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Abstract

Effective query expansion for web search bene-
fits from promoting both exploration and result
diversity to capture multiple interpretations and
facets of a query. While recent LLM-based
methods have improved retrieval performance
and demonstrate strong domain generalization
without additional training, they often gener-
ate narrowly focused expansions that overlook
these desiderata. We propose ThinkQE, a test-
time query expansion framework addressing
this limitation through two key components: a
thinking-based expansion process that encour-
ages deeper and comprehensive semantic ex-
ploration, and a corpus-interaction strategy that
iteratively refines expansions using retrieval
feedback from the corpus. Experiments on di-
verse web search benchmarks (DL19, DL20,
and BRIGHT) show ThinkQE consistently out-
performs prior approaches, including training-
intensive dense retrievers and rerankers. !

1 Introduction

Query expansion (QE) is a common practice in
web search scenarios (Robertson, 1990; Qiu and
Frei, 1993), particularly for first-stage retrievers
such as BM25 (Robertson et al., 1995). Effec-
tive expansion involves not only reinforcing the
core intent of the query but also introducing terms
that capture different facets or interpretations of
the information need. This multifaceted coverage
helps capture a broader semantic context, enabling
the retrieval of a more comprehensive set of rel-
evant documents. Prior studies have shown that
such broad-coverage expansion strategies lead to
substantial improvements in retrieval quality (Bou-
choucha et al., 2013).

Recent advances in large language models
(LLMs) have led to strong performance in query
expansion (Gao et al., 2022; Wang et al., 2023;

'Our code is publicly available at https://github.com/
Yibin-Lei/Think_QE.

Query: Who is robert gray

Expansion w/o. Thinking:

Robert Gray is best known as the American captain who discovered the
Columbia River in 1792. He named the river after his ship, the Columbia
Rediviva, and explored it up to Grays Bay. His discovery was later
documented by Lieutenant William Broughton during the Vancouver
expedition.

ThinkQE:

Robert Gray is best known as Captain Robert Gray, an American explorer
who played a significant role in the exploration of the Pacific Northwest.
In 1792, he captained the ship Columbia Rediviva and became the first
American to navigate the Columbia River, which he named after his
vessel. On May 11, 1792, he entered the mouth of the river and explored
approximately 20 miles upstream as far as Grays Bay, which was later
named in his honor by Lieutenant William Broughton of the Vancouver
expedition. This expedition contributed to the mapping and understand-
ing of the region, highlighting Gray’s importance in early American
exploration.

Table 1: Examples comparing a standard expansion with
ThinkQE, our proposed query expansion method with thinking-
augmentation. ThinkQE encourages deeper reasoning and
multifaceted contextualization.

Jagerman et al., 2023; Mackie et al., 2023; Shen
et al., 2024; Lei et al., 2024), particularly due to
their ability to rapidly adapt to new domains with-
out requiring additional training. However, existing
LLM-based methods often pay limited attention
to exploration and result diversity. As illustrated
in Table 1, we observe that current approaches,
such as HyDE, tend to generate overly confident
expansions that focus narrowly on a single inter-
pretation of the input query. This behavior can
be attributed to the model’s reliance on its internal
knowledge and high-probability completions (Yona
et al., 2024; Ohi et al., 2024; Sun et al., 2025),
which may suppress alternative formulations or
less common aspects of the query. This lack of
breadth limits the retrieval of documents reflect-
ing alternative scenarios or requiring more nuanced
reasoning.

To address these limitations, we propose
ThinkQE, a new framework that improves explo-
ration and result diversity along two complemen-
tary dimensions. First, we introduce a thinking-
based expansion process, where the model ex-
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plicitly accumulates intermediate thoughts and hy-
potheses before producing final expansions. This
encourages the emergence of new and more ex-
ploratory terms that can help retrieve documents
beyond the initial query scope. Second, inspired by
pseudo-relevance feedback (Rocchio Jr, 1971), we
propose an interactive expansion strategy, where
query expansions are progressively refined using
feedback from the documents retrieved at each
stage. This dynamic interaction with the corpus
allows the query to evolve in a context-aware man-
ner, adapting to newly retrieved evidence.

By combining both components, we develop
ThinkQE, a test-time query expansion method that
achieves strong performance on natural language
web search benchmarks, including DL.19, D120,
and the StackExchange domain of the BRIGHT
benchmark?. Remarkably, ThinkQE requires no
additional training, yet surpasses recent training-
intensive reranking methods, including those based
on reinforcement learning and distillation from
DeepSeek-R1. Our analysis reveals that: (1) ex-
plicitly modeling a thinking process enhances ex-
pansion quality, and (2) iteratively refining queries
with evolving retrieval feedback is more effective
than generating static expansions, even under the
same compute budget.

2 Method

We introduce ThinkQE, a query expansion frame-
work that tightly integrates LL.M-based thinking
process with evolving corpus interaction. ThinkQE
follows prior work in generating query expansions
using retrieved documents but distinguishes itself
through its design of thinking augmentation and it-
erative corpus interactions. The method is designed
to enable exploration of the query space through
thinking processes and evolving refinement based
on retrieval feedback from the corpus. The overall
process proceeds in multiple rounds. At each round,
an LLM performs thinking-augmented expansion
based on the original query and newly retrieved
documents from the corpus, which in turn informs
subsequent retrieval and expansion steps. The fol-
lowing subsections describe each component of the
method in detail.

2We omit math and coding subsets, as ThinkQE relies on
natural language expansions, which may not be well-suited
for symbolic or structured domains.

ThinkQE Prompt

Given a question "{g}" and its possible answering passages (most of these
passages are wrong) enumerated as:

1. {dl }; 2. {dg}; 3. {dg} .

please write a correct answering passage. Use your own knowledge, not
just the example passages!

Table 2: Prompt used in ThinkQE for the thinking-based
expansion process. {-} denotes the placeholder for the corre-
sponding query and top-K documents.

2.1 Retrieving Initial Evidence from Corpus

Let go denote the original user query. To ground
the expansion process in corpus evidence, we be-
gin by retrieving an initial set of documents from
the corpus C using a first-stage lexical retriever. In
our implementation, we employ BM25. Specif-
ically, we retrieve the top-K documents: Dy =
TopK(BM25(go,C)).

Here, Dy denotes the ranked list of top-K docu-
ments retrieved for gg, ordered by their BM25 rele-
vance scores. This list serves as the initial feedback
signal for expansion, providing retrieval-grounded
context to the LLM in the first expansion step.

2.2 Expansion via Thinking Process

To produce an initial expansion, we use an R1-
distilled LLM trained to generate a thinking chain
before answering. Given the original query go and
top-K retrieved documents Dy, the model follows
a two-phase process:

1. Thinking Phase: The model reflects on gq
and Dy to identify latent concepts, resolve ambi-
guities, and surface alternative interpretations or
missing aspects of the information need.

2. Expansion Phase: Based on the thinking
output, the model generates a query expansion seg-
ment e; that builds upon the original query by in-
troducing additional relevant terms and concepts.

Leveraging the R1-distilled model’s natural sep-
aration of thought and answer allows us to imple-
ment the reasoning-expansion workflow without
additional scaffolding or prompt engineering. The
prompt shown in Table 2 guides the model to gen-
erate expansions by thinking over the input query
and the top-retrieved documents.

2.3 Evolution via Corpus Feedback

We propose to iterate the above thinking-based ex-
pansion. Ateachround ¢t = 1,...,7, the method
performs the following steps:

1. Retrieval: The current query ¢; is used to
retrieve a ranked list of documents from the corpus:
R: = BM25(q;,C).
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2. Redundancy Filtering: To promote diversity
and avoid repetition, we exclude documents that (a)
appear in the blocklist B;, or (b) were among the
top- K results in the previous round D;_;. We then
select the top-K documents from the remaining
candidates: D}V = TopK(R: \ (B;UD;_1)). The
blocklist is updated to include all documents that
were filtered out in this round.

3. Expansion via Thinking: The LLM is
prompted with the original query gg and the filtered
document set D}V to generate the next expansion
e¢+1, using the same two-phase expansion process
described in Section 2.2.

4. Query Update: The query is iteratively up-
dated by concatenating the new expansion: g;11 =
qt D et41.

This loop can be repeated for any number
of rounds 7', depending on resource constraints
or desired depth. Notably, as the query grows
longer, successive expansions may dilute or re-
place the original intent. To mitigate this, we
follow Zhang et al. (2024) and repeat the origi-
nal query n times in the final reformulation, with
n= W, A = 3. Here, len(expansions)
refers to the total word count of all expansion seg-
ments, and len(qo) is the word count of the original
query. This repetition reinforces the core semantics
of the original query during iterative refinement.

Remark. Our method introduces two key inno-
vations: (1) the use of an explicit, LLM-guided
thinking process to encourage deeper exploration
during expansion, and (2) an evolving loop that
dynamically refines the query based on retrieval
feedback. Within this evolving process, we design
two essential components — redundancy filtering
and expansion accumulation — both of which play
a critical role in the effectiveness of ThinkQE, as
demonstrated in our results in Section 4.3.

3 Experiments

3.1 Setup

Datasets. We evaluate ThinkQE on two cate-
gories of natural language web search datasets: (1)
Factoid-style retrieval: TREC DL19 (Craswell
et al., 2020) and DL20 (Craswell et al., 2021),
widely used benchmarks based on the MS MARCO
document collections (Bajaj et al., 2016); and
(2) Reasoning-oriented datasets: The StackEx-
change domain of the BRIGHT benchmark (Su
et al., 2025), covering seven diverse sub-domains:

DL19 DL20

mAP ndcg@10 R@ 1k mAP ndcg@10 R@1k

BM25 30.1  50.6 75.0 28.6 48.0 78.6
Supervised Fine-Tuned Dense retrievers
DPR 365 622 769 418 653 81.4
ANCE 37.1 645 755 40.8 64.6 77.6
Contriever™™ 417 621 83.6 436 632 85.8
R1-Distilled Rerankers on BM25 Top-20 Docs
Rank1-32B - 64.9 - - 61.2
Rank-K-32B - 66.2 - - 64.3
Zero-shot Query expansions with BM25
HyDE 41.8 613 88.0 382 579 84.4
Query2doc - 66.2 - - 62.9 -
MILL - 63.8 859 - 61.8 85.3
LameR 428 649 84.2 - -
CSQE 436 634 87.6
ThinkQE (ours)
w. R1-14B 459 688 89.3 439 647 87.8
w. QWEN3-8B 445 65.0 879 419 628 88.0
w. QWEN3-14B 452 649 88.4 424 635 88.4

w. OpenThinker2-7B 44.8  65.3 873 432 635 87.9
w. Phi4-Reasoning-14B 44.0  65.0 87.1 430 639 87.2

Table 3: Results on TREC DL19 and DL20 datasets.
In-domain supervised models DPR, ANCE, and
Contriever'™ are trained on the MS-MARCO dataset
and listed for reference. Bold indicates the best result
across all models.

Biology (Bio.), Earth Science (Earth.), Economics
(Econ.), Psychology (Psy.), Robotics (Rob.), Stack
Overflow (Stack.), and Sustainable Living (Sus.).
On the BRIGHT benchmark, we omit math and
coding datasets to focus on only the StackExchange
subsets, as ThinkQE relies on language-model-
based natural language expansions, which may not
be well-suited for symbolic or structured domains
such as code or math.

Implementation. We use the QWEN-R1-Distill-
14B model (DeepSeek-Al, 2025) to generate
thinking-based query expansions, sampling outputs
with a temperature of 0.7. The BM25 retrieval is
performed using Pyserini (Lin et al., 2021) with
default hyperparameters. At each round, ThinkQE
uses the top-5 retrieved documents (truncated to
128 tokens for DL benchmarks and 512 tokens
for BRIGHT) to prompt the LLM, and samples 2
candidate expansions to enhance diversity. We set
the total number of interaction rounds to 3, for a
balance between efficiency and effectiveness. Be-
sides the QWEN-R1-Distill-14B model, we also
evalute ThinkQE on a variety of reasoning mod-
els, including QWEN3-8B, QWEN3-14B (Yang
et al., 2025a), OpenThinker2-7B (Meta, 2023), and
Phi-4-Reasoning-14B (Abdin et al., 2025).

Baselines. On DL19 and DL20, we compare
ThinkQE to recent SOTA zero-shot query ex-
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Training Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
BM25 Zero-shot 18.2 27.9 164 134 109 163 16.1 17.0
BM25 + GPT-40 CoT Zero-shot 53.6 536 243 38,6 188 227 259 339
LLM-based dense retrievers
GritLM-7B SFT 24.8 323 189 19.8 17.1 13.6 17.8 20.6
GTE-QWEN-7B SFT 30.6 36.4 178 246 132 222 148 228
ReasonIR-8B SFT 26.2 314 233 300 18.0 239 205 248
Rerankers on BM25 Top-100 docs
RankGPT4 Zeroshot 338 342 16.7 27.0 223 277 11.1 247
RankZephyr-7b GPT4-distill  21.9 23.7 144 103 7.6 13.7 166 155
Rank-R1-14B GRPO (RL) 31.2 38.5 212 264 226 189 275 26.6
Rerankers on BM25+GPT-40 CoT Top-100 docs
Rank1-14B R1-distill 49.3 37.7 226 352 225 208 33.6 317
Rank-K-32B" R1-distill 50.8 494 282 46.0 273 30,5 319 379
Query expansion with BM25
HyDE-R1-14B Zero-shot 333 449 21.1 298 163 241 21.0 272
LameR-R1-14B Zero-shot 35.1 46.1 237 31.0 177 264 253 293
ThinkQE (ours)
R1-14B Zero-shot 473 525 292 40.0 193 28.0 279 349
QWENS3-8B Zero-shot 49.8 553 276 367 199 29.0 283 352
QWEN3-14B Zero-shot 51.5 532 278 372 220 16.1 275 336
OpenThinker2-7B Zero-shot 50.5 54.1 258 367 18.1 282 289 346
Phi-4-Reasoning-14B Zero-shot 51.8 53.5 29.7 385 21.8 293 277 360

Table 4: Results on the StackExchange domain of the BRIGHT benchmark in terms of nDCG@ 10. The best and the second
best results across all models are in bold and underlined font, respectively. All models are performed on the original query.
BM25+GPT-40-CoT refers to using BM25 retrieval results on queries rewritten by GPT-40 with chain-of-thought reasoning
traces for reranking. “Rank-K-32B performs computationally expensive listwise reranking over the top-20 documents.

pansion methods including HyDE (Gao et al.,
2022), Query2doc (Wang et al., 2023), MILL (Jia
et al., 2024), LameR (Shen et al., 2024) and
CSQE (Lei et al., 2024), which use strong
LLMs like text-davinci-003-175B (Ouyang et al.,
2022), GPT-3.5-turbo, LLaMA2-13B-Chat and
LLaMAZ2-70B-Chat (Meta, 2023). We also in-
clude two recent rerankers distilled from DeepSeek-
R1-685B (DeepSeek-Al, 2025) thinking traces for
comparison: Rank1-32B (Weller et al., 2025) and
Rank-K-32B (Yang et al., 2025b). For reference,
we also report results from supervised dense re-
trievers trained on MS MARCO: DPR (Karpukhin
et al., 2020), ANCE (Xiong et al., 2021), and
Contriever''T (Izacard et al., 2022).

On the BRIGHT benchmark, we consider three
categories of baselines: (1) LLM-based embed-
ding models such as GritLM-7B (Muennighoff
et al., 2025), GTE-Qwen-7B (Li et al., 2023),
and ReasonIR-8B (Shao et al., 2025), all trained
on massive amounts of retrieval data; (2) LLM-
based rerankers, including RankGPT4 (zero-
shot) (Sun et al., 2023), RankZephyr-7B (distilled
from GPT-4) (Pradeep et al., 2023), Rank1-14B
(distilled from DeepSeek-R1-685B) (Weller et al.,
2025), Rank-R1-14B (trained via reinforcement
learning) (Zhuang et al., 2025), and Rank-K-32B
(distilled from DeepSeek-R1-685B) (Yang et al.,
2025b). Rank1-14B, Rank-R1-14B, and Rank-K-
32B explicitly incorporate a thinking process dur-
ing reranking; and (3) Query expansion methods
such as HyDE and LameR, which use the same

underlying model as ThinkQE but do not incorpo-
rate any explicit thinking process.> Our method
ThinkQE is evaluated in a zero-shot configuration
across all datasets.

3.2 Main Results

Results are presented in Tables 3 and 4. On DL.19
and DL20, ThinkQE outperforms almost all other
zero-shot query expansion methods across different
underlying models, achieving the highest scores
across all metrics. Notably, it performs compet-
itively with supervised dense retrievers such as
Contriever'T, despite requiring no additional train-
ing. Furthermore, uisng the QWEN-R1-Distill-
14B model, ThinkQE surpasses R1-distilled rerank-
ing models such as Rank1-32B and Rank-K-32B
— which also leverage a thinking process and are
significantly more computationally expensive.

On the BRIGHT benchmark, ThinkQE remains
the strongest among zero-shot query expansion
methods, achieving an average nDCG@ 10 of 36.0
using the Phi-4-Reasoning-14B model. While
Rank-K-32B achieves the highest overall score
(37.9), it relies on R1 distillation and listwise
reranking over GPT-40-augmented retrieval results,
making it significantly more resource-intensive. In
contrast, ThinkQE operates in a fully training-free
setting and still outperforms several more expen-
sive rerankers, including RankGPT4 (24.7) and
Rank1-14B (31.7). Beyond its efficiency, ThinkQE

3We provide a detailed analysis of the no-thinking setting
for fair comparison with ThinkQE in Section 4.1.
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Model BRIGHT Avg.
QWEN-14B 27.6
QWEN-R1-14B w/o. thinking 29.8
QWEN-R1-14B w. thinking 32.5

Table 5: Impact on the thinking process. We compare
three configurations: the base model QWEN-14B with-
out any thinking involved, a NoThinking variant that
bypasses actual thinking by prefilling a dummy thinking
trace, and the ThinkQE model with the thinking process
enabled.

delivers consistently strong performance across do-
mains, ranking first or second in four sub-domains.

4 Analysis

In this section, we conduct a detailed analysis of
ThinkQE on the StackExchange domain of the
BRIGHT benchmark.

4.1 Impact of the Thinking Process

To evaluate the impact of the thinking process,
we conduct two ablation studies on ThinkQE: (1)
replacing the used model with its base version,
QWEN-14B-Base, which has not been trained to
produce reasoning traces, and (2) applying the No-
Thinking (Ma et al., 2025) method, where we pre-
fill the response with a fabricated thinking block
(i.e., <think>Okay, I think I have finished think-
ing.</think>) and allow the model to generate the
answer directly from that point. As shown in Ta-
ble 5, ThinkQE with thinking significantly outper-
forms both variants, underscoring the importance
of generating thinking output. We use the NoThink-
ing variant as the main baseline.

4.2 TImpact of Corpus Interaction

To evaluate the corpus interaction process, we com-
pare ThinkQE to a baseline that performs all LLM
expansions in a single round — referred to as par-
allel scaling. In contrast, ThinkQE uses corpus-
interaction scaling, distributing expansions across
multiple rounds with retrieval feedback. As shown
in Figure 1, this interaction strategy consistently
outperforms the static baseline, indicating that it-
erative refinement with evolving context is more
effective than isolated expansions.

4.3 Impact on Expansion Accumulation and
Redundancy Filter Mechanisms

We conduct a final ablation study on the two core
components of the interaction process in ThinkQE:

Parrallel scaling
—=- Corpus-Interaction scaling

w
o

BRIGHT Avg.
woow ow
N w B

\
\
\
\
\
|

w
prt

0 2 4 6 7
#LLM Calls

Figure 1: Impact of evolving corpus interaction process.

expansion accumulation, where query expansions
from different rounds are concatenated to form the
new query, and the semantic filter, which excludes
top-retrieved documents from the previous round
to encourage the introduction of new information.
As shown in Table 6, both components are essen-
tial for maximizing performance. Disabling either
mechanism leads to a noticeable performance drop,
highlighting their complementary roles in refin-
ing the query and diversifying retrieved evidence
across rounds.

Accum. Filter BRIGHT Avg.

v X 342
X v 334
v v 349

Table 6: Impact of the expansion accumulation and
redundancy filtering mechanisms.

5 Conclusion

We presented ThinkQE, a test-time query expan-
sion method enhancing exploration and diversity
through a thinking-based expansion process and
evolving interactions with the corpus. Without
requiring any training, ThinkQE consistently im-
proves retrieval performance across multiple bench-
marks by encouraging deeper coverage and adap-
tive refinement, offering a lightweight yet effective
alternative to training-based dense retrievers and
rerankers.

Limitations

The thinking process and evolving interaction pro-
cess introduce higher inference-time latency and
computational cost compared to single-shot expan-
sion methods, which may limit its practicality in
latency-sensitive or large-scale deployment scenar-
ios. Furthermore, since our experiments focus ex-
clusively on English web search tasks, the effective-
ness of ThinkQE in multilingual settings remains
unexplored.
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A Appendix
A.1 Dataset Statistics

Details about the retrieval datasets are shown in
Table 7.

Dataset #Test #Corpus
DL19 43 8,841,823
DL20 50 8,841,823
Biology 103 57,359
Earth Science 116 121,249
Economics 103 50,220
Psychology 101 52,835
Robotics 101 61,961
Stack Overflow 117 107,081
Sustainable Living 108 60,792

Table 7: Dataset Statistics.

A.2 Impact of the Thinking Process

Results across all domains on the impact of the
thinking process are provided in Table 10.

A.3 Impact of Evolving Corpus Interaction

Results across all domains on the impact of the
evolving corpus interaction are provided in Ta-
ble 11.

A.4 Core Components of the Evolving
Interaction Process

Results across all domains on the impact of the ex-
pansion accumulation and redundancy filter mech-
anisms are provided in Table 12.

A.5 Impact of A

Table 13 presents detailed results analyzing the im-
pact of A, which influences the repetition frequency
of the original query during expansion. The results
demonstrate that performance differences are small
when varying A from 3 to 6. However, lower A val-
ues tend to cause excessive repetition of the original
query, which generally hurts performance.

A.6 Effectiveness-Efficiency Analysis on
ThinkQE

We provide latency and performance trade-off re-
sults comparing model size scaling, the thinking
process, and multiple rounds in Table 14, using the
DeepSeek-R1-Distill-Qwen-14B and DeepSeek-
R1-Distill-Qwen-32B models evaluated on a sin-
gle H100 GPU. Our results show that involv-
ing the thinking process and multiple rounds in-
creases latency. However, scaling model size alone
yields limited improvements relative to latency in-
crease: moving from R1-14B without thinking

(3.71 s/query, 29.8) to R1-32B without thinking
(7.88 s/query) improves Bright Avg. by just +0.6
points (30.4) while more than doubling latency.
Adding the thinking process, although it increases
latency more, is substantially more effective: ap-
plying 1 round of thinking to R1-14B boosts per-
formance by +2.7 points (32.5) compared to R1-
14B without thinking, with latency rising to 15.40
s/query. Even with thinking enabled, scaling from
R1-14B to R1-32B brings only a small additional
gain (+0.4 points). Meanwhile, multi-round corpus
interaction offers a more efficient path to higher
effectiveness, with R1-14B 3-round reaching 34.9
(+2.4 over its 1-round version) and outperforming
R1-32B 1-round.

A.7 ThinkQE on Non-Web Search Datasets

We evaluate ThinkQE on two additional non-web
search datasets, TREC-Covid and Scifact. The re-
sults in Table 8 show that ThinkQE remains highly
competitive and often outperforms the baselines.
Note that both MILL and LameR are based on the
powerful, closed-source GPT-3.5-Turbo model.

Method TREC-Covid Scifact
BM25 59.5 679
Contriever (FT) 59.6 67.7
HyDE 59.3  69.1
Query2Doc 722 68.6
MILL 753 714
LameR 75.8 73.5
CSQE 742  69.6
ThinkQE 76.1 73.3

Table 8: Results (NDCG@10) on non-web search
datasets.

A.8 Significance Test Results of ThinkQE

We conduct significance testing by comparing
ThinkQE with the two most relevant baselines we
reimplemented on BRIGHT: HyDE and LameR
using the same QWEN-R1-Distill-14B model. The
results are presented in Table 15. Significance tests
were performed using a t-test with a p-value thresh-
old of 0.05. The results show that ThinkQE is sig-
nificantly better than HyDE and LameR on 6 out
of 7 and 5 out of 7 domains, respectively, demon-
strating its effectiveness.

A.9 Impact of Number of Rounds on
Domain-Specific Dataset

To further analyze the potential topic drift issue
during the iterative process, we examine perfor-
mance changes across one to three rounds using the
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domain-specific TREC-Covid dataset. The results,
presented in Table 9, demonstrate that increasing
from one to two rounds improves the performance,
while extending to three rounds largely maintains
performance.

Round NDCG@10

1 75.2
2 76.2
3 76.1

Table 9: Performance across iterative rounds on the
domain-specific TREC-COVID dataset.

17780



Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
QWEN-BASE-14B 36.7 45.1 219 277 168 233 21.7 276
QWEN-R1-14B w/o. thinking  39.1 456 250 300 18.0 265 244 298

QWEN-R1-14B w. thinking 42.6 50.6 262 358 18.8 284 251 325

Table 10: Detailed results on the impact of the thinking process.

#LLM calls Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
Parallel scaling

1 42.6 473 25.1 303 18.1 248 252 305
2 42.6 50.6 262 358 188 284 25.1 325
3 44.2 50.4 266 33.6 18.0 26.5 265 323
4 42.4 49.8 277 355 178 28.0 274 327
5 41.7 50.7 26.7 352 193 275 274 326
6 45.3 50.3 264 345 190 28.2 28.0 33.1
Corpus-interaction scaling

2 42.6 50.6 262 358 18.8 284 25.1 325
4 459 52.6 283 39.0 187 28.5 28.0 344
6 47.3 52.5 292 400 193 28.0 279 349

Table 11: Detailed results on the impact of the evolving corpus interaction.

Accum. Filter Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.

v X 46.4 51.5 278 395 179 282 28.0 342
X v 47.5 50.7 279 348 17.7 265 284 334
v v 473 525 29.2 40.0 193 28.0 279 349

Table 12: Detailed results on the impact of the expansion accumulation and redundancy filter mechanism.

Bio. Earth. Econ. Psy. Rob. Stack. Sus. Avg.
38.2 47.5 25.0 321 184 25,5 240 30.1
44.9 50.1 282 37.0 193 27.0 26.8 333
46.7 512 294 393 208 28.3 284 349
48.9 523 28.2 384 202 28.1 294 351
49.7 52.5 29.5 377 19.6 289 27.6 35.1
49.1 51.8 29.5 39.1 194 29.0 28.8 352

R W~

Table 13: Detailed results on the impact of \.

Model Thinking Round Latency (second/query) Bright Avg.

R1-14B No 1 3.71 29.8
R1-32B No 1 7.88 304
R1-14B Yes 1 15.40 325
R1-32B Yes 1 30.53 329
R1-14B Yes 3 45.44 349

Table 14: Effectiveness-Efficiency Analysis on ThinkQE.

Method Bio. Earth. Econ. Psy. Rob. Stack. Sus.  Avg.
HyDE 33.3 44.9 21.1 29.8 16.3 241 21.0 272
LameR 35.1 46.1 23.7 31.0 177 264 25.3 29.3

ThinkQE ~ 47.3% 525 299t 40.0M™ 193 28.0f 279" 349

Table 15: Significance testing results. T and I mean ThinkQE performs significantly better than HyDE and LameR,
respectively, as determined by a t-test with p-value 0.05 as threshold.
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