-of-thought guided rein-
forcement learning for unified relational comprehen-
sion. arXiv preprint arXiv:2504.14642.

Ming Li, Shitian Zhao, Jike Zhong, Yuxiang Lai, and
Kaipeng Zhang. 2025c. Cls-rl: Image classifica-
tion with rule-based reinforcement learning. arXiv
preprint arXiv:2503.16188.

Weiqi Li, Xuanyu Zhang, Shijie Zhao, Yabin Zhang,
Junlin Li, Li Zhang, and Jian Zhang. 2025d.
Q-insight: Understanding image quality via vi-
sual reinforcement learning. arXiv preprint
arXiv:2503.22679.

Wendi Li and Yixuan Li. 2024.
model with g-value rankings.
arXiv:2410.11287.

Process reward
arXiv preprint

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yu-
tao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng
Dou. 2025e. Webthinker: Empowering large reason-
ing models with deep research capability.

Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu
Zeng, Yinan He, Yali Wang, Yu Qiao, Yi Wang, and
Limin Wang. 2025f. Videochat-r1: Enhancing spatio-
temporal perception via reinforcement fine-tuning.
arXiv preprint arXiv:2504.06958.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025g.
Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023b. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315-5333.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Ar-
seniy Klimovskiy, Nicholas Carolan, Jiao Sun, Jordi
Pont-Tuset, Sarah Young, Feng Yang, et al. 2024.
Rich human feedback for text-to-image generation.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19401—
19411.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li,
Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. 2025. Reward-guided speculative
decoding for efficient 1lm reasoning. arXiv preprint
arXiv:2501.19324.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Jiacheng Lin, Tian Wang, and Kun Qian. 2025. Rec-rl:
Bridging generative large language models and user-
centric recommendation systems via reinforcement
learning. arXiv preprint arXiv:2503.24289.

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan
Xiong, Jimmy Lin, Scott Yih, and Xilun Chen. 2024a.
Flame: Factuality-aware alignment for large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 37:115588-115614.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024b. Criticbench:
Benchmarking llms for critique-correct reasoning.
arXiv preprint arXiv:2402.14809.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Ju-
jie He, Chaojie Wang, Shuicheng Yan, Yang Liu,
and Yahui Zhou. 2024a. Skywork-reward: Bag of
tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451.

Fangfu Liu, Hanyang Wang, Yimo Cai, Kaiyan Zhang,
Xiaohang Zhan, and Yueqi Duan. 2025a. Video-tl:
Test-time scaling for video generation. arXiv preprint
arXiv:2503.18942.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han,
Wei Yang, and Deheng Ye. 2023. RLTF: reinforce-
ment learning from unit test feedback. Trans. Mach.
Learn. Res., 2023.

17860


https://arxiv.org/pdf/2309.00267
https://arxiv.org/pdf/2309.00267
https://arxiv.org/pdf/2406.16306
https://arxiv.org/pdf/2406.16306
https://arxiv.org/pdf/2502.19230
https://arxiv.org/pdf/2502.19230
https://arxiv.org/pdf/2502.19230
https://arxiv.org/pdf/2310.05470
https://arxiv.org/pdf/2310.05470
https://arxiv.org/pdf/2411.17451
https://arxiv.org/pdf/2411.17451
https://arxiv.org/pdf/2411.17451
https://www.ijcai.org/proceedings/2024/490
https://www.ijcai.org/proceedings/2024/490
https://arxiv.org/pdf/2504.14642
https://arxiv.org/pdf/2504.14642
https://arxiv.org/pdf/2504.14642
https://arxiv.org/pdf/2503.16188
https://arxiv.org/pdf/2503.16188
https://arxiv.org/pdf/2503.22679
https://arxiv.org/pdf/2503.22679
https://arxiv.org/pdf/2410.11287
https://arxiv.org/pdf/2410.11287
https://arxiv.org/pdf/2504.21776
https://arxiv.org/pdf/2504.21776
https://arxiv.org/pdf/2504.06958
https://arxiv.org/pdf/2504.06958
https://arxiv.org/pdf/2503.23383
https://aclanthology.org/2023.acl-long.291/
https://aclanthology.org/2023.acl-long.291/
https://aclanthology.org/2023.acl-long.291/
https://arxiv.org/pdf/2305.19118
https://arxiv.org/pdf/2305.19118
https://arxiv.org/pdf/2312.10240
https://arxiv.org/pdf/2501.19324
https://arxiv.org/pdf/2501.19324
https://arxiv.org/pdf/2305.20050
https://arxiv.org/pdf/2503.24289
https://arxiv.org/pdf/2503.24289
https://arxiv.org/pdf/2503.24289
https://arxiv.org/pdf/2503.24289
https://arxiv.org/pdf/2405.01525
https://arxiv.org/pdf/2405.01525
https://arxiv.org/pdf/2402.14809
https://arxiv.org/pdf/2402.14809
https://arxiv.org/pdf/2410.18451
https://arxiv.org/pdf/2410.18451
https://arxiv.org/pdf/2503.18942
https://arxiv.org/pdf/2503.18942
https://openreview.net/forum?id=hjYmsV6nXZ
https://openreview.net/forum?id=hjYmsV6nXZ

Tiangi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru
Wu, Rishabh Joshi, Yang Gao, Jiaming Shen, Zhen
Qin, Tianhe Yu, Daniel Sohn, Anastasiia Makarova,
Jeremiah Liu, Yuan Liu, Bilal Piot, Abe Ittycheriah,
Aviral Kumar, and Mohammad Saleh. 2025b. Rrm:
Robust reward model training mitigates reward hack-
ing. arXiv preprint arXiv:2409.13156.

Tiangi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J Liu, and Jialu Liu. 2024b.
Statistical rejection sampling improves preference op-
timization. In The Twelfth International Conference
on Learning Representations.

Wei Liu, Junlong Li, Xiwen Zhang, Fan Zhou,
Yu Cheng, and Junxian He. 2024c. Diving into self-
evolving training for multimodal reasoning. arXiv
preprint arXiv:2412.17451.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou,
and Juanzi Li. 2024d. Rm-bench: Benchmarking
reward models of language models with subtlety and
style. arXiv preprint arXiv:2410.16184.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xi-
aotian Han, Shengyu Zhang, Hongxia Yang, and Fei
Wu. 2025c. Infigui-rl: Advancing multimodal gui
agents from reactive actors to deliberative reasoners.
arXiv preprint arXiv:2504.14239.

Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue,
Fanbin Lu, Bei Yu, and Jiaya Jia. 2025d. Seg-zero:
Reasoning-chain guided segmentation via cognitive
reinforcement. arXiv preprint arXiv:2503.06520.

Zhaowei Liu, Xin Guo, Fangqi Lou, Lingfeng Zeng,
Jinyi Niu, Zixuan Wang, Jiajie Xu, Weige Cai,
Ziwei Yang, Xueqian Zhao, et al. 2025e. Fin-
rl: A large language model for financial reason-
ing through reinforcement learning. arXiv preprint
arXiv:2503.16252.

Zhiyuan Liu, Yuting Zhang, Feng Liu, Changwang
Zhang, Ying Sun, and Jun Wang. 2025f. Othink-
mrl: Stimulating multimodal generalized reasoning
capabilities through dynamic reinforcement learning.
arXiv preprint arXiv:2503.16081.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan
Catanzaro, and Wei Ping. 2024e. Acemath: Advanc-
ing frontier math reasoning with post-training and
reward modeling. arXiv preprint arXiv:2412.15084.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong
Ruan, Peng Li, Yang Liu, and Yu Wu. 2025g.
Inference-time scaling for generalist reward model-
ing. arXiv preprint arXiv:2504.02495.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang
Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang.
2025h. Visual-rft: Visual reinforcement fine-tuning.
arXiv preprint arXiv:2503.01785.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang
Liu, Hao Wang, Guanjing Xiong, and Hongsheng
Li. 2025. Ui-rl: Enhancing action prediction of gui

agents by reinforcement learning. arXiv preprint
arXiv:2503.21620.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Haoran Luo, Yikai Guo, Qika Lin, Xiaobao Wu, Xinyu
Mu, Wenhao Liu, Meina Song, Yifan Zhu, Luu Anh
Tuan, et al. 2025. Kbqa-ol: Agentic knowledge
base question answering with monte carlo tree search.
arXiv preprint arXiv:2501.18922.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592,
2.

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei
Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang, Shuaibin
Li, Qian Zhao, Haian Huang, et al. 2025. Exploring
the limit of outcome reward for learning mathemati-
cal reasoning. arXiv preprint arXiv:2502.06781.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the
3rd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (IJCNLP-
AACL 2023).

Peixian Ma, Xialie Zhuang, Chengjin Xu, Xuhui Jiang,
Ran Chen, and Jian Guo. 2025. Sql-r1: Training natu-
ral language to sql reasoning model by reinforcement
learning. arXiv preprint arXiv:2504.08600.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36:46534-46594.

Dakota Mahan, Duy Van Phung, Rafael Rafailov,
Chase Blagden, Nathan Lile, Louis Castricato, Jan-
Philipp Frinken, Chelsea Finn, and Alon Albalak.
2024. Generative reward models. arXiv preprint
arXiv:2410.12832.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron
Uribe, Evgenia Nitishinskaya, Maja Trebacz, and Jan
Leike. 2024. Llm critics help catch llm bugs. arXiv
preprint arXiv:2407.00215.

Fanging Meng, Lingxiao Du, Zongkai Liu, Zhixiang
Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng Han,
Botian Shi, Wenhai Wang, Junjun He, Kaipeng
Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang,

17861


https://arxiv.org/pdf/2409.13156
https://arxiv.org/pdf/2409.13156
https://arxiv.org/pdf/2409.13156
https://openreview.net/forum?id=xbjSwwrQOe
https://openreview.net/forum?id=xbjSwwrQOe
https://arxiv.org/pdf/2412.17451
https://arxiv.org/pdf/2412.17451
https://arxiv.org/pdf/2410.16184
https://arxiv.org/pdf/2410.16184
https://arxiv.org/pdf/2410.16184
https://arxiv.org/pdf/2504.14239
https://arxiv.org/pdf/2504.14239
https://arxiv.org/pdf/2503.06520
https://arxiv.org/pdf/2503.06520
https://arxiv.org/pdf/2503.06520
https://arxiv.org/pdf/2503.16252
https://arxiv.org/pdf/2503.16252
https://arxiv.org/pdf/2503.16252
https://arxiv.org/pdf/2503.16081
https://arxiv.org/pdf/2503.16081
https://arxiv.org/pdf/2503.16081
https://arxiv.org/pdf/2412.15084
https://arxiv.org/pdf/2412.15084
https://arxiv.org/pdf/2412.15084
https://arxiv.org/pdf/2504.02495
https://arxiv.org/pdf/2504.02495
https://arxiv.org/pdf/2503.01785
https://arxiv.org/pdf/2503.21620
https://arxiv.org/pdf/2503.21620
https://doi.org/10.48550/arXiv.2308.09583
https://doi.org/10.48550/arXiv.2308.09583
https://doi.org/10.48550/arXiv.2308.09583
https://arxiv.org/pdf/2501.18922
https://arxiv.org/pdf/2501.18922
https://arxiv.org/pdf/2406.06592
https://arxiv.org/pdf/2406.06592
https://arxiv.org/pdf/2406.06592
https://arxiv.org/pdf/2502.06781
https://arxiv.org/pdf/2502.06781
https://arxiv.org/pdf/2502.06781
https://arxiv.org/pdf/2301.13379
https://arxiv.org/pdf/2301.13379
https://arxiv.org/pdf/2504.08600
https://arxiv.org/pdf/2504.08600
https://arxiv.org/pdf/2504.08600
https://arxiv.org/pdf/2303.17651
https://arxiv.org/pdf/2303.17651
https://arxiv.org/pdf/2410.12832
https://arxiv.org/pdf/2407.00215

and Wenqi Shao. 2025. Mm-eureka: Explor-
ing the frontiers of multimodal reasoning with
rule-based reinforcement learning. arXiv preprint
arXiv:2503.07365.

Yu Meng, Mengzhou Xia, and Dangi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Infor-
mation Processing Systems, 37:124198-124235.

Meta. 2023. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2307.09288.

Meta. 2024. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
arXiv preprint arXiv:2112.09332.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106-26128.
PMLR.

OpenAl. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAl. 2025. Introducing deep research. openai.com.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt.
2022. The effects of reward misspecification: Map-
ping and mitigating misaligned models. arXiv
preprint arXiv:2201.03544.

Alexander Pan, Erik Jones, Meena Jagadeesan, and Ja-
cob Steinhardt. 2024a. Feedback loops with lan-
guage models drive in-context reward hacking. arXiv
preprint arXiv:2402.06627.

Jane Pan, He He, Samuel R Bowman, and Shi Feng.
2024b. Spontaneous reward hacking in iterative self-
refinement. arXiv preprint arXiv:2407.04549.

Jiazhen Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan
Zhu, Hongwei Bran Li, Chen Chen, Cheng Ouyang,
and Daniel Rueckert. 2025. Medvlm-r1: Incentiviz-
ing medical reasoning capability of vision-language
models (vlms) via reinforcement learning. arXiv
preprint arXiv:2502.19634.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023a. Logic-lm: Empow-
ering large language models with symbolic solvers
for faithful logical reasoning.  arXiv preprint
arXiv:2305.12295.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang.
2023b. Automatically correcting large lan-
guage models: Surveying the landscape of di-
verse self-correction strategies. arXiv preprint
arXiv:2308.03188.

Sungjin Park, Xiao Liu, Yeyun Gong, and Edward Choi.
2024. Ensembling large language models with pro-
cess reward-guided tree search for better complex
reasoning. arXiv preprint arXiv:2412.15797.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2023. Refiner: Reasoning feedback
on intermediate representations. arXiv preprint
arXiv:2304.01904.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. 2023. Check your facts and
try again: Improving large language models with
external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813.

Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin
Xu, Lei Hou, and Juanzi Li. 2025. Agentic reward
modeling: Integrating human preferences with verifi-
able correctness signals for reliable reward systems.
arXiv preprint arXiv:2502.19328.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang,
Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal, Sain-
bayar Sukhbaatar, Jason Weston, and Jane Yu. 2024.
Self-consistency preference optimization.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller 1lms stronger problem-solvers. arXiv
preprint arXiv:2408.06195.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang,
Xiusi Chen, Dilek Hakkani-Tiir, Gokhan Tur, and
Heng Ji. 2025. Toolrl: Reward is all tool learning
needs. arXiv preprint arXiv:2504.13958.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai
Jia, Huajun Chen, and Ningyu Zhang. 2023. Making
language models better tool learners with execution
feedback. arXiv preprint arXiv:2305.13068.

17862


https://arxiv.org/pdf/2503.07365
https://arxiv.org/pdf/2503.07365
https://arxiv.org/pdf/2503.07365
https://arxiv.org/pdf/2405.14734
https://arxiv.org/pdf/2405.14734
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2407.21783
https://arxiv.org/pdf/2410.05229
https://arxiv.org/pdf/2410.05229
https://arxiv.org/pdf/2112.09332
https://arxiv.org/pdf/2112.09332
https://proceedings.mlr.press/v202/ni23b/ni23b.pdf
https://proceedings.mlr.press/v202/ni23b/ni23b.pdf
https://arxiv.org/abs/2303.08774
https://openai.com/index/introducing-deep-research/
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/pdf/2201.03544
https://arxiv.org/pdf/2201.03544
https://arxiv.org/pdf/2402.06627
https://arxiv.org/pdf/2402.06627
https://arxiv.org/pdf/2407.04549
https://arxiv.org/pdf/2407.04549
https://arxiv.org/pdf/2502.19634
https://arxiv.org/pdf/2502.19634
https://arxiv.org/pdf/2502.19634
https://arxiv.org/pdf/2305.12295
https://arxiv.org/pdf/2305.12295
https://arxiv.org/pdf/2305.12295
https://arxiv.org/pdf/2308.03188
https://arxiv.org/pdf/2308.03188
https://arxiv.org/pdf/2308.03188
https://arxiv.org/pdf/2412.15797
https://arxiv.org/pdf/2412.15797
https://arxiv.org/pdf/2412.15797
https://arxiv.org/pdf/2304.01904
https://arxiv.org/pdf/2304.01904
https://arxiv.org/pdf/2302.12813
https://arxiv.org/pdf/2302.12813
https://arxiv.org/pdf/2302.12813
https://arxiv.org/pdf/2502.19328
https://arxiv.org/pdf/2502.19328
https://arxiv.org/pdf/2502.19328
https://arxiv.org/pdf/2411.04109
https://arxiv.org/pdf/2408.06195
https://arxiv.org/pdf/2408.06195
https://arxiv.org/pdf/2504.13958
https://arxiv.org/pdf/2504.13958
https://arxiv.org/pdf/2305.13068
https://arxiv.org/pdf/2305.13068
https://arxiv.org/pdf/2305.13068

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,
Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al.
2023.  Phenomenal yet puzzling: Testing in-
ductive reasoning capabilities of language mod-
els with hypothesis refinement. arXiv preprint
arXiv:2310.08559.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2024. Recursive introspection: Teaching lan-
guage model agents how to self-improve. Advances
in Neural Information Processing Systems, 37:55249—
55285.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728—
53741.

Ahmad Rashid, Ruotian Wu, Rongqi Fan, Hongliang
Li, Agustinus Kristiadi, and Pascal Poupart. 2025.
Towards cost-effective reward guided text generation.
arXiv preprint arXiv:2502.04517.

Noam Razin, Zixuan Wang, Hubert Strauss, Stanley
Wei, Jason D Lee, and Sanjeev Arora. 2025. What
makes a reward model a good teacher? an optimiza-
tion perspective. arXiv preprint arXiv:2503.15477.

Manon Revel, Matteo Cargnelutti, Tyna Eloundou, and
Greg Leppert. 2025. Seal: Systematic error analysis
for value alignment. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
27599-27607.

Jiacheng Ruan, Wenzhen Yuan, Xian Gao, Ye Guo,
Daoxin Zhang, Zhe Xu, Yao Hu, Ting Liu, and
Yuzhuo Fu. 2025. VLRMBench: A comprehensive
and challenging benchmark for vision-language re-
ward models. arXiv preprint arXiv:2503.07478.

Jacob Russell and Eugene Santos. 2019. Explaining re-
ward functions in markov decision processes. In Pro-
ceedings of the Thirty-Second International Florida
Artificial Intelligence Research Society Conference,
Sarasota, Florida, USA, May 19-22 2019, pages 56—
61. AAAI Press.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
arXiv preprint arXiv:2206.05802.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Shuaijie She, Junxiao Liu, Yifeng Liu, Jiajun Chen,
Xin Huang, and Shujian Huang. 2025. R-prm:
Reasoning-driven process reward modeling. arXiv
preprint arXiv:2503.21295.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang,
Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang,
Kangjia Zhao, Qiangian Zhang, et al. 2025a. Vlm-
rl: A stable and generalizable r1-style large vision-
language model. arXiv preprint arXiv:2504.07615.

Wei Shen, Guanlin Liu, Zheng Wu, Ruofei Zhu, Qing-
ping Yang, Chao Xin, Yu Yue, and Lin Yan. 2025b.
Exploring data scaling trends and effects in reinforce-
ment learning from human feedback. arXiv preprint
arXiv:2503.22230.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with
verbal reinforcement learning.  arxiv preprint
arXiv:2303.11366.

David Silver and Richard S Sutton. 2025. Welcome to
the era of experience. Google Al

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling llm test-time compute op-
timally can be more effective than scaling parame-
ters for reasoning. In The Thirteenth International
Conference on Learning Representations, volume 2,
page 7.

Huatong Song, Jinhao Jiang, Yinggian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025a. Rl1-searcher: Incentivizing the
search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou,
and Yu Cheng. 2025b. Prmbench: A fine-grained
and challenging benchmark for process-level reward
models. arXiv preprint arXiv:2501.03124.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao
Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. 2024a. Fast best-of-n
decoding via speculative rejection. arXiv preprint
arXiv:2410.20290.

Shichao Sun, Junlong Li, Weizhe Yuan, Ruifeng Yuan,
Wenjie Li, and Pengfei Liu. 2024b. The critique of
critique. arXiv preprint arXiv:2401.04518.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,
Chunyuan Li, Yikang Shen, Chuang Gan, Liang-
Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. 2023.
Aligning large multimodal models with factually aug-
mented rlhf. arXiv preprint arXiv:2309.14525.

Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan
Lin, Pengwei Wang, Zhongyuan Wang, and Shang-
hang Zhang. 2025. Reason-rft: Reinforcement
fine-tuning for visual reasoning. arXiv preprint
arXiv:2503.20752.

17863


https://arxiv.org/pdf/2310.08559
https://arxiv.org/pdf/2310.08559
https://arxiv.org/pdf/2310.08559
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://arxiv.org/pdf/2305.18290
https://arxiv.org/pdf/2305.18290
https://arxiv.org/pdf/2502.04517
https://arxiv.org/pdf/2503.15477
https://arxiv.org/pdf/2503.15477
https://arxiv.org/pdf/2503.15477
https://arxiv.org/pdf/2408.10270
https://arxiv.org/pdf/2408.10270
https://arxiv.org/pdf/2503.07478
https://arxiv.org/pdf/2503.07478
https://arxiv.org/pdf/2503.07478
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS19/paper/view/18275
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS19/paper/view/18275
https://arxiv.org/pdf/2206.05802
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2402.03300
https://arxiv.org/pdf/2503.21295
https://arxiv.org/pdf/2503.21295
https://arxiv.org/pdf/2504.07615
https://arxiv.org/pdf/2504.07615
https://arxiv.org/pdf/2504.07615
https://arxiv.org/pdf/2503.22230
https://arxiv.org/pdf/2503.22230
https://arxiv.org/pdf/2303.11366
https://arxiv.org/pdf/2303.11366
http://incompleteideas.net/papers/TheEraOfExperience.pdf
http://incompleteideas.net/papers/TheEraOfExperience.pdf
https://arxiv.org/pdf/2408.03314
https://arxiv.org/pdf/2408.03314
https://arxiv.org/pdf/2408.03314
https://arxiv.org/pdf/2503.05592
https://arxiv.org/pdf/2503.05592
https://arxiv.org/pdf/2501.03124
https://arxiv.org/pdf/2501.03124
https://arxiv.org/pdf/2501.03124
https://arxiv.org/pdf/2410.20290
https://arxiv.org/pdf/2410.20290
https://arxiv.org/pdf/2401.04518
https://arxiv.org/pdf/2401.04518
https://arxiv.org/pdf/2309.14525
https://arxiv.org/pdf/2309.14525
https://arxiv.org/pdf/2503.20752
https://arxiv.org/pdf/2503.20752

Leitian Tao, Xiang Chen, Tong Yu, Tung Mai, Ryan A.
Rossi, Yixuan Li, and Saayan Mitra. 2024. Codelu-
tra: Boosting LLM code generation via preference-
guided refinement. arXiv preprint arXiv:2411.05199.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-
pher D Manning, and Chelsea Finn. 2023. Fine-
tuning language models for factuality. In The Tivelfth
International Conference on Learning Representa-
tions.

Sergey Troshin, Vlad Niculae, and Antske Fokkens.
2024. Efficient controlled language generation
with low-rank autoregressive reward models. arXiv
preprint arXiv:2407.04615.

Haoqin Tu, Weitao Feng, Hardy Chen, Hui Liu, Xian-
feng Tang, and Cihang Xie. 2025. Vilbench: A suite
for vision-language process reward modeling. arXiv
preprint arXiv:2503.20271.

Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter
Chen, and Tony Mak. 2023. Llms cannot find rea-
soning errors, but can correct them given the error
location. arXiv preprint arXiv:2311.08516.

Jonathan Uesato, Ramana Kumar, Victoria Krakovna,
Tom Everitt, Richard Ngo, and Shane Legg. 2020.
Avoiding tampering incentives in deep rl via decou-
pled approval. arXiv preprint arXiv:2011.08827.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jian-
shu Chen, and Dong Yu. 2023. A stitch in time saves
nine: Detecting and mitigating hallucinations of
llms by validating low-confidence generation. arXiv
preprint arXiv:2307.03987.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie,
Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi
Xiong, Ritik Dutta, Rylan Schaeffer, et al. 2023a.
Decodingtrust: A comprehensive assessment of trust-
worthiness in gpt models. In NeurIPS.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao,
and Tong Zhang. 2024a. Interpretable preferences
via multi-objective reward modeling and mixture-of-
experts. arXiv preprint arXiv:2406.12845.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen,
Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang,
Kam-Fai Wong, and Heng Ji. 2025a. Otc: Optimal
tool calls via reinforcement learning. arXiv preprint
arXiv:2504.14870.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024b. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong,
and Shafiq Joty. 2024c. Direct judgement preference
optimization. arXiv preprint arXiv:2409.14664.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai,
Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. 2023b.
Math-shepherd: Verify and reinforce llms step-by-
step without human annotations. arXiv preprint
arXiv:2312.08935.

Teng Wang, Zhangyi Jiang, Zhenqi He, Wenhan Yang,
Yanan Zheng, Zeyu Li, Zifan He, Shenyang Tong,
and Hailei Gong. 2025b. Towards hierarchical multi-
step reward models for enhanced reasoning in large
language models. arXiv preprint arXiv:2503.13551.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu,
Weizhe Yuan, Jane Dwivedi-Yu, Richard Yuanzhe
Pang, Maryam Fazel-Zarandi, Jason Weston, and
Xian Li. 2024d. Self-taught evaluators. arXiv
preprint arXiv:2408.02666.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean
O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. 2023c. Shepherd: A
critic for language model generation. arXiv preprint
arXiv:2308.04592.

Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen,
Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu, Yue Cao,
Shenglong Ye, Xizhou Zhu, et al. 2025c. Visualprm:
An effective process reward model for multimodal
reasoning. arXiv preprint arXiv:2503.10291.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yibin Wang, Zhiyu Tan, Junyan Wang, Xiaomeng Yang,
Cheng Jin, and Hao Li. 2024e. Lift: Leveraging
human feedback for text-to-video model alignment.
arXiv preprint arXiv:2412.04814.

Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and
Jiaqi Wang. 2025d. Unified reward model for multi-
modal understanding and generation. arXiv preprint
arXiv:2503.05236.

Zhigiang Wang, Pengbin Feng, Yanbin Lin, Shuzhang
Cai, Zongao Bian, Jinghua Yan, and Xingquan Zhu.
2025e. Crowdvlm-rl: Expanding rl ability to
vision language model for crowd counting using
fuzzy group relative policy reward. arXiv preprint
arXiv:2504.03724.

17864


https://arxiv.org/pdf/2411.05199
https://arxiv.org/pdf/2411.05199
https://arxiv.org/pdf/2411.05199
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/pdf/2311.08401
https://arxiv.org/pdf/2311.08401
https://arxiv.org/pdf/2407.04615
https://arxiv.org/pdf/2407.04615
https://arxiv.org/pdf/2503.20271
https://arxiv.org/pdf/2503.20271
https://arxiv.org/pdf/2311.08516
https://arxiv.org/pdf/2311.08516
https://arxiv.org/pdf/2311.08516
https://arxiv.org/pdf/2011.08827
https://arxiv.org/pdf/2011.08827
https://arxiv.org/pdf/2211.14275
https://arxiv.org/pdf/2211.14275
https://arxiv.org/pdf/2211.14275
https://arxiv.org/pdf/2307.03987
https://arxiv.org/pdf/2307.03987
https://arxiv.org/pdf/2307.03987
https://arxiv.org/pdf/2306.11698
https://arxiv.org/pdf/2306.11698
https://arxiv.org/pdf/2406.12845
https://arxiv.org/pdf/2406.12845
https://arxiv.org/pdf/2406.12845
https://arxiv.org/pdf/2504.14870
https://arxiv.org/pdf/2504.14870
https://arxiv.org/pdf/2308.11432
https://arxiv.org/pdf/2308.11432
https://arxiv.org/pdf/2409.14664
https://arxiv.org/pdf/2409.14664
https://arxiv.org/pdf/2312.08935
https://arxiv.org/pdf/2312.08935
https://arxiv.org/pdf/2503.13551
https://arxiv.org/pdf/2503.13551
https://arxiv.org/pdf/2503.13551
https://arxiv.org/pdf/2408.02666
https://arxiv.org/pdf/2308.04592
https://arxiv.org/pdf/2308.04592
https://arxiv.org/pdf/2503.10291
https://arxiv.org/pdf/2503.10291
https://arxiv.org/pdf/2503.10291
https://arxiv.org/pdf/2203.11171
https://arxiv.org/pdf/2203.11171
https://arxiv.org/pdf/2412.04814
https://arxiv.org/pdf/2412.04814
https://arxiv.org/pdf/2503.05236
https://arxiv.org/pdf/2503.05236
https://arxiv.org/pdf/2504.03724
https://arxiv.org/pdf/2504.03724
https://arxiv.org/pdf/2504.03724

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue
Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Mon-
ica Lam, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li.
2025f. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin
Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang.
2025. Swe-rl: Advancing llm reasoning via reinforce-
ment learning on open software evolution. arXiv
preprint arXiv:2502.18449.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct. arXiv preprint arXiv:2211.00053.

Xueru Wen, Xinyu Lu, Xinyan Guan, Yaojie Lu,
Hongyu Lin, Ben He, Xianpei Han, and Le Sun.
2024. On-policy fine-grained knowledge feed-
back for hallucination mitigation. arXiv preprint
arXiv:2406.12221.

Lilian Weng. 2024. Reward hacking in reinforcement
learning. lilianweng.github.io.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu,
Yuandong Tian, Jiantao Jiao, Jason Weston, and Sain-
bayar Sukhbaatar. 2024a. Meta-rewarding language
models: Self-improving alignment with 1lm-as-a-
meta-judge. arXiv preprint arXiv:2407.19594.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2023. Fine-
grained human feedback gives better rewards for lan-

guage model training. Advances in Neural Informa-
tion Processing Systems, 36:59008—-59033.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2024b. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 1819-1862.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang,
Guanyu Li, Yiwen Ding, Wei He, Boyang Hong, Shi-
han Do, Wenyu Zhan, et al. 2024. Enhancing llm rea-
soning via critique models with test-time and training-
time supervision. arXiv preprint arXiv:2411.16579.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu,
and Pengfei Liu. 2024. Evaluating mathemati-
cal reasoning beyond accuracy. arXiv preprint
arXiv:2404.05692.

Yu Xia, Jingru Fan, Weize Chen, Siyu Yan, Xin Cong,
Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan Liu,
and Maosong Sun. 2025. Agentrm: Enhancing agent

generalization with reward modeling. arXiv preprint
arXiv:2502.18407.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo,
Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhi-
rong Wu, and Chong Luo. 2025a. Logic-rl: Un-
leashing 1lm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu
Zhao, Min-Yen Kan, Junxian He, and Michael Xie.
2023. Self-evaluation guided beam search for rea-
soning. Advances in Neural Information Processing
Systems, 36:41618—41650.

Zhihui Xie, Liyu Chen, Weichao Mao, Jingjing Xu,
Lingpeng Kong, et al. 2025b. Teaching language
models to critique via reinforcement learning. arXiv
preprint arXiv:2502.03492.

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye,
Haoqi Fan, Quanquan Gu, Heng Huang, and Chun-
yuan Li. 2024. Llava-critic: Learning to evaluate mul-
timodal models. arXiv preprint arXiv:2410.02712.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang
Chen, Nan Jiang, and Tong Zhang. 2025. Self-
rewarding correction for mathematical reasoning.
arXiv preprint arXiv:2502.19613.

Huimin Xu, Xin Mao, Feng-Lin Li, Xiaobao Wu, Wang
Chen, Wei Zhang, and Anh Tuan Luu. 2025a. Full-
step-dpo: Self-supervised preference optimization
with step-wise rewards for mathematical reasoning.
arXiv preprint arXiv:2502.14356.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong,
Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
2023. Imagereward: Learning and evaluating human
preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36:15903—
15935.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico
Kolter. 2025b. Not all rollouts are useful: Down-
sampling rollouts in llm reinforcement learning.
arXiv preprint arXiv:2504.13818.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Michihiro Yasunaga, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2025. Multimodal rewardbench:
Holistic evaluation of reward models for vision lan-
guage models. arXiv preprint arXiv:2502.14191.

Ziyi Ye, Xiangsheng Li, Qiuchi Li, Qingyao Ai, Yu-
jia Zhou, Wei Shen, Dong Yan, and Yiqun Liu.
2024. Beyond scalar reward model: Learning gen-
erative judge from preference data. arXiv preprint
arXiv:2410.03742.

17865


https://arxiv.org/pdf/2504.20073
https://arxiv.org/pdf/2504.20073
https://arxiv.org/pdf/2502.18449
https://arxiv.org/pdf/2502.18449
https://arxiv.org/pdf/2211.00053
https://arxiv.org/pdf/2211.00053
https://arxiv.org/pdf/2406.12221
https://arxiv.org/pdf/2406.12221
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
https://arxiv.org/pdf/2407.19594
https://arxiv.org/pdf/2407.19594
https://arxiv.org/pdf/2407.19594
https://arxiv.org/pdf/2306.01693
https://arxiv.org/pdf/2306.01693
https://arxiv.org/pdf/2306.01693
https://aclanthology.org/2024.naacl-long.102/
https://aclanthology.org/2024.naacl-long.102/
https://aclanthology.org/2024.naacl-long.102/
https://arxiv.org/pdf/2411.16579
https://arxiv.org/pdf/2411.16579
https://arxiv.org/pdf/2411.16579
https://arxiv.org/pdf/2404.05692
https://arxiv.org/pdf/2404.05692
https://arxiv.org/pdf/2502.18407
https://arxiv.org/pdf/2502.18407
https://arxiv.org/pdf/2502.14768
https://arxiv.org/pdf/2502.14768
https://arxiv.org/pdf/2502.14768
https://arxiv.org/pdf/2305.00633
https://arxiv.org/pdf/2305.00633
https://arxiv.org/pdf/2502.03492
https://arxiv.org/pdf/2502.03492
https://arxiv.org/pdf/2410.02712
https://arxiv.org/pdf/2410.02712
https://arxiv.org/pdf/2502.19613
https://arxiv.org/pdf/2502.19613
https://arxiv.org/pdf/2502.14356
https://arxiv.org/pdf/2502.14356
https://arxiv.org/pdf/2502.14356
https://arxiv.org/pdf/2304.05977
https://arxiv.org/pdf/2304.05977
https://arxiv.org/pdf/2504.13818
https://arxiv.org/pdf/2504.13818
https://arxiv.org/pdf/2305.10601
https://arxiv.org/pdf/2305.10601
https://arxiv.org/pdf/2502.14191
https://arxiv.org/pdf/2502.14191
https://arxiv.org/pdf/2502.14191
https://arxiv.org/pdf/2410.03742
https://arxiv.org/pdf/2410.03742

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a.
Ovm, outcome-supervised value models for plan-
ning in mathematical reasoning. arXiv preprint
arXiv:2311.09724.

Jiachen Yu, Shaoning Sun, Xiaohui Hu, Jiaxu Yan,
Kaidong Yu, and Xuelong Li. 2025a. Improve llm-
as-a-judge ability as a general ability. arXiv preprint
arXiv:2502.11689.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. 2025b. Dapo: An open-
source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao
Zheng, Maosong Sun, and Tat-Seng Chua. 2023b.
RLHF-V: towards trustworthy mllms via behavior
alignment from fine-grained correctional human feed-
back. arXiv preprint arXiv:2312.00849.

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng
Jiang, and Ashish Sabharwal. 2023c. Improving lan-
guage models via plug-and-play retrieval feedback.
arXiv preprint arXiv:2305.14002.

Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan,
Chenguang Zhu, Richard Yuanzhe Pang, Yundi
Qian, Xuewei Wang, Suchin Gururangan, Chao
Zhang, Melanie Kambadur, Dhruv Mahajan, and
Rui Hou. 2024a. Self-generated critiques boost re-
ward modeling for language models. arXiv preprint
arXiv:2411.16646.

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran
Zeng, Jindong Wang, Wei Ye, and Shikun Zhang.
2024b. Outcome-refining process supervision for
code generation. arXiv preprint arXiv:2412.15118.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. 2024a. Free process rewards without
process labels. arXiv preprint arXiv:2412.01981.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. 2024b. Self-rewarding language models.
arXiv preprint arXiv:2401.10020.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023a. Scaling relationship on learn-
ing mathematical reasoning with large language mod-
els. arXiv preprint arXiv:2308.01825.

Zheng Yuan, Hongyi Yuan, Chuangi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023b. Rrhf:
Rank responses to align language models with
human feedback without tears. arXiv preprint
arXiv:2304.05302.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun
Jiang, and Jiaya Jia. 2023. Mr-gsm8k: A meta-
reasoning benchmark for large language model eval-
uation. arXiv preprint arXiv:2312.17080.

Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li,
Pengguang Chen, Jianbo Dai, Yuxuan Yao, Rongwu
Xu, Zehan Qi, Wanru Zhao, et al. 2024. Mr-ben: A
meta-reasoning benchmark for evaluating system-2
thinking in llms. arXiv preprint arXiv:2406.13975.

Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin
Zhao, Fan Yang, Ming Tang, and Jingiao Wang. 2025.
Vision-r1: Evolving human-free alignment in large
vision-language models via vision-guided reinforce-
ment learning. arXiv preprint arXiv:2503.18013.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.
Advances in Neural Information Processing Systems,
37:64735-64772.

Han Zhang, Yu Lei, Lin Gui, Min Yang, Yulan He, Hui
Wang, and Ruifeng Xu. 2024b. Cppo: Continual
learning for reinforcement learning with human feed-
back. In The Twelfth International Conference on
Learning Representations.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu,
Xikun Zhang, Shijian Lu, and Dacheng Tao. 2025a.
R1-vl: Learning to reason with multimodal large
language models via step-wise group relative policy
optimization. arXiv preprint arXiv:2503.12937.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023a.
Self-edit: Fault-aware code editor for code genera-
tion. arXiv preprint arXiv:2305.04087.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024c.
Generative verifiers: Reward modeling as next-token
prediction. arXiv preprint arXiv:2408.15240.

Muru Zhang, Ofir Press, William Merrill, Alisa
Liu, and Noah A Smith. 2023b. How language
model hallucinations can snowball. arXiv preprint
arXiv:2305.13534.

Qingyang Zhang, Haitao Wu, Changqing Zhang,
Peilin Zhao, and Yatao Bian. 2025b. Right ques-
tion is already half the answer: Fully unsuper-
vised 1lm reasoning incentivization. arXiv preprint
arXiv:2504.05812.

Shimao Zhang, Xiao Liu, Xin Zhang, Junxiao Liu,
Zheheng Luo, Shujian Huang, and Yeyun Gong.
2025c. Process-based self-rewarding language mod-
els. arXiv preprint arXiv:2503.03746.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023c.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Wenqi Zhang, Mengna Wang, Gangao Liu, Xu Huixin,
Yiwei Jiang, Yongliang Shen, Guiyang Hou, Zhe
Zheng, Hang Zhang, Xin Li, et al. 2025d. Embodied-
reasoner: Synergizing visual search, reasoning, and
action for embodied interactive tasks. arXiv preprint
arXiv:2503.21696.

17866


https://arxiv.org/pdf/2311.09724
https://arxiv.org/pdf/2311.09724
https://arxiv.org/pdf/2502.11689
https://arxiv.org/pdf/2502.11689
https://arxiv.org/pdf/2503.14476
https://arxiv.org/pdf/2503.14476
https://arxiv.org/pdf/2312.00849
https://arxiv.org/pdf/2312.00849
https://arxiv.org/pdf/2312.00849
https://arxiv.org/pdf/2305.14002
https://arxiv.org/pdf/2305.14002
https://arxiv.org/pdf/2411.16646
https://arxiv.org/pdf/2411.16646
https://arxiv.org/pdf/2412.15118
https://arxiv.org/pdf/2412.15118
https://arxiv.org/pdf/2412.01981
https://arxiv.org/pdf/2412.01981
https://arxiv.org/pdf/2401.10020
https://arxiv.org/pdf/2308.01825
https://arxiv.org/pdf/2308.01825
https://arxiv.org/pdf/2308.01825
https://arxiv.org/pdf/2304.05302
https://arxiv.org/pdf/2304.05302
https://arxiv.org/pdf/2304.05302
https://arxiv.org/pdf/2312.17080
https://arxiv.org/pdf/2312.17080
https://arxiv.org/pdf/2312.17080
https://arxiv.org/pdf/2406.13975
https://arxiv.org/pdf/2406.13975
https://arxiv.org/pdf/2406.13975
https://arxiv.org/pdf/2503.18013
https://arxiv.org/pdf/2503.18013
https://arxiv.org/pdf/2503.18013
https://arxiv.org/pdf/2406.03816
https://arxiv.org/pdf/2406.03816
https://arxiv.org/pdf/2402.14228
https://arxiv.org/pdf/2402.14228
https://arxiv.org/pdf/2402.14228
https://arxiv.org/pdf/2503.12937
https://arxiv.org/pdf/2503.12937
https://arxiv.org/pdf/2503.12937
https://arxiv.org/pdf/2305.04087
https://arxiv.org/pdf/2305.04087
https://arxiv.org/pdf/2408.15240
https://arxiv.org/pdf/2408.15240
https://arxiv.org/pdf/2305.13534
https://arxiv.org/pdf/2305.13534
https://arxiv.org/pdf/2504.05812
https://arxiv.org/pdf/2504.05812
https://arxiv.org/pdf/2504.05812
https://arxiv.org/pdf/2503.03746
https://arxiv.org/pdf/2503.03746
https://arxiv.org/pdf/2303.05510
https://arxiv.org/pdf/2303.05510
https://arxiv.org/pdf/2503.21696
https://arxiv.org/pdf/2503.21696
https://arxiv.org/pdf/2503.21696

Xingjian Zhang, Siwei Wen, Wenjun Wu, and Lei
Huang. 2025e. Tinyllava-video-rl: Towards
smaller Imms for video reasoning. arXiv preprint
arXiv:2504.09641.

Yi-Fan Zhang, Tao Yu, Haochen Tian, Chaoyou Fu,
Peiyan Li, Jianshu Zeng, Wulin Xie, Yang Shi,
Huanyu Zhang, Junkang Wu, et al. 2025f. Mm-rlhf:
The next step forward in multimodal 1lm alignment.
arXiv preprint arXiv:2502.10391.

Yudi Zhang, Yali Du, Biwei Huang, Ziyan Wang, Jun
Wang, Meng Fang, and Mykola Pechenizkiy. 2023d.
Interpretable reward redistribution in reinforcement
learning: A causal approach. Advances in Neural
Information Processing Systems, 36:20208-20229.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025¢g. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Baining Zhao, Ziyou Wang, Jianjie Fang, Chen Gao,
Fanhang Man, Jingiang Cui, Xin Wang, Xinlei Chen,
Yong Li, and Wenwu Zhu. 2025a. Embodied-r: Col-
laborative framework for activating embodied spatial
reasoning in foundation models via reinforcement
learning. arXiv preprint arXiv:2504.12680.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou,
Jungi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian, Biging
Qi, Xiu Li, et al. 2025b. Genprm: Scaling test-time
compute of process reward models via generative
reasoning. arXiv preprint arXiv:2504.00891.

Shuai Zhao, Linchao Zhu, and Yi Yang. 2025c. Learn-
ing from reference answers: Versatile language
model alignment without binary human preference
data. arXiv preprint arXiv:2504.09895.

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong,
Jiaqi Wang, and Conghui He. 2023. Beyond hallu-
cinations: Enhancing lvims through hallucination-
aware direct preference optimization. arXiv preprint
arXiv:2311.16839.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Fric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing

Systems, 36:46595-46623.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai,
Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. 2025.
Deepresearcher: Scaling deep research via reinforce-
ment learning in real-world environments. arXiv
preprint arXiv:2504.03160.

Changzhi Zhou, Xinyu Zhang, Dandan Song, Xiancai
Chen, Wanli Gu, Huipeng Ma, Yuhang Tian, Mengdi
Zhang, and Linmei Hu. 2025a. Refinecoder: Iterative
improving of large language models via adaptive cri-
tique refinement for code generation. arXiv preprint
arXiv:2502.09183.

Enyu Zhou, Guodong Zheng, Binghai Wang, Zhiheng
Xi, Shihan Dou, Rong Bao, Wei Shen, Limao Xiong,
Jessica Fan, Yurong Mou, Rui Zheng, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2024a. Rmb: Com-
prehensively benchmarking reward models in 1lm
alignment. arXiv preprint arXiv:2410.09893.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao
Cheng, Tianyi Zhou, and Cho-Jui Hsieh. 2025b. R1-
zero’s" aha moment" in visual reasoning on a 2b
non-sft model. arXiv preprint arXiv:2503.05132.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,
Jindong Wang, Derek F Wong, Xiaowei Huang, Qi-
ufeng Wang, and Kaizhu Huang. 2024b. Is your
model really a good math reasoner? evaluating math-
ematical reasoning with checklist. arXiv preprint
arXiv:2407.08733.

Jie Zhu, Qian Chen, Huaixia Dou, Junhui Li, Lifan
Guo, Feng Chen, and Chi Zhang. 2025. Dianjin-r1:
Evaluating and enhancing financial reasoning in large
language models.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Ruyi Gan, Jiaxing Zhang, and Yujiu Yang. 2022.
Solving math word problems via cooperative rea-
soning induced language models. arXiv preprint
arXiv:2210.16257.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng,
Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu
Cui, Ning Ding, and Bowen Zhou. 2025. Ttrl:
Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084.

17867


https://arxiv.org/pdf/2504.09641
https://arxiv.org/pdf/2504.09641
https://arxiv.org/pdf/2502.10391
https://arxiv.org/pdf/2502.10391
https://neurips.cc/virtual/2023/poster/70073
https://neurips.cc/virtual/2023/poster/70073
https://arxiv.org/pdf/2501.07301
https://arxiv.org/pdf/2501.07301
https://arxiv.org/pdf/2501.07301
https://arxiv.org/pdf/2504.12680
https://arxiv.org/pdf/2504.12680
https://arxiv.org/pdf/2504.12680
https://arxiv.org/pdf/2504.12680
https://arxiv.org/pdf/2504.00891
https://arxiv.org/pdf/2504.00891
https://arxiv.org/pdf/2504.00891
https://arxiv.org/pdf/2504.09895
https://arxiv.org/pdf/2504.09895
https://arxiv.org/pdf/2504.09895
https://arxiv.org/pdf/2504.09895
https://arxiv.org/pdf/2311.16839
https://arxiv.org/pdf/2311.16839
https://arxiv.org/pdf/2311.16839
https://arxiv.org/pdf/2412.06559
https://arxiv.org/pdf/2412.06559
https://arxiv.org/pdf/2306.05685
https://arxiv.org/pdf/2306.05685
https://arxiv.org/pdf/2504.03160
https://arxiv.org/pdf/2504.03160
https://arxiv.org/pdf/2502.09183
https://arxiv.org/pdf/2502.09183
https://arxiv.org/pdf/2502.09183
https://arxiv.org/pdf/2410.09893
https://arxiv.org/pdf/2410.09893
https://arxiv.org/pdf/2410.09893
https://arxiv.org/pdf/2503.05132
https://arxiv.org/pdf/2503.05132
https://arxiv.org/pdf/2503.05132
https://arxiv.org/pdf/2407.08733
https://arxiv.org/pdf/2407.08733
https://arxiv.org/pdf/2407.08733
https://arxiv.org/pdf/2504.15716
https://arxiv.org/pdf/2504.15716
https://arxiv.org/pdf/2504.15716
https://arxiv.org/pdf/2406.11931
https://arxiv.org/pdf/2406.11931
https://arxiv.org/pdf/2406.11931
https://arxiv.org/pdf/2210.16257
https://arxiv.org/pdf/2210.16257
https://arxiv.org/pdf/1909.08593
https://arxiv.org/pdf/1909.08593
https://arxiv.org/pdf/2504.16084
https://arxiv.org/pdf/2504.16084

ith Rewards

ining wi

Tra

Inference with Rewards

Training with
Scalar Rewards
Sec. 3.1

Training with
Critique Rewards
Sec. 3.2

RLHF (Ouyang et al., 2022); Safe RLHF (Dai et al., 2023);

Scalar Rewards Fine-Grained RLHF (Wu et al., 2023); Fact-RLHF (Sun et al., 2023);

from Human Feedback Skywork-Reward (Liu et al., 2024a); ImageReward (Xu et al., 2023);
RAHF (Liang et al., 2024); LiFT (Wang et al., 2024e)

RLAIF (Bai et al., 2022b); Self-Taught (Wang et al., 2024d);

Scalar Rewards Dutta et al. (2024); VLM-RLAIF (Ahn et al., 2024);

from Automated Feedback RLTF (Liu et al., 2023); RLEF (Gehring et al., 2024);
StepCoder (Dou et al., 2024); RLEF (Gehring et al., 2024)

Auto-J (Li et al., 2023a); CompassJudger-1 (Cao et al., 2024);

Con-J (Ye et al., 2024); GemRM (Mahan et al., 2024);

LLaVA-Critic (Xiong et al., 2024); DeepSeek-GRM (Liu et al., 2025g);
Critic-RM (Yu et al., 2024a); MM-RLHF (Zhang et al., 2025f)

DPO (Rafailov et al., 2023); SimPO (Meng et al., 2024);
Implicit Rewards } RLHF-V (Yu et al., 2023b); UnifiedRM (Wang et al., 2025d);

from Human Feedback RAFT (Dong et al., 2023); ReST (Gulcehre et al., 2023);
RSO (Liu et al., 2024b); RRHF (Yuan et al., 2023b)

Training with
Implicit Rewards
Sec. 3.3

Self-Rewarding (Yuan et al., 2024b);

Training with
Rule-based Rewards
Sec. 3.4

Training with
Process Rewards
Sec. 3.5

Generate-then-Rank
Sec. 4.1

Reward-Guided Decoding
Sec. 4.2

Meta-Rewarding (Wu et al., 2024a);
Implicit Rewards SCPO (Prasad et al., 2024); Zhang et al. (2025¢);
from Automated Feedback | PFPO (Jiao et al., 2024a); HA-DPO (Zhao et al., 2023);
Tian et al. (2023); FLAME (Lin et al., 2024a);
TRICE (Qiao et al., 2023); CodeLutra (Tao et al., 2024);

DeepSeek-Math (Shao et al., 2024); DeepSeek-R1 (DeepSeek-Al et al., 2025);
DAPO (Yu et al., 2025b); Open-R1 (Face, 2025);

Logic-RL (Xie et al., 2025a); Visual-RFT (Liu et al., 2025h);

CLS-RL (Li et al., 2025c¢); R1-VL (Zhang et al., 2025a);

RefAlign (Zhao et al., 2025¢)

Uesato et al. (2022); Lightman et al. (2023)

Process Rewards
from Human Feedback

WizardMath (Luo et al., 2023); ActPRM (Duan et al., 2025);
Math-Shepherd (Wang et al., 2023b); POM (Li and Li, 2024);
Process Rewards } OmegaPRM (Luo et al., 2024); HRM (Wang et al., 2025b);

from Automated Feedback PRIME (Cui et al., 2025); OREAL (Lyu et al., 2025);
GenPRM (Zhao et al., 2025b); R-PRM (She et al., 2025);
ThinkPRM (Khalifa et al., 2025); M-STAR (Liu et al., 2024c)

— = |

Figure 7: Overview of Training with Rewards.

Cobbe et al. (2021); Uesato et al. (2022);
Ranking by Outcome Rewards ——  LEVER (Ni et al., 2023); V-STaR (Hosseini et al., 2024);
GenRM (Zhang et al., 2024c); Fast Best-of-N (Sun et al., 2024a)

Lightman et al. (2023); DIVERSE (Li et al., 2023b);
Math-Shepherd (Wang et al., 2023b); VILPRM (Tu et al., 2025)
VisualPRM (Wang et al., 2025c¢);

CoRe (Zhu et al., 2022)

Ranking by Process Rewards ——

RAD (Deng and Raffel, 2023); ARGS (Khanov et al., 2024);
Token-level Guidance — PG-TD (Zhang et al., 2023c);
ARM (Troshin et al., 2024); FaRMA (Rashid et al., 2025)

CARDS (Li et al., 2024a); GRACE (Khalifa et al., 2023);

Xie et al. (2023); Snell et al. (2025); ORPS (Yu et al., 2024b);

RSD (Liao et al., 2025); Tree-of-Thoughts (Yao et al., 2023);
Step-level Guidance ——  OVM (Yu et al., 2023a); RAP (Hao et al., 2023);

STILL-1 (Jiang et al., 2024); rStar (Qi et al., 2024);

ReST-MCTS* (Zhang et al., 2024a); LE-MCTS (Park et al., 2024);

rStar-Math (Guan et al., 2025)

Figure 8: Overview of Inference with Rewards.

17868



Post-Inference with Rewards

Benchmarking Reward Models

|

Self-Correction
Sec. 5.1

Correction with
xternal Feedback
Sec. 5.2

Benchmarking
— Outcome Reward Models e
Appendix A.1

T

Self-Refine (Madaan et al., 2023); Reflexion (Shinn et al., 2023);
CoVe (Dhuliawala et al., 2023); SCoRE (Kumar et al., 2024);
RISE (Qu et al., 2024)

Trained Models

External Knowledge

External Tools

CodeRL (Le et al., 2022); RL4F (Akyurek et al., 2023);
Shepherd (Wang et al., 2023c); A2R (Lee et al., 2024);

CTRL (Xie et al., 2025b); CriticGPT (McAleese et al., 2024);
DARS (Li et al., 2025a); REFINER (Paul et al., 2023);
AutoMathCritique (Xi et al., 2024); MAD (Liang et al., 2023);
Cohen et al. (2023); Du et al. (2023)

RARR (Gao et al., 2022); ReFeed (Yu et al., 2023c);
LLM-Augmenter (Peng et al., 2023); Varshney et al. (2023);
FACTOOL (Chern et al., 2023)

Self-Edit (Zhang et al., 2023a); Self-Debug (Chen et al., 2023);
CYCLE (Ding et al., 2024); Logic-LM (Pan et al., 2023a);
IHR (Qiu et al., 2023); Baldur (First et al., 2023);

CRITIC (Gou et al., 2023); RCI (Kim et al., 2023)

Figure 9: Overview of Post-Inference with Rewards.

Benchmarking
— Process Reward Models —
Appendix A.2

Benchmarking
— Multimodal Reward Models —
Appendix A.3

Other Benchmarks
Appendix A.4

Zheng et al. (2023); RewardBench (Lambert et al., 2024);

RM-Bench (Liu et al., 2024d); AceMath-RewardBench (Liu et al., 2024e);
RMB (Zhou et al., 2024a); CriticBench (Lin et al., 2024b);

MetaCritique (Sun et al., 2024b)

MathCheck-GSM (Zhou et al., 2024b); MR-GSMS8K (Zeng et al., 2023);
ProcessBench (Zheng et al., 2024); PRMBench (Song et al., 2025b);
Big-Bench Mistake (Tyen et al., 2023); MR-Ben (Zeng et al., 2024)

MJ-Bench (Chen et al., 2024b); MLLM-as-a-Judge (Chen et al., 2024a);
VL-RewardBench (Li et al., 2024b);

Multimodal-RewardBench (Yasunaga et al., 2025) ;

SVIP (Gao et al., 2025); VLRMBench (Ruan et al., 2025)

RAG-RewardBench (Jin et al., 2024); M-RewardBench (Gureja et al., 2024);
PPE (Frick et al., 2024)

17869

Figure 10: Overviews of Benchmarking Reward Models.



A Benchmarking Reward Models (
(Extended))

A.1 Benchmarking Outcome Reward Models

A dominant line of benchmarking studies centers
on outcome reward models that evaluate the overall
quality of generated outputs. Zheng et al. (2023) is
an early work that evaluates LLMs’ judging ability
by directly prompting them. As LLMs can nat-
urally function as generative reward models, this
study also represents one of the earliest benchmarks
for reward models. RewardBench (Lambert et al.,
2024) is the first comprehensive benchmarks for re-
ward models. It aggregates preference data from ex-
isting datasets, such as AlpacaEval and MTBench,
to evaluate reward model performance in chatting,
reasoning, and safety. RM-Bench (Liu et al., 2024d)
introduces evaluation for reward models on sensi-
tivity to subtle content changes and robustness to
style biases. It constructs preference pairs across
chat, code, math, and safety domains using GPT-4o.
AceMath-RewardBench (Liu et al., 2024e) focuses
on math-specific evaluations. It tests whether re-
ward models can identify correct solutions from
candidates across various mathematical tasks and
difficulty levels. RMB (Zhou et al., 2024a) fur-
thermore broadens the evaluation scope to 49 real-
world scenarios.

Apart from evaluating with preference data,
some benchmarks focus on the critique ability of
reward models. CriticBench (Lin et al., 2024b)
assess whether reward models can generate cri-
tiques that accurately identify the correctness of a
response and effectively guide the correction. Simi-
larly, MetaCritique (Sun et al., 2024b) benchmarks
LLM-generated critiques by decomposing them
into atomic information units and assessing their
correctness.

A.2 Benchmarking Process Reward Models

Recently more benchmarks focus on process re-
ward models due to their increasing significance.
In detail, several benchmarks focus on math reason-
ing, such as MathCheck-GSM (Zhou et al., 2024b),
MR-GSMSK (Zeng et al., 2023), and MR-MATH
(Xia et al., 2024). They require reward models
to locate the first error step in a math reasoning
solution. Their testing samples are adapted from
existing math datasets, including GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021).
Furthermore, ProcessBench (Zheng et al., 2024)
features diversity and higher difficulty levels by

scaling this up to Olympiad- and competition-level
math problems (He et al., 2024; Gao et al., 2024).
Beyond step correctness, PRMBench (Song et al.,
2025b) offers a more fine-grained benchmark. It an-
notates each step in the reasoning path with specific
error types grouped into three dimensions: simplic-
ity, soundness, and sensitivity. The annotations
come from LLM-generated perturbations and are
subsequently verified by human annotators.

Besides mathematical reasoning, Big-Bench Mis-
take (Tyen et al., 2023) targets logical reasoning. It
annotates chain-of-thought trajectories from BIG-
Bench (bench authors, 2023), each labeled with
the first logical error. Furthermore, MR-Ben (Zeng
et al., 2024) expands this to the reasoning process
of seven domains: math, logic, physics, chemistry,
medicine, biology and code.

A.3 Benchmarking Multimodal Reward
Models

Due to the prevalence of multimodal language mod-
els, another vital line of benchmarks focuses on
multimodal reward models with diverse evaluation
protocols.

MJ-Bench (Chen et al., 2024b) depends on text-
to-image generation tasks for evaluation. It builds
preference data across four dimensions: text-image
alignment, safety, image quality, and social bias.
MLLM-as-a-Judge (Chen et al., 2024a) uses image
understanding tasks for benchmarking and includes
pointwise and pairwise scoring. VL-RewardBench
(Li et al., 2024b) includes three tasks: general mul-
timodal instructions, hallucination detection, and
multimodal reasoning. Multimodal-RewardBench
(Yasunaga et al., 2025) spans six key capabilities
of multimodal reward models: general correctness,
human preference, factual knowledge, reasoning,
safety, and VQA.

Beyond the outcome level, current benchmarks
also assess multimodal process reward models.
SVIP (Gao et al., 2025) targets process-level evalua-
tion on relevance, logic, and attribute correctness of
diverse multimodal tasks. It transforms reasoning
paths into executable visual programs and auto-
matically annotates each step. VLRMBench (Ruan
et al., 2025) further integrates evaluation on three
dimensions: reasoning steps, whole outcomes, and
critiques on error analysis. It collects testing data of
multimodal understanding through Al annotations
and human verification.
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A.4 Other Benchmarks

In addition to general-purpose evaluations, sev-
eral benchmarks aim to address domain-specific
or emerging challenges in reward modeling. RAG-
RewardBench (Jin et al., 2024) targets reward
model evaluation in RAG. It constructs preference
data for RAG-specific scenarios, including multi-
hop reasoning, fine-grained citation, appropriate ab-
stention, and conflict robustness. M-RewardBench
(Gureja et al., 2024) extends the evaluation to multi-
lingual contexts. Instead of direct evaluation, PPE
(Frick et al., 2024) indirectly evaluates reward mod-
els through RLHF pipelines. It measures the per-
formance of trained LLMs with a reward model,
offering a practical perspective.

B Applications

The strategies described above for learning from re-
wards have been widely adopted across diverse ap-
plications. Early applications focus on preference
alignment, such as RLHF (Ouyang et al., 2022)
and RLAIF (Bai et al., 2022b). In particular, the re-
cent DeepSeek-R1 (DeepSeek-Al et al., 2025) has
demonstrated the effectiveness of reinforcement
learning to develop large reasoning models, which
has inspired a wave of R-1 style applications for di-
verse areas. In this section, we review the primary
applications following these strategies.

B.1 Preference Alignment

Learning-from-rewards strategies have become the
cornerstone for aligning LLMs with human pref-
erences. These strategies design diverse reward
signals to encourage desirable attributes, such as
factuality, harmlessness, and helpfulness, while pe-
nalizing undesired behaviors like toxicity, bias, and
hallucination. We summarize three major objec-
tives of preference alignment as follows.

¢ Factuality and Reducing hallucination. Hal-
lucination refers to generating fluent but factu-
ally incorrect or fabricated content (Tian et al.,
2023). It is a pervasive issue for language mod-
els, especially in knowledge-intensive tasks such
as healthcare and scientific research. The meth-
ods for this alignment span the training, infer-
ence, and post-inference stages (Sun et al., 2023;
Lin et al., 2024a; Zhao et al., 2023; Peng et al.,
2023; Wang et al., 2023c). The rewards mainly
stem from human preferences about factuality
as well as external knowledge sources. For in-
stance, Fact-RLHF (Sun et al., 2023) trains a

factuality-aware reward model on human pref-
erences and additional supervision from image
captions and multiple-choice answers The reward
model is then used to fine-tune the multimodal
language model via PPO, guiding the model to re-
duce hallucinations. RLFH (Wen et al., 2024) de-
composes the model responses into atomic state-
ments, verifies their truthfulness against external
knowledge, and converts them into dense token-
level scalar rewards. To reduce hallucination, it
directly uses these reward signals to fine-tune the
model via PPO.

» Safety and Harmlessness. Safety and harm-
lessness constitute another critical axis of align-
ment, particularly in adversarial or socially sen-
sitive contexts (Bai et al., 2022b; Ji et al., 2023).
Language models must be discouraged from pro-
ducing toxic, offensive, or biased content before
being deployed in real-world systems. To this
end, the methods primarily focus on the training
(Ouyang et al., 2022; Bai et al., 2022a) and in-
ference stages (Deng and Raffel, 2023; Khanov
et al., 2024). For instance, RAD (Deng and Raf-
fel, 2023) depends on reward signals to produce
non-toxicity content during decoding.

* Helpfulness. Meanwhile, helpfulness empha-
sizes that language models are expected to pro-
vide relevant, informative, and context-aware
responses to fulfill user intent (Taori et al.,
2023). This alignment is imperative in areas like
instruction-following and dialogue systems. Re-
ward signals are generally sourced from human
preferences and task-specific quality metrics (Bai
et al., 2022a).

B.2 Mathematical Reasoning

Mathematical reasoning is vital to measure the lan-
guage model’s ability to solve complex reasoning
problems. Some methods build reward models
and fine-tune the language model for math rea-
soning (Shao et al., 2024; DeepSeek-Al, 2025),
particularly using process reward models (Uesato
et al., 2022; Luo et al., 2023) like Math-Shepherd
(Wang et al., 2023b). They can provide step-level
reward signals for a math reasoning solution. More-
over, some approaches construct preference data
for math reasoning, i.e., correct and incorrect so-
lutions, and then fine-tune the language model
through DPO (Lai et al., 2024; Xu et al., 2025a).
Others include inference-time scaling strategies,
such as generate-then-rank (Cobbe et al., 2021;
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Lightman et al., 2023), and reward-guided decod-
ing with search algorithms like MCTS (Hao et al.,
2023; Guan et al., 2025).

B.3 Code Generation

The code generation task has made significant
strides due to the development of LLMs, which
improves software engineering productivity by a
large margin. To improve the code language model
through fine-tuning, the reward signals can come
from various sources, including (Zhu et al., 2024),
and code compiler feedback, unit test results, and
code analysis (Liu et al., 2023; Dou et al., 2024;
Tao et al., 2024; Zhou et al., 2025a). For exam-
ple, DeepSeek-Coder-V2 (Zhu et al., 2024) trains
a reward model for code generation and fine-tunes
the language model via the reinforcement learning
algorithm GRPO (Shao et al., 2024). Additionally,
some approaches guide the inference of language
models during code generation with reward models,
including the generate-then-rank (Ni et al., 2023;
Hosseini et al., 2024) and reward-guided decoding
(Yu et al., 2024b). Another popular direction re-
fines the generated code to correct errors and bugs
through the language model itself (Shinn et al.,
2023; Zhang et al., 2023a; Chen et al., 2023) or
external feedback (Xie et al., 2025b).

B.4 Multimodal Tasks

Learning-from-rewards strategies have been widely
applied to multimodal tasks, including multimodal
understanding and generation. Most studies adopt
reinforcement learning and reward-guided decod-
ing methods. For instance, Q-Insight (Li et al.,
2025d) focuses on improving comprehensive image
quality understanding with reinforcement learning.
VLM-R1 (Shen et al., 2025a) applies reinforcement
learning to fine-tune vision-language models and
focuses on two tasks: referring expression com-
pression and object detection. Vision-RI (Huang
et al., 2025b) enhances multimodal reasoning of
vision-language models for mathematical VQA.
Zhan et al. (2025) proposes another Vision-R1, but
it mainly facilitates object localization tasks with
vision-language models.

Video-R1 (Feng et al., 2025b), VideoChat-R1 (Li
et al., 2025f), and TinyLLaVA-Video-RI (Zhang
et al., 2025¢e) apply GRPO into video reasoning.
RI1-V (Chen et al., 2025a) and CrowdVLM-RI
(Wang et al., 2025e) focus on visual counting.
More example applications include multimodal rea-
soning (Zhou et al., 2025b; Meng et al., 2025; Tan

et al., 2025; Li et al., 2025b; Liu et al., 2025f), ob-
ject detection (Liu et al., 2025h), segmentation (Liu
et al., 2025d), and image/video generation (Guo
et al., 2025c¢; Liu et al., 2025a).

B.5 Agents

LLM Agent is an autonomous system that automat-
ically performs complex tasks through task decom-
position and action execution in dynamic environ-
ments (Wang et al., 2024b). Various learning-from-
rewards strategies have been applied to training or
guiding the agents. AgentRM (Xia et al., 2025)
targets general-purpose decision-making agents
across domains such as web navigation, embod-
ied planning, text games, and tool use. During
inference, a reward model guides the agents to
choose candidate actions or trajectories. Agent-
PRM (Choudhury, 2025) trains LLLM agents with
a process reward model. KBQA-ol (Luo et al.,
2025) guides MCTS with a reward model for
the knowledge base question answering task with
agents. DeepResearch (OpenAl, 2025) and Deep-
Researcher (Zheng et al., 2025) design agents
for research tasks. They both use reinforcement
learning to fine-tune the agents. UI-R/ (Lu et al.,
2025) introduces a rule-based reinforcement learn-
ing framework for GUI action prediction with mul-
timodal agents. InfiGUI-RI (Liu et al., 2025c¢) is
a similar work with GUI agents. RAGEN (Wang
et al., 2025f) propose training the agents via multi-
turn reinforcement learning with a new algorithm
based on GRPO.

B.6 Other Applications

Many other applications have been developed fol-
lowing the learning-from-rewards strategies.
Embodied Al is essential for the development
of artificial general intelligence. Al systems, such
as embodied robots, must interact with the phys-
ical world and complete complex tasks through
high-level planning and low-level control. They
generally aim to enhance the embodied reason-
ing abilities with reinforcement learning, such as
Cosmos-reasonl (Azzolini et al., 2025), iRe-VLA
(Guo et al., 2025b), Embodied-Reasoner (Zhang
et al., 2025d), and Embodied-R (Zhao et al., 2025a).
Several approaches apply reinforcement learning
to reason with information retrieval from knowl-
edge databases or the real-world web. These ap-
proaches include R1-Searcher (Song et al., 2025a),
Search-R1 (Jin et al., 2025), DeepRetrieval (Jiang
et al., 2025), ReSearch (Chen et al., 2025b), and
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WebThinker (Li et al., 2025¢e). They adopt different
reward designs to improve search performance.

Applications for other applications also emerge.
ToRL (Li et al., 2025g), ReTool (Feng et al., 2025a),
SWi-RL (Goldie et al., 2025), ToolRL (Qian et al.,
2025) and OTC (Wang et al., 2025a) are proposed
to improve LLMSs’ reasoning ability to call vari-
ous tools through reinforcement learning. Rec-R1
(Lin et al., 2025) applies reinforcement learning
for recommendation system. SWE-RL (Wei et al.,
2025) aims at software engineering with reinforce-
ment learning. SOQL-RI (Ma et al., 2025) focuses
on natural language to SQL reasoning. It uses a
composite reward function with format correctness,
execution success, result accuracy, and reasoning
completeness.

Some applications are designed for specific ar-
eas. Med-RI Lai et al. (2025) and MedVLM-R1
(Pan et al., 2025) are proposed for medical field.
They target medical VQA across various imaging
modalities (e.g., CT, MRT, and X-ray) and several
clinical tasks, like diagnosis, and anatomy identifi-
cation. Fin-R1 (Liu et al., 2025e) develops LLMs
for the financial field, targeting financial QA and
decision-making. It leverages accuracy and for-
mat rule-based rewards to train a language model
on domain-specific data. DianJin-RI (Zhu et al.,
2025) is another LLM for the financial field with
reinforcement learning.

C Challenges and Future Directions

In this section, we discuss the current challenges
and future directions of learning from rewards. Fig-
ure 11 summarizes the key challenges and future
directions from the perspective of reward model
design and learning strategies. Ultimately, we envi-
sion the development of interpretable, robust, and
continually evolving agent systems capable of in-
teracting with and adapting to the complexities of
the real world.

C.1 Interpretability of Reward Models

Interpretability of reward models remains an open
challenge for the learning-from-rewards strategies
(Russell and Santos, 2019; Zhang et al., 2023d; Jen-
ner and Gleave, 2022). Most reward models are
typically treated as black boxes that produce scalars
or critiques without exposing human-interpretable
explanations. Such opacity hinders human trust
and oversight and may lead to misaligned optimiza-
tion. In consequence, enhancing reward model

interpretability is essential for reliable alignment,
enabling humans to inspect and verify the internal
decision process and steer models toward desired
behavior. Recent efforts have attempted to address
this issue. For instance, ArmoRM (Wang et al.,
2024a) improves the interpretability with multi-
objective reward modeling, where each objective
corresponds to a human-interpretable dimension,
such as helpfulness, correctness, coherence, com-
plexity, and verbosity. While this approach is ef-
fective, its interpretability is limited to these prede-
fined objectives. In addition, emerging generative
reward models can disclose their rationales of re-
ward scoring (Zhao et al., 2025b; Khalifa et al.,
2025). While promising, their interpretability re-
mains limited and demands further investigation
into consistency, reliability, and faithfulness.

C.2 Generalist Reward Models

A promising future direction is the development
of generalist reward models. Most existing reward
models are designed for narrow domains; thus they
often suffer from weak generalization across tasks.
Moreover, their reward outputs are typically static
and lack support for inference-time scalability, hin-
dering their application in diverse and open-ended
scenarios (Liu et al., 2024a; Zhang et al., 2024c;
Snell et al., 2025).

In contrast, a generalist reward model seeks to
overcome these limitations. They demand flexibil-
ity for input types, including single, paired, or mul-
tiple responses, and also require accurate reward
generation in various domains, such as question an-
swering, math reasoning, and code generation. Be-
sides, they are expected to generate higher-quality
reward signals with increased inference-time com-
puting. Such models offer a unified interface for
reward modeling across domains and enable scal-
able, interpretable reward generation. For example,
DeepSeek-GRM (Liu et al., 2025g), a recent at-
tempt in this direction, proposes a pointwise gener-
ative reward model. Rather than only scalars, it can
generate evaluative natural language principles and
critiques, enabling effective inference-time scal-
ing through multi-sample voting and meta-reward
filtering.

C.3 Reward Hacking

Reward hacking is a fundamental challenge in
learning from rewards (Everitt et al., 2021; Amodei
et al., 2016; Weng, 2024; Liu et al., 2025b). It oc-
curs when models exploit unintended shortcuts in
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Figure 11: Illustration of challenges and future directions.

the reward function to obtain high rewards with-
out truly learning the desired behaviors or com-
pleting the task as designed. This phenomenon has
been observed across domains. For instance, LLMs
may fabricate plausible yet incorrect answers, and
code LLMs subtly modify unit tests to pass eval-
uations (Denison et al., 2024). Reward backing
can also happen during inference, called in-context
reward hacking (Pan et al., 2024b,a). It arises in
self-refinement loops where the same model acts as
both the generator and the judge. In such cases, the
model may learn to produce outputs that exploit its
own evaluation heuristics, leading to inflated inter-
nal scores while deviating from true objectives.

Reward hacking fundamentally arises from the
difficulty of specifying a reward function that per-
fectly captures the true objectives. As articulated
by Goodhart’s Laws—When a measure becomes a
target, it ceases to be a good measure—any proxy
metric used as a reward will eventually be exploited
once applying optimization pressure. To mitigate
reward hacking, the following directions are worth
exploring: (i) Designing more robust and tamper-
resistant reward functions (Razin et al., 2025; Shen
et al., 2025b; Peng et al., 2025); (ii) Detecting mis-
alignment via behavioral or distributional anomaly
detection (Pan et al., 2022); (iii) Decoupling feed-
back mechanisms to prevent contamination (Uesato
et al., 2020); (iv) Auditing the dataset for train-
ing reward models to reduce reward hacking risks
(Revel et al., 2025).

C.4 Grounded Rewards from Real-World
Interactions

Despite recent advances in learning from rewards
for LLMs, most methods fundamentally rely on
human preferences or well-curated automated feed-
back. The LLMs are typically optimized to maxi-

mize the rewards derived from these feedback. In
consequence, this inherently limits the agent’s abil-
ity to surpass existing human knowledge and adapt
to complex environments.

Due to these limitations, moving beyond chat-
driven rewards toward grounded real-world re-
wards is another promising direction. This move-
ment requires LLMs to be integrated into agen-
tic frameworks, and agents should increasingly in-
teract directly with their environment and derive
reward signals from observed outcomes. For ex-
ample, a health assistant could optimize behavior
based on physiological signals rather than user rat-
ings, and a scientific agent could refine hypothe-
ses based on experimental data rather than expert
approval (Silver and Sutton, 2025). This shift
would enable agents to close the feedback loop
with the real world, allowing for autonomous dis-
covery, adaptation, and pursuit of goals beyond
human understanding. The transition to real-world
interactions raises substantial technical challenges.
Agents must handle noisy, delayed, or partial feed-
back from complex environments, requiring ad-
vances in credit assignment, robust exploration,
and uncertainty modeling.

C.5 Continual Learning from Rewards

Current learning-from-rewards strategies often as-
sume a fixed dataset, a predefined reward model,
and short episodic interactions. Once trained, mod-
els typically exhibit limited abilities to adapt to
new tasks or evolving environments (Zhang et al.,
2024b; Silver and Sutton, 2025). This episodic and
offline paradigm sharply contrasts with real-world
intelligence’s dynamic, ongoing nature, where
agents must continually learn from experience and
recalibrate based on new feedback.

As such, a vital direction is continual learning
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from rewards. It is a crucial foundation for building
lifelong competent and aligned agents. By aban-
doning the traditional assumption of fixed objec-
tives, models can remain responsive to changing
reward signals, avoid performance degradation un-
der distributional shifts, and better reflect long-term
user intent. Notably, it is a broader idea of contin-
ual reinforcement learning (Abel et al., 2023; Li
et al., 2024c; Bowling and Elelimy, 2025). Achiev-
ing continual learning from rewards presents sig-
nificant challenges. It requires addressing catas-
trophic forgetting, maintaining stability while en-
abling plasticity, and designing dynamic reward
modeling mechanisms.
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