Layer Duplication in LLMs*

Neo Eyal and Nachum Dershowitz
School of Computer Science and Al
Tel Aviv University
Israel
{neoeyal, nachum}@tau.ac.1il

Abstract

We investigate the effect of duplicating mul-
tihead self-attention layers in large language
models (LLMs) across a range of language
tasks, with and without fine-tuning. The re-
sults demonstrate that duplicating the initial
layers once or twice often yields a significant
performance boost. Attention analysis uncov-
ered the underlying mechanisms driving the
improvement when performing layer duplica-
tion. This method enhances LLM capabilities
with or without additional training or labeled
data.

1 Introduction

Large language models (LLMs) have become a
cornerstone of natural language processing (NLP),
achieving state-of-the-art results across a wide
range of tasks, such as question answering, lan-
guage generation, and classification. These mod-
els, characterized by their deep architectures,
large number of parameters, and attention mecha-
nisms (Vaswani et al., 2017), show improvements
with increased scale (Kaplan et al., 2020). However,
this growth in model size also leads to increased
computational training costs, raising challenges
in optimizing performance while maintaining effi-
ciency.

Common strategies for enhancing LLMs include
data augmentation (Wei et al., 2022), prompt en-
gineering (Reynolds and McDonell, 2021), and
scaling models prior to pretraining (Kaplan et al.,
2020). In addition, few-shot and in-context learn-
ing (Brown et al., 2020) have enabled models to
generalize effectively without further training. An-
other, less explored, technique is layer duplication,

*Supported in part by the European Research Council
(MiDRASH, Project No. 101071829). Views and opinions ex-
pressed are, however, those of the authors only and do not nec-
essarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European

Union nor the granting authorities can be held responsible for
them.

Kfir Bar
Efi Arazi School of Computer Science
Reichman University
Herzliya, Israel
kfir.bar@runi.ac.il

a method that modifies the model architecture post-
training to improve its performance by increasing
its effective depth without changing its learned
weights.

Layer duplication is a relatively unexplored
method that has shown promise for improving
LLM performance both with and without fine-
tuning. At the heart of LLMs is the Transformer
architecture (Vaswani et al., 2017), which uses
stacked multi-head self-attention (MHSA) layers
to build contextual understanding. The idea behind
layer duplication is to replicate certain MHSA lay-
ers in the architecture, enabling the model to pass
information through the same transformation mul-
tiple times. This reprocessing may allow the model
to refine representations more deeply, enhancing
its performance on various tasks. Importantly, this
approach requires no additional training data and
minimal architectural changes, making it especially
appealing for scenarios with limited resources.

Despite significant progress in model design and
training efficiency, there remains a trade-off be-
tween performance gains and computational cost.
Increasing model size often results in diminish-
ing returns (Kaplan et al., 2020). To address
this, Parameter-Efficient Fine-Tuning (PEFT) tech-
niques (Houlsby et al., 2019), such as Low-Rank
Adaptation (LoRA) (Hu et al., 2022), have been
developed to reduce fine-tuning costs by adapting
only a subset of parameters. Layer duplication of-
fers a complementary strategy: It alters the flow of
computation to extract more value from existing
weights. This study is motivated by the need to
improve LLM performance, with or without fine-
tuning.

We hypothesize that layer duplication is partic-
ularly effective in NLP models because language
understanding may benefit from repeated contex-
tualization over the full sequence, whereas vision
tasks, which often rely on localized spatial features,
are less likely to gain from repeating the same layer

17797

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 17797-17807
November 4-9, 2025 ©2025 Association for Computational Linguistics

Layer i+ 1
A
/ I \Weighter
—)[w-DL; + (1 —w)-L; <
A .
W
Single Layer FFN

\ ‘\ J

s N
Additive Positional Encoding &

\ Concatenation
\ S
A

A

—[Duplicated Layer i]
A
[Layer 7]—

Figure 1: Model architecture of duplicating layer ¢ one
time with a Weighter.

multiple times. For this reason, our work focuses
on applying layer duplication in LLMS.

Our contributions are as follows: (1) We demon-
strate that duplicating one of the initial layers one
or two times can be expected to significantly boost
LLM performance in both few-shot and fine-tuned
settings, and provide theoretical and empirical mo-
tivation for why the initial layers are particularly ef-
fective to duplicate. (2) We show that performance
gains depend more on the task than on model size.
(3) We analyze attention patterns and explain how
duplicating the first layer alters attention dynamics,
contributing to improved downstream performance.

2 Related Work

While increasing model depth and width is
a well-established strategy for boosting perfor-
mance (Petty et al., 2024; Kaplan et al., 2020),
the idea of expanding existing pretrained mod-
els through layer duplication with or without fine-
tuning remain largely unexplored.

Relaxed Recursive Transformers (Bae et al.,
2025) and Dynamic Layer Operation (Tan et al.,
2024) (DLO) explore layer reuse and vertical scal-
ing, but differ from our method in motivation, com-
plexity, and practicality. Relaxed Recursive Trans-

formers compress models by looping over a fixed
block of layers at inference and using LoRA to
relax weight sharing. While effective, this adds ar-
chitectural complexity and degrades performance.
DLO scales depth by partitioning a model (e.g.,
32 layers into 4 groups of 8) and adding 10 new
layers per group, partly initialized from the group’s
final layer. It manages compute via a routing policy
trained during supervised fine-tuning.

In contrast, we do not compress the model or
rely on dynamic control. We propose a simple,
static, and efficient technique, namely, layer du-
plication. We empirically and theoretically iden-
tify which layers to replicate and how many times,
showing strong gains even without fine-tuning. Our
approach avoids fixed architectural templates, of-
fering a flexible, low-overhead way to improve
existing models, and provides attention-based anal-
yses and theoretical insights into why and where
duplication helps.

Another related approach, PonderNet (Banino
et al., 2021), introduces adaptive computation by
dynamically adjusting the number of processing
steps based on task complexity. This method fo-
cuses on optimizing computational efficiency by
varying the depth of computation as needed. While
PonderNet is dynamic and adapts to specific tasks,
layer duplication offers a more straightforward,
static alternative. By duplicating MHSA layers,
the model reuses the learned representations from
those layers, allowing it to process information
again. This enables the model to build on the
contextualized effects of the original layer, further
enhancing its ability to make logical connections
between words and concepts, especially in tasks
requiring reasoning and deep semantic understand-
ing.

Layer skipping is another approach to manipulat-
ing a given model’s architecture. Techniques such
as LayerSkip (Elhoushi et al., 2024), Unified Layer
Skipping (Liu et al., 2024), and Adalnfer (Fan et al.,
2024) selectively bypass certain layers to improve
inference efficiency while trying to best maintain
model accuracy. Unlike layer duplication, which
aims to enhance model accuracy through dupli-
cation of specific layers, these methods focus on
identifying and skipping layers that are of less im-
portance.

Unlike prior work that focuses on efficiency or
adaptiveness, our approach statically reuses exist-
ing layers to enhance performance. This is the first
systematic demonstration showing that duplicat-

17798

ing early layers improves LLM performance. We
motivate this both empirically and theoretically.

3 Methodology

3.1 Layer Duplication Without Fine-Tuning

To replicate a MHSA layer 7, n times, we create a
custom model that mirrors the original architecture
but replaces layer ¢ with n consecutive copies of it.
All other layers are preserved in order, and weights
are transferred accordingly to maintain the model’s
behavior outside the replicated segment.

Layer duplication incurs additional inference-
time cost. However, this increase is modest: for
instance, duplicating a single layer once results in
an inference time increase of up to approximately
1 4 1/N, which is often negligible in practice as
LLMs have many layers.

3.2 Layer Duplication with Fine-tuning

When performing layer duplication with fine-
tuning, we duplicate each layer once. This choice is
motivated by results in Section 4.1, which show di-
minishing returns from multiple duplications. The
procedure largely follows Section 3.1, with one key
distinction: we insert a lightweight module we re-
fer to as the Weighter after the duplicated layer. As
shown in Figure 1, the Weighter takes the outputs
of the original and duplicated layers and computes
a convex combination of them, using either a con-
stant override or a dynamic weight.

The Weighter is a single layer feedforward net-
work (FFN) that first adds learned positional encod-
ings to the original and duplicated layer outputs,
then concatenates them. This combined represen-
tation is passed through the FFN to compute a dy-
namic weight for the convex combination. The
additive encodings help the Weighter distinguish
between the original and duplicated outputs.

The Weighter was used exclusively in the fine-
tuning experiments, as it required tuning due to
its random initialization. We adopt this approach
not only to improve performance, but also to gain
insight into duplication behavior by analyzing how
much of the duplicated layer the Weighter learns to
use.

3.3 Models

We evaluated the impact of layer duplication on
models of varying sizes using four different vari-
ants of the Pythia models (Biderman et al., 2023):
Pythia 70M, Pythia 160M, Pythia 410M, and

Pythia 1B.! These models were chosen because
they span a range of sizes, letting us test if duplica-
tion effects hold across scales. Using models from
the same family controls for architectural differ-
ences.

For the experiments without fine-tuning, we used
the models in their base generative form. In this
setting, they are especially well-suited for few-shot
evaluation, which requires virtually no task-specific
data. Instead of relying on labeled datasets, a user
can simply provide a couple of examples of the
task in the prompt itself, allowing us to assess how
layer duplication affects performance without any
additional training or data collection.

For the experiments with fine-tuning we used the
base model with a randomly initialized classifica-
tion head.

3.4 Datasets

For the experiments without fine-tuning we decided
to work with ten tasks from the BigBench bench-
mark (Srivastava et al., 2023), which are listed in
Table 1.

BigBench is a widely used benchmark, released
under the Apache 2.0 license, that provides a di-
verse set of language tasks, making it an accessi-
ble and effective tool for evaluating large language
models. The ten tasks were chosen to cover a broad
range of reasoning abilities, including logical de-
duction, causal inference, and analogical reasoning.

By selecting tasks that require different forms
of abstraction and contextual understanding, we
aim to evaluate whether layer duplication improves
model performance across various cognitive chal-
lenges while maintaining a manageable runtime.
Each of the chosen tasks is in English except Com-
mon Morpheme, which is in English and French.

For our fine-tuning experiments, we selected
English-language tasks that are both large enough
to support training and complex enough to benefit
from layer duplication. We used the TriviaQA-in-
SQuAD-format (Imhof, 2023) and SQuADV2 (Ra-
jpurkar et al., 2018) datasets.”> They consist of
context paragraphs with questions whose answers
are found within the given context. The former
contains 15.4K English examples, and from the
141K English examples in the latter, we used a 35K
sampled subset for computational efficiency.

'We used Pythia (Apache license 2.0) as intended by its
creators.

’The former is released under an unknown license and the
latter under a CC-BY-SA-4.0 license.

17799

Task Name Description Samples

Analytic Entailment Identify whether one sentence entails the next 70

Cause and Effect Answer multiple-choice questions distinguishing cause and ef- 153
fect

Boolean Expressions Evaluate the result of a random Boolean expression 428

Conceptual Combinations | Understand conceptual combinations in appropriate contexts 103

Causal Judgment Answer questions about causal attribution 190

Analogical Similarity Identify the type of analogy between two events 323

Common Morpheme Determine the meaning of the shared morpheme among the given 50
words

Logical Deduction Deduce the order of a sequence of objects 1,500

Logical Sequence Identify the correct chronological or sequential order of items in 39
a list

0Odd One Out Spot the word that does not belong in the group (semantically or 86
grammatically)

Table 1: BigBench tasks used in our study, with descriptions and number of samples.

TriviaQA-in-SQuAD-format is a filtered version
of TriviaQA (Joshi et al., 2017) in which each an-
swer appears within a single paragraph rather than
spanning multiple paragraphs, making it more suit-
able for our fine-tuning experiments.

3.5 Experimental Settings

We conduct experiments both with and without
fine-tuning. The experiments without fine-tuning
are designed to reveal the underlying behavior of
layer duplication. Specifically, which layers to
replicate and how many times to replicate to best
enhance model performance when no data for fine-
tuning is at hand. The fine-tuning experiment’s
aim is to build on these findings, allowing us to
validate or refute our conclusions, and to provide
recommendations for how to effectively apply layer
duplication to boost performance when sufficient
data is available for fine-tuning.

For the experiments without fine-tuning for each
base model, we tested the impact of duplicating
each MHSA layer separately with different dupli-
cation factors, which determine how many times
a specific layer is replicated. The duplication fac-
tors tested were 1, 2, 4, 8, and 16. To evaluate
the effects of duplication, we first constructed the
custom model following the procedure outlined
in Section 3.1. We then computed scores for all
selected tasks using the evaluation metrics speci-
fied in BigBench.? The evaluation is deterministic
since BigBench’s API computes probabilities for
the given answer choices rather than generating
text with a certain temperature.

For the experiments with fine-tuning we tested
the impact of duplicating each MHSA layer sepa-

*We used BigBench’s API to calculate the scores as in-
tended by its creators.

rately as stated in Section 3.2 and fine-tuned after
the duplication. In fine-tuning we only trained the
classification head and the Weighter. For each layer,
we fine-tuned three separate models and compared
them to the original model fine-tuned without du-
plication. One used the Weighter, which learns
how much of the duplicated layer to use. The other
two used fixed weight overrides of 1.0 and 0.5, cor-
responding to using only the duplicated layer or
an equal mix of the duplicated and original layers,
respectively.

In both experimental settings, in order to quan-
tify the impact of duplication, we measured the rel-
ative score change by comparing the performance
of the duplicated models against the original model.
In experiments with fine-tuning, we fine-tuned the
original model as well as the duplicated model with
the Weighter. The relative score change was calcu-
lated as:

Relative Score Change =)
Duplicated Model Score — Original Model Score

Original Model Score

This metric allowed us to assess whether duplica-
tion led to performance improvements or degrada-
tions across different layers and tasks.

Details. All experiments were run on a single
A100 GPU. To manage memory effectively, we
instantiated one custom model at a time, evaluated
it across all tasks, and then released it before pro-
ceeding to the next. Evaluating custom Pythia 1B
models across the ten tasks without fine-tuning took
approximately 20 hours, while smaller models com-
pleted in less time. For the fine-tuning experiments,
fine-tuning and evaluation of a single Pythia 1B
model took around 20 hours per task, with smaller
models requiring less time.

17800

4 Results and Analysis

4.1 Layer and Duplication Factor Impact

To better understand the impact of layer duplica-
tion, we first visualized the results of the experi-
ments without any fine-tuning to identify key trends
in how the duplicated layer and duplication factor
influence model performance. The models have
differing numbers of layers, so we study how a
layer’s relative position within the model, rather
than its absolute index, impacts performance. We
refer to this as the Layer Percentile.

From Figure 2, a few clear patterns emerge. Du-
plicating the initial layers consistently lead to sub-
stantial performance improvement, as indicated by
a large blue bubble for duplicating layers in the
0-10% range. For example, replicating one of the
layers in the that range once yielded an average
relative score increase of 8.8%. This suggests that
early-stage processing benefits significantly from
using pretrained weights multiple times, likely due
to the model refining its token representations at
these stages. In contrast, middle layers show mixed
results, with some layers leading to small positive
or negative changes. This indicates that duplication
in these layers does not have a uniform effect. Later
layers tend to show more negative score changes,
suggesting that duplication in these stages can dis-
rupt learned representations rather than enhance
them.

The observation that duplicating the initial layers
yields the best results is backed up by (Belinkov
et al., 2017), which shows that early layers of pre-
trained models are crucial for downstream task per-
formance, while top layers can be pruned with min-
imal impact. Additionally, Li et al. (2025) demon-
strate that, in architectures like Pythia, gradients
tend to diminish as they propagate to deeper layers,
making the early layers more effectively trained
and more central to model behavior. Furthermore,
Belinkov et al. (2017) state that early layers are
responsible for extracting low-level features such
as morphology and syntax, on which later layers
build; if these representations are weak, no deeper
computation can fully compensate. These obser-
vations provide theoretical motivations as to why
duplicating early layers makes for the best impact.

Another key observation is the presence of rapid
diminishing returns as the duplication factor in-
creases. While duplicating an early layer one
or two times often results in noticeable improve-
ments, further duplication does not yield propor-

tional gains. For example, on the Odd One Out
task with Pythia 160M, duplicating the first layer
once improved performance by 7%, twice by 18%,
and four times by 22%, with little gain beyond that.
This suggests diminishing returns from excessive
duplication.

In this paper we focus on the Pythia family of
models, leaving a study of larger models for fu-
ture work. Nonetheless, indicative experiments on
Pythia 6.9B and LLaMA 3.1 8B (Touvron et al.,
2023) show that duplicating the first layer once
yields average relative improvements of 8.4% and
6.8% in the non-fine-tuned setting. This suggests
that our findings generalize to larger models and
other families.

We also visualized the relative score change of
the fine-tuning experiments. From Figure 3, sev-
eral important observations become evident. The
plot shows three bars for each duplicated layer per-
centile, representing different methods of comput-
ing the convex combination of the original and
duplicated layer outputs: one using the Weighter’s
dynamically computed weight, one with a fixed
override weight of 1, and one with a fixed override
weight of 0.5. First, duplicating the initial layers
before fine-tuning significantly outperforms fine-
tuning the original model without any duplication.
This holds true when using the Weighter’s dynamic
weight or a fixed weight override.

Second, fine-tuning a Weighter and using it to
control how much of the duplicated layer is used
during inference consistently outperforms fixed du-
plication, regardless of which layer is duplicated.
Importantly, duplicating with the Weighter and fine-
tuning never harms performance, even when dupli-
cating deeper layers.

Finally, when the override factor is set to 1, we
observe a trend consistent with the non-fine-tuned
experiments that can be seen in Figure 2. Dupli-
cating early layers improves performance, middle
layers have mixed or minimal impact, and duplicat-
ing later layers often degrades performance.

Figure 4 shows that during evaluation the aver-
aged Weighter weights are close to 1 when dupli-
cating the initial layers, whereas duplicating deeper
layers are assigned much lower average weights.
This suggests that the model, in conjunction with
the training data, has learned that fully duplicating
early layers is most beneficial for performance.

Collectively, these observations reinforce the pre-
vious finding and theoretical rationale that dupli-
cating initial layers is the most effective approach.

17801

16] [) o °
8 ® ® :
s
S
(]
w
c
S 4 .
g ® o o .
53
=
=3
a
2 . (]] o
Initial Layers duplicated 1 time: 8.83%
: ® o . .

Score Change
. @ Positive
® Negative

0-10% 10-20% 20-30% 30-40% 40-50%

50-60% 60-70% 80-90% 70-80% 90-100%

Layer Percentile

Figure 2: Results of layer duplication without fine-tuning. Bubble size indicates the average relative score change
(Eq. 1). Blue represent positive score changes and red, negative ones. Averaged over all models and BigBench tasks.

4.2 Task and Model Size Impact

To further analyze the impact of layer duplication,
we examined how score changes varied per task
for each model in the experiments without fine-
tuning. Since our previous analysis showed that
duplicating the first layers yielded the highest per-
formance gains and that duplicating once or twice
was the most effective, we visualize the maximum
score increase achieved by duplicating either of the
first two layers once or twice for each model-task
combination.

In Figure 5, one can observe significant score im-
provements for specific model-task combinations.
While some combinations exhibited substantial per-
formance gains, others showed minimal or even
negative score changes. Additionally, the results
suggest that the effectiveness of layer duplication
depends more on the task than on the model size.
Certain tasks consistently benefited across models
of different scales; others remained largely unaf-
fected. This pattern indicates that some tasks in-
herently align better with the effects of layer dupli-
cation, while others do not experience meaningful
improvements, regardless of model size.

While the exact impact can vary depending on
the task, this approach proved broadly effective.
We recommend that practitioners consider replicat-
ing one of the early layers once or twice, as this sim-
ple change can lead to substantial improvements.
When fine-tuning is possible, adding a Weighter
and fine-tuning the model can further enhance re-
sults as apposed to fine-tuning without duplication.
Overall, this strategy offers a practical and sim-
ple way to scale a models size and depth to boost

performance.

5 Qualitative Analysis

To further investigate the impact of layer duplica-
tion, we analyzed its effects on attention mecha-
nisms. This analyses aims to give further moti-
vation why duplication of early layers improves
performance.

5.1 Attention Analysis

Self-attention enables each token in a sequence
to consider every other token and assign weights
based on relevance. The model uses these weights
to combine information from all tokens, generating
context-rich representations.

Our hypothesis was that layer duplication would
lead to systematic and explainable changes in atten-
tion patterns, helping to clarify why performance
improved when applying layer duplication. Specifi-
cally, we expected that duplication would refine the
attention weights distributions in a way that aligns
with task-specific improvements—either strength-
ening relevant connections or reducing the influ-
ence of distracting elements. By analyzing the
self-attention weight matrices that capture the rele-
vance each token assigns to every other token, we
aimed to uncover how the model’s self-attention
mechanisms adapt after duplicating a MHSA layer.

5.1.1 Experimental Setup

Layer duplication yields notable performance gains
across tasks. To understand why, we analyzed at-
tention mechanisms by comparing attention weight
matrices from the original Pythia 160M model and

17802

60|

50

40|

N w
o o

Relative Score Change
5

. |I| III |I| LI ‘Il Ill I-l l I
II |

Weight Used
B Learned Weights
M Override 0.5
M Override 1

0-10%

10-20% 20-30% 30-40% 40-50%

50-60% 60-70% 70-80% 80-90% 90-100%

Layer Percentile

Figure 3: Results of layer duplication with fine-tuning. Averaged over all the models and both fine-tuning tasks.

Mean Learned Weight

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

Layer Percentile

Figure 4: Average learned weights of the Weighter in
evaluation of the fine-tuned duplicated model. Averaged
over all models and both fine-tuning tasks.

a version with the first layer duplicated once. This
revealed how duplication alters attention behavior.

We focused on the Odd One Out and Common
Morpheme BigBench tasks without fine-tuning.
These were selected because the original model
performed reasonably well, providing a meaning-
ful baseline. Duplication improved scores from
0.25 to 0.34 on Odd One Out and from 0.38 to 0.44
on Common Morpheme.

Both tasks have structured formats that support
interpretable attention analysis. In Odd One Out,
the model chooses an outlier from a word list, ide-

120
Base Model

M Pythia-70M
B Pythia-160M
B Pythia-410M
80) B Pythia-18

40)
[ol 1.0 Bl 1D A1
| |

<o, <,
"y O

"o, 0,

€,

(N b
% ey,
e ep,o%

Relative Score Change

‘g, %,
Q/Ss% 0/7@ %,
e, v

e

Task

Figure 5: Maximum score improvement per BigBench
task for each model, showing the highest effect of dupli-
cating either of the first two layers once or twice.

ally showing strong intra-group attention and low
attention to the odd word. In Common Morpheme,
the model identifies a shared morpheme across four
words, requiring focused attention on those inputs.

We analyzed attention patterns specifically on
examples where the duplicated model succeeded
but the original failed, to pinpoint how duplication
improved performance.

5.1.2 Attention Heatmap Analysis

We visualized attention dynamics using heatmaps
that capture the contextualized self-attention
among the relevant words in chosen tasks. In these

17803

P
- .
- |
= | m |
-

May twelve three eleven hundred
Attention key Word

Attention Query Word

Figure 6: Attention changes on a Odd One Out sample
where the odd word out is May.

heatmaps, Heatmap|i, j| quantifies the contribution
of the value of word j to the representation of word
i. In attention terms, word ¢ acts as the query and
word j as the key.

Intuitively, for Odd One Out, a well-performing
model should exhibit minimal attention contribu-
tions from the odd word out to the other grouped
words, resulting in a column of low values for that
word. Similarly, for Common Morpheme, the cor-
rect morpheme should exhibit high attention values
for its corresponding row.

To evaluate the effect of duplicating the first
layer, we analyzed the difference in attention
heatmaps between the duplicated model and the
original model:

Diff_Heatmapls, j]

= HeatmapDuplicated [iv .7] - HeatmapOriginal [i?]]

The expectation was that for Odd One Out the odd
word’s column would have negative values, indi-
cating reduced attention, while for Common Mor-
pheme, the correct morpheme’s row would have
positive values, indicating stronger attention.

Empirical results confirmed this expectation
across many observed samples. This can be seen
in Figures 6 and 7, for example.

5.2 Quantifying Attention Changes

To systematically quantify the observed attention
changes that can be seen in Section 5.1.2, we com-
puted aggregated attention metrics across attention
heads. For each sample in the data sets, two key
values were calculated: Avg, ... and Avgg,... The
first metric, Avg, ... Tepresent the average atten-
tion value associated with the correct word in the

exclamation

pleasing-

EIegant.. .
free....

ag\'e tu\a(\o acef\l\\\! af a_\,\\"\J
cO

Attention Query - Morpheme

Attention Key - Input word

Figure 7: Attention changes on a Common Morpheme
sample where the common morpheme is pleasing.

difference heatmap. In the Odd One Out task, this
corresponds to the average attention weight in the
column corresponding to the odd word out, effec-
tively capturing the scenario when the odd word
out serves as the key. In the Common Morpheme
task, Avg_ ... is computed as the average atten-
tion weight in the row corresponding to the com-
mon morpheme in the difference heatmap, effec-
tively capturing the scenario where the common
morpheme serves as the query. The second met-
ric, Avgg, ... captures the attention associated with
incorrect predictions and is computed similarly to
Avg_ .ct> DUt using the column or row correspond-
ing to the falsely predicted word. These metrics
allowed us to systematically analyze how atten-
tion changes contributed to improved or degraded
model performance following layer duplication.

For each attention head, two bars were plotted
to visualize the aggregated attention changes. The
first bar represents the average of Avg ... across
all samples where the duplicated model produced
the correct prediction while the original model did
not. The second represents the average of Avgg, .
for the same set of samples. These visualizations,
shown in Figures 8 and 9, provide insight into
how layer duplication alters attention distributions
across different tasks.

5.2.1 Observations and Insights

For the Odd One Out task, Avg, ... tended to be
negative across most attention heads. This indicates
that duplicating the first layer reduces the attention
weight of the odd word out, when it functions as the
key, in forming the contextualized representation

17804

Emm Correct odd word out column average
I False Predicted word column average

°
g

[
.rllr '||

Average Score Diff

5

-0.15

o 1 2 3 4 5 8 9 10 11
Attention Head Index

Figure 8: Attention changes on the Odd One Out task.

mmm Correct odd word out column average

= False Predicted word column average
0.10
Hnn
L
. 1
0 1 2

7 8 9 10 11
Attention Head Index

Average Score Diff

Figure 9: Attention changes on the Common Morpheme
task.

of the grouped words, which act as the queries.
This effectively pushes it farther away from their
representations. Conversely, Avgg,,.. tended to be
positive, meaning that duplication increased the
similarity between the falsely predicted word and
the grouped words. In general, Avgg, .. was greater
than Avg, ... reinforcing that layer duplication
improved the model’s ability to separate the odd
word from the grouped words.

For the Common Morpheme task, the trends were
reversed. Here, Avg_ ..., tended to be positive, in-
dicating that duplicating the first layer increased
the attention weights from the input words (serving
as keys) when forming the representation of the
common morpheme (acting as the query). Con-
versely, Avg; .. tended to be negative, suggesting
that the model reduced its reliance on the input
words (keys) when constructing the representation
for the falsely predicted morpheme (query).

Across both tasks, the key takeaway is that du-
plicating the first layer one time improved attention
in a task-appropriate manner: reducing similarity
where necessary in Odd One Out and reinforcing
similarity in Common Morpheme. This led to bet-
ter contextual representations and improved per-
formance, giving further intuition to the findings
presented in Section 4.

6 Conclusion

We have demonstrated the potential of layer du-
plication in transformer-based LLMs across few-
shot multiple-choice task settings and fine-tuned
question answering settings. Our results show that
duplicating any of the initial layers once or twice,
whether or not additional fine-tuning is applied,
can significantly improve model performance. We
therefore recommend this strategy to practitioners.
Our experiments suggest that this approach has a
high likelihood of delivering meaningful perfor-
mance gains.

Beyond empirical performance gains, we theo-
retically motivated why duplicating the initial lay-
ers is the best approach based upon previous work
and the learned weights of the Weighter. Further-
more we showed an attention analysis that revealed
that duplication of the first layer modifies atten-
tion patterns in a way that enhances contextual
understanding. These findings suggest that early
layer duplication effectively leverages pretrained
weights, improving performance without additional
training.

Limitations. Our experiments demonstrate that
early layer duplication can improve model perfor-
mance on certain tasks with or without fine-tuning.
We also provided an experimental and theoretical
explanation for why this increase occurs. How-
ever, there are limitations that should be acknowl-
edged. The primary limitation is that performance
improvements are not consistent across all tasks.
This suggests that blindly applying layer dupli-
cation is not a guaranteed method for enhancing
model performance. Instead, practitioners should
evaluate their specific use case to determine if layer
duplication is beneficial to them. Nevertheless,
our findings indicate that there is strong potential
for layer duplication to increase performance. In
addition if practitioners have data for fine-tuning
they can duplicate and fine-tune with a Weighter to
boost performance.

Future research could explore the effects of du-
plicating multiple layers simultaneously or evaluate
the application of layer duplication in very large
LLMs, now that some of those models are open
source.

Risk Assessment. There are no apparent poten-
tial risks in this work due to the fact that we use
open source datasets and models in order to im-
prove those models’ performance.

17805

References

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei
Ji, Seungyeon Kim, and Tal Schuster. 2025. Relaxed
recursive transformers: Effective parameter sharing
with layer-wise LoRA. In Proceedings of the Thir-
teenth International Conference on Learning Rep-
resentations. International Conference on Learning
Representations.

Andrea Banino, Jan Balaguer, and Charles Blundell.
2021. PonderNet: Learning to ponder. In Proceed-
ings of the 38th International Conference on Machine
Learning Workshop on Automated Machine Learn-

ing.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do neural
machine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 861-872, Vancouver, Canada.
Association for Computational Linguistics.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 2397-2430. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, Ahmed Aly, Beidi Chen, and Carole-Jean
Wu. 2024. LayerSkip: Enabling early exit inference
and self-speculative decoding. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12622-12642, Bangkok, Thailand. Association for
Computational Linguistics.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng
Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. 2024. Not all layers of LLMs are
necessary during inference. In Proceedings of the

62nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2024).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Timo Imhof. 2023. TriviaQA in SQuAD format.
https://huggingface.co/datasets/
TimoImhof/TriviaQA—-in—-SQuAD-format.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Pengxiang Li, Lu Yin, and Shiwei Liu. 2025. Mix-LN:
Unleashing the power of deeper layers by combining
Pre-LN and Post-LN. In Proceedings of the Interna-
tional Conference on Learning Representations.

Yijin Liu, Fandong Meng, and Jie Zhou. 2024. Ac-
celerating inference in large language models with
a unified layer skipping strategy. arXiv preprint
arXiv:2404.06954.

Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta,
Fei Sha, Dan Garrette, and Tal Linzen. 2024. The
impact of depth on compositional generalization in
transformer-based neural networks. arXiv preprint
arXiv:2310.19956.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784-789,
Melbourne, Australia. Association for Computational
Linguistics.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, New York, NY. Association for Comput-
ing Machinery.

17806

https://openreview.net/forum?id=WwpYSOkkCt
https://openreview.net/forum?id=WwpYSOkkCt
https://openreview.net/forum?id=WwpYSOkkCt
https://openreview.net/forum?id=1EuxRTe0WN
https://aclanthology.org/P17-1080/
https://aclanthology.org/P17-1080/
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2024.acl-long.681/
https://aclanthology.org/2024.acl-long.681/
https://openreview.net/forum?id=b7cmj4wzUBL
https://openreview.net/forum?id=b7cmj4wzUBL
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://huggingface.co/datasets/TimoImhof/TriviaQA-in-SQuAD-format
https://huggingface.co/datasets/TimoImhof/TriviaQA-in-SQuAD-format
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=BChpQU64RG
https://openreview.net/forum?id=BChpQU64RG
https://openreview.net/forum?id=BChpQU64RG
http://arxiv.org/abs/2404.06954
http://arxiv.org/abs/2404.06954
http://arxiv.org/abs/2404.06954
https://arxiv.org/abs/2310.19956
https://arxiv.org/abs/2310.19956
https://arxiv.org/abs/2310.19956
https://aclanthology.org/P18-2124/
https://aclanthology.org/P18-2124/
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta, and
Adria Garriga-Alonso. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research, 2023(5):1-95.

Zhen Tan, Daize Dong, Xinyu Zhao, Jie Peng,
Yu Cheng, and Tianlong Chen. 2024. Dlo: Dynamic
layer operation for efficient vertical scaling of LLMs.
arXiv preprint arXiv:2407.11030.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLaMA: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, L.ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998—6008. Cur-
ran Associates, Inc.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations.

17807

https://iris.uniroma1.it/handle/11573/1724128
https://iris.uniroma1.it/handle/11573/1724128
https://iris.uniroma1.it/handle/11573/1724128
https://arxiv.org/abs/2407.11030
https://arxiv.org/abs/2407.11030
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

