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Abstract

Using special tokens (e.g., gist, memory, or
compressed tokens) to compress context infor-
mation is a common practice for large language
models (LLMs). However, existing approaches
often neglect that position encodings inherently
induce local inductive biases in models, caus-
ing the compression process to ignore holis-
tic contextual dependencies. We propose En-
hanced Position Layout (EPL), a simple yet
effective method that improves the context com-
pression capability of LLMs by only adjust-
ing position IDs, the numerical identifiers that
specify token positions. EPL minimizes the
distance between context tokens and their cor-
responding special tokens and at the same time
maintains the sequence order in position IDs
between context tokens, special tokens, and the
subsequent tokens. Integrating EPL into our
best performing context compression model re-
sults in a 1.9 ROUGE-1 F1 improvement on
out-of-domain question answering datasets on
average. When extended to multimodal scenar-
ios, EPL leads to an average accuracy gain of
2.6 points for vision compression LLMs. 1

1 Introduction

In Transformer (Vaswani et al., 2017) architectures,
special tokens have been widely adopted as com-
pression carriers of contextual information across
natural language processing (Devlin et al., 2019;
Liu et al., 2019; Bulatov et al., 2022; Ge et al.,
2024; Li et al., 2024b) and computer vision (Doso-
vitskiy et al., 2021; Ye et al., 2025). For con-
text compression, the so-called soft prompt meth-
ods (Chang et al., 2024; Li et al., 2025) employ
encoders to condense long contexts into few spe-
cial tokens, enabling decoders to perform inference
based on compressed representations rather than

*These authors contributed equally to this work.
†Corresponding author.
1Our code is available at https://github.com/

1azybug/EPL.

raw inputs, thereby significantly reducing memory
consumption and inference latency in long-context
scenarios (Jiang et al., 2024; Xu et al., 2024; Luo
et al., 2025). We illustrate typical soft prompt ar-
chitectures in Figure 1 where special tokens are
appended at the end of the context, in order to
capture the context semantics via causal attention
mechanism in LLMs.

The design ensures full context visibility for
special tokens. However, in Transformer archi-
tectures position IDs do not need to coincide
with physical token positions and the model’s per-
ceived positional information is primarily deter-
mined by position IDs rather than physical token
positions (Vaswani et al., 2017). From this view-
point, the local inductive biases introduced by posi-
tion encodings (Devlin et al., 2019; Vaswani et al.,
2017; Su et al., 2023; Raffel et al., 2020; Press
et al., 2022) weaken the efficacy of context com-
pression under the default position layout (DPL),
due to the substantial distance between the special
tokens and the context tokens, as shown in Figure 1
(DPL). In this paper, we carefully examine position
layout designs and propose Enhanced Position
Layout (EPL) for soft prompt architectures, which
comprises Uniform Position Layout (UPL) and
Consistent Position Layout (CPL).

UPL redistributes special tokens’ position IDs to
achieve uniform distribution in the context tokens’
position ID space, as exemplified in Figure 1. By
uniformly assigning position IDs among context
token position IDs, a priori, most context tokens
would have corresponding special tokens close to
them. We assume that such a prior helps the special
tokens compress the context. We formalize such
intuitions, demonstrating the optimality of the UPL
in Section 3.2.1. During compression, because
special tokens are inserted and text chunks are reor-
ganized, the position IDs between context, special
tokens and subsequent tokens (e.g. reconstructed
tokens or subsequent tokens such as QA pairs) can

17715

https://github.com/1azybug/EPL
https://github.com/1azybug/EPL


become inconsistent compared to their original po-
sitions before compression. Our proposed CPL in
Section 3.2.2 guarantees to maintain the order of
the position ID sequence for different tokens, be-
tween different text chunks in their natural causal
order.

We empirically apply EPL to two dominant con-
text compression frameworks: ICAE (Ge et al.,
2024) and 500xCompressor (Li et al., 2024b). For
the best model, on the autoencoding (AE) task, EPL
yields a 1.8 BLEU gain and converges 9.7 times
faster than DPL; on out-of-domain question answer-
ing (QA) tasks, EPL gives an average 1.9 ROUGE-
1 F1 gain. To demonstrate the universality of EPL,
we further conduct experiments by incorporating
EPL into a more recent fine-grained compression
framework (Zhang et al., 2025) and test our EPL
equipped compressor on PwC dataset (Ge et al.,
2024), an instruction-tuning dataset containing di-
verse context-related prompts. In both scenarios,
incorporating EPL brings consistent improvement.
When extending our application to multimodality
with VoCo-LLaMA (Ye et al., 2025), EPL yields
an average 2.6 accuracy gain on multimodal bench-
marks. The improvement of EPL is consistent
across base models of different scales. Further
analysis shows that both UPL (which aims for bet-
ter context compression) and CPL (which main-
tains causal sequence ordering) are essential for
the final performance improvement across tasks.
Finally, our UPL attention map visualization con-
firms the usefulness of our specified prior: UPL
special tokens indeed focus more on tokens close
to its assigned position IDs.

2 Background

2.1 Local Bias of Position Encodings

Transformer architectures (Vaswani et al., 2017)
compute contextual token embeddings through
position-invariant self-attention. Since natural lan-
guage semantics crucially depend on token order,
various position encodings (PEs) have been pro-
posed to inject positional awareness including Si-
nusoidal PE (Vaswani et al., 2017), RoPE (Su
et al., 2023), Learnable PE (Devlin et al., 2019),
T5 Bias (Raffel et al., 2020) and ALiBi (Press et al.,
2022), etc. All approaches share the inductive bias
that adjacent tokens should correlate more strongly.
Taking the PEs with the trigonometric encoding
(e.g. Sinusoidal/RoPE) design as examples, the
position embedding at a certain position is mostly

1 2 3 4 5 6 7 8 1 2 3 4 5 6 2 5

Context Token

Memory Token

Position ID

Attention Flow

Figure 1: Comparison of UPL and DPL. In prior work
(DPL), memory tokens are assigned position IDs 7 and
8. Our method (UPL) allocates them to position IDs
2 and 5. Tokens with IDs in close proximity tend to
exhibit higher attention scores.

similar to its neighbors and the similarity decays
as the distance increases, see Appendix H.1 for
more details. ALiBi enforces this inductive bias
by applying distance-sensitive penalties to atten-
tion scores. We further show in Section 5.3 that
Learnable PE and T5 Bias learn similar local bias
through pre-training on natural text.

2.2 Position Layout

While the local inductive bias for PEs is well
known, less is known about the position layout.
For any given token sequence and model, we re-
fer to position layout as the actual position ID se-
quence that is assigned by the model to the token
sequence. Notably, in this work, we remark that the
local inductive bias applies to the position layout,
not the physical token positions.

This nuance is important but hardly noticeable
because the default position layout (DPL) often
coincides with the physical token positions as illus-
trated in DPL in Figure 1 (see Table 14 for more
details on DPL). Such position layout is helpful
for language modeling (LM) task since the task de-
pends largely on its recent context (Hu et al., 2024;
Liu et al., 2024a). However, as LLMs are becom-
ing a ubiquitous tool, we hypothesize that careful
position layouts for some tasks can inject helpful
inductive bias. In the rest of the paper, we focus on
LLM compression tasks as our testbed.

3 Method

In Section 3.1, we review existing LLM compres-
sion frameworks and their DPLs; in Section 3.2 we
describe our improved position layout.

3.1 Soft Prompt Methods

ICAE (Ge et al., 2024) is a widely used encoder-
decoder soft prompt method. Its encoder com-
presses long context into a few memory tokens,
after which the decoder performs inference con-
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ditioned only on the memory tokens to achieve
faster inference speed. The left side of Figure 3
in the Appendix illustrates this process through an
example. ICAE can be trained through two stages:
continued pretraining and fine-tuning. Continued
pretraining trains on a combination of AutoEncod-
ing (AE) tasks and Language Modeling (LM) tasks,
which trains the LLM encoder so that the encoded
memory tokens enable a frozen LLM to losslessly
reconstruct the original context and at the same
time predict the subsequent tokens following the
context to maintain ICAE’s generation capability.
The right side of Figure 3 illustrates the AE train-
ing process. Fine-tuning further trains the ICAE
encoder to adapt to real-world applications such as
question answering (QA) that we use in this work.
We review the AE and LM pretraining as well as
QA fine-tuning in the next subsections. To han-
dle arbitrarily long contexts, we adopt the multi-
chunk version of ICAE, which divides any long
context into chunks for independent compression
and then aggregates the resulting memory tokens
to represent the complete long context. 500xCom-
pressor (Ge et al., 2024) is similar to ICAE, with
the difference of using the KV Cache of memory
tokens as the compression carrier instead of the
output of memory tokens.

3.1.1 Pretraining
During the pretraining stage, for a token sequence
X = {x0, x1, . . . , x|X|−1}, we take the first p to-
kens as the context Xcontext = {x0, x1, . . . , xp−1}
and the subsequent |X| − p tokens as the com-
pletion Xcompletion = {xp, xp+1, . . . , x|X|−1}. The
AE task only uses Xcontext, while the LM task lever-
ages both Xcontext and Xcompletion.

Compress Xcontext is partitioned into k = ⌈p/L⌉
chunks (with chunk size L) where each chunk
S(i) = {x(i−1)L, x(i−1)L+1, . . . , xiL−1} is ap-
pended with a set of learnable memory tokens
M (i) = {m(i)

0 ,m
(i)
1 , . . . ,m

(i)
|M |−1}. A LLM learns

to encode each chunk into memory output tokens
M̃ (i) and key-value cache KV (i):

M̃ (i),KV (i) = LLM([S(i);M (i)] | θLoRA) (1)

where [; ] denotes concatenation along the sequence
dimension. All M (i) share the same learnable
parameters M , and θLoRA denotes a set of low-
rank adapter (Hu et al., 2022) parameters for
the LLM. The final compressed representation
is obtained by concatenating the results of each

chunk: M̃ = [M̃ (1); M̃ (2); . . . ; M̃ (k)] or KV =
[KV (1);KV (2); . . . ;KV (k)].

Pretraining AE loss in ICAE is given by:

LAE = − logP
(
Xcontext | [M̃ ; [AE]]

)
(2)

where [AE] is a learnable token prompting the
frozen decoder to generate Xcontext as reconstruc-
tion. Similar to the AE task, the loss for the LM
task in ICAE is given by:

LLM = − logP
(
Xcompletion | [M̃ ; [LM]]

)
(3)

where [LM] is a learnable token that prompts
the LLM to perform completion. We employ a
weighted loss function for joint training2 :

Lpretrain = αLAE + (1− α)LLM, α = 0.5

Position Layout Recall that for encoding, the to-
ken sequence starts with text chunk S(i) followed
by memory tokens M (i). For decoding, the to-
ken sequence starts with memory token outputs M̃
for ICAE or KV for 500xCompressor followed
by [LM] or [AE] and then subsequent tokens (i.e.
Xcontext or Xcompletion).

The ICAE default position layout (DPL) al-
ways coincides with their physical token posi-
tions. For ICAE encoder for example, this means
its DPL starts with position ID 0 and ranges till
|S(i)| + |M (i)| − 1. For 500xCompressor, its en-
coder DPL also coincides with physical token posi-
tions. However, the position IDs of the decoder’s
KV (i) are the same as the position IDs of the
encoder’s M (i) (the memory tokens of the i-th
chunk)3, which implies that the decoder DPL for
the KV 4 consists of k repeated ranges from |S(i)|
to |S(i)|+ |M (i)| − 1. During decoding, DPL for
the rest of the tokens (e.g. [AE], Xcontext in AE
task) still coincides with their physical token posi-
tions. Table 2 and Table 3 show examples of ICAE
and 500xCompressor DPL with Xcontext having two
chunks (k=2) under LM and AE task respectively.

2Unlike Ge et al. (2024)’s per-instance task allocation (AE
with probability α /LM with 1 − α), our joint training pro-
cesses both tasks simultaneously through shared compressed
representations, improving training efficiency by eliminating
redundant context compression operations.

3This is because the KV Cache has already cached the
position information of the key_state, see this code snippet.

4Recall that KV concatenates all KV (i) with KV =
[KV (1);KV (2); . . . ;KV (k)].
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k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

S(1) S(2)

x0 x1 . . . x509 m
(1)
0 m

(1)
1 . . . m

(1)
101 x510 x511 . . . x1019 m

(2)
0 m

(2)
1 . . . m

(2)
101

DPL(ICAE/500x) 0 1 . . . 509 510 511 . . . 611 0 1 . . . 509 510 511 . . . 611
EPL 1 2 . . . 510 3 8 . . . 508 511 512 . . . 1020 513 518 . . . 1018

Table 1: Position layout of the encoder for S(1) and S(2). We show DPL’s problematic position IDs in red, EPL’s
UPL-adjusted IDs in green, and CPL-adjusted IDs in blue. For more details, see Appendix A, Table 15.

k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

m̃
(1)
0 /KV

(1)
0 . . . m̃

(1)
101/KV

(1)
101 m̃

(2)
0 /KV

(2)
0 . . . m̃

(2)
101/KV

(2)
101 [AE] x0 x1 . . . x1019

DPL(ICAE) 0 . . . 101 102 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 . . . 611 510 . . . 611 204 205 206 . . . 1224

EPL 3 . . . 508 513 . . . 1018 0 1 2 . . . 1020

Table 2: Position layout example of the decoder in AE Task. For more details, see Appendix A, Table 16.

k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

m̃
(1)
0 /KV

(1)
0 . . . m̃

(1)
101/KV

(1)
101 m̃

(2)
0 /KV

(2)
0 . . . m̃

(2)
101/KV

(2)
101 [LM] x1020 x1021 . . . x2039

DPL(ICAE) 0 . . . 101 102 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 . . . 611 510 . . . 611 204 205 206 . . . 1224

EPL 3 . . . 508 513 . . . 1018 1020 1021 1022 . . . 2040

Table 3: Position layout example of the decoder in LM Task. For more details, see Appendix A, Table 17.

3.1.2 Fine-tuning
ICAE (Ge et al., 2024) allows further fine-tuning
to enhance downstream task performance by en-
abling memory tokens to learn to focus on the to-
kens that are most related to the task; the train-
ing process is similar to LM pretraining. Let
each training instance consist of a triplet (C,Q,A),
where context C is compressed into either M̃
(ICAE) or KV (500xCompressor). The answer
A = {a0, a1, ..., a|A|−1} is generated conditioned
on the compressed representation and the question
Q = {q0, q1, ..., q|Q|−1}. The loss for QA task in
ICAE is given by:

LQA = − logP
(
A | [M̃ ; [LM];Q]

)
(4)

The QA loss for 500xCompressor is similar to
Eq. (4), with the difference of conditioning on KV
instead of M̃ .

Position Layout The DPL for the QA task is sim-
ilar to the DPL for the LM task and can be derived
by replacing the Xcompletion in the LM task with the
concatenation [Q;A]. The resulting DPL for [Q;A]
coincides with their physical token positions. For
the detailed DPL, see Table 18 in the appendix.

3.2 Enhanced Position Layout

For the DPL in soft prompt methods as described
in Section 3.1, we identify two limitations:

Distant Memory Tokens Memory tokens in the
soft prompt framework mainly aim to compress the
context tokens so that the inference can be solely
based on them to accelerate inference. However,
the memory tokens in DPL consist of a continuous
range (i.e. 510-611 in Table 1) and are all very
distant from the context token’s range (i.e. 0-509).
Given the local inductive bias of PEs that we briefly
review in Section 2.1, it would be advantageous to
have memory token position IDs to be both close
to context token position IDs and covering the con-
text token ID range. In Section 3.2.1, we propose
Uniform Position Layout (UPL) that has memory
token position layout covering the context token
ID range while achieving minimum ID distances
between memory tokens and context tokens.

Inconsistent Layout Standard Transformer DPL
coincides with physical token positions, which im-
plies that tokens with larger position IDs follow
the tokens with smaller position IDs, reflecting
the causal relationship between the tokens through
their assigned IDs. However, we observe that
some DPL does not comply with such proper-
ties. For example, 500xCompressor’s decoder DPL
as shown in Table 3 starts with the KV position
IDs {510, 511, . . . , 611} but is followed by posi-
tion ID sequence {204, 205, . . . , 1224} represent-
ing [[LM];Xcompletion]. In Section 3.2.2, we detail
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Algorithm 1 Generate Uniformly Distributed Com-
pression Position IDs

Require: Memory tokens count |M |, start/end IDs
v1, vL

Ensure: Uniform positions U∗

1: r ← (vL − v1 + 1)/|M |
2: o← r−1

2
3: U∗ ← torch.linspace

(
v1 + o, vL − o, |M |

)

4: return torch.round(U∗)

our Consistent Position Layout (CPL) design which
guarantees the resulting position layout to maintain
the causal structure amongst position IDs. We hy-
pothesize that aligning the causal structures for
position IDs will benefit performance.

3.2.1 Uniform Position Layout
Recall that for memory token position layout, we
aim to achieve two objectives: (1) the memory to-
ken position ID should be close to context tokens
(2) for any context token, there is some memory
token(s) whose IDs are close to it. Figure 1 (b)
Uniform Position Layout (UPL) illustrates such
design, for any context token position ID, the near-
est memory token position ID does not deviate
more than 1, which sets contrast to DPL where the
position ID of the first context token x1 is far from
all memory token position IDs. In the following,
we formalize the desiderata to derive analytically
the optimal position layout UPL.

Given a sequence of context token position
IDs V = {v1, v2, . . . , vL}, vi ∈ N and vi+1 −
vi = 1 ∀i, we aim to devise an algorithm to
find position IDs for |M | memory tokens U =
{u1, u2, . . . , u|M |}, uj ∈ N 5, that minimize the
following function:

max
vi∈V

(
min
uj∈U

|vi − uj |
)

where minuj∈U |vi − uj | represents the distance
from the i-th context token to its nearest memory
token, and maxvi∈V takes the maximum of all min-
imum distances across context tokens.

The optimal solution divides V evenly into |M |
groups, with each group containing at most ⌈r⌉
tokens (r = L

|M | ), and assigns each memory token
the middle position of each group. In this case,

5Although non-integer position IDs are valid in RoPE (Su
et al., 2023), they have not been encountered during pre-
training, making it difficult for the model to effectively utilize
these non-integer position IDs.

the maximum distance from any context token to
its nearest memory token is

⌊
⌈r⌉
2

⌋
6. Intuitively,

the solution spreads memory token position IDs
uniformly in the range of context token position
IDs to ensure that no context token position ID is
too far away. We detail the memory token position
layout algorithm in Algorithm 1 that we apply for
each chunk to be compressed. Table 1 EPL row
shows how the memory token position layout in
UPL differs from DPL.

3.2.2 Consistent Position Layout
In this subsection, we propose consistent position
layout (CPL) to ensure that the decoder position
layout maintains the causal sequence order in posi-
tion IDs between context tokens, [LM]/[AE], and
the subsequent tokens. As shown in Table 2 and 3
EPL rows, we keep memory token position layout
unchanged compared to its encoding stage.

For tokens in Xcontext and Xcompletion, we simply
assign their original sequence positions as their po-
sition IDs. For example, in the AE task, the token
sequence [[AE];Xcontext] will be equipped with the
position layout {0, 1, . . . , p} where p is the context
length to reflect the tokens to be reconstructed from
memory tokens.7 For the LM task, the position lay-
out is {p, p+1, . . . , |X|} for [[LM];Xcompletion] as
Xcompletion logically follows Xcontext in the physical
token space. Table 2 and Table 3 EPL rows show
concrete CPL during decoding through examples.

4 Experimental Results

4.1 Experimental Setup
Data For continued pretraining, we utilize
the SlimPajama-6B (Soboleva et al., 2023) corpus.
To evaluate model fine-tuning performance, we
use the MRQA (Fisch et al., 2019a) dataset as our
testbed. The dataset contains evaluation on both
in-domain scenarios where the validation dataset
has its training counterpart used during training and
out-of-domain scenarios. We report results from
both settings but mainly discuss results for out-of-
domain scenarios as it assesses more critically the
soft prompt compression effectiveness.

Model Configuration We evaluate our method
on Llama-3.2-1B (Grattafiori et al., 2024). For effi-
cient adaptation, we apply LoRA(Hu et al., 2022)

6Note that any position layout will have its maximum
distance ≥

⌊
⌈r⌉
2

⌋
, proving the optimality.

7Remark that the procedure is the inverse of memory token
construction presented in Table 1.
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to the query and value projection matrices within
the multi-head attention layers of the encoder. The
LoRA rank is set to 128, and the LoRA alpha is set
to 256. Following ICAE (Ge et al., 2024), we do
not train the decoder. In our default configuration,
the number of memory tokens is |M | = 102, the
chunk size is L = 510 8, implying a r = 5 com-
pression ratio. All models are further pretrained
and fine-tuned for 20k steps with a batch size of
16. Further hyperparameter details can be found in
Appendix C, Table 11.

4.2 Fine-tuning Results

Following ICAE and 500xCompressor, we pre-
train then fine-tune Llama-3.2-1B; we integrate
our EPL changes described in Section 3.2 into dif-
ferent architectures respectively, then follow the
same pretraining and fine-tuning steps. We evaluate
the downstream performance using MRQA (Fisch
et al., 2019b) for different experiments. We assess
the quality of the model’s answers using ROUGE-1
F1 (Lin, 2004) and Exact Match (EM) and report
out-of-domain results in Table 4.

For both ICAE and 500xCompressor, incorpo-
rating EPL significantly improves the performance.
The average ROUGE-1 F1 improves from 39.95 to
43.87 for ICAE and improves from 45.76 to 48.03
for 500xCompressor. The improvement is observed
for most domains, suggesting that the method is
overall effective. We observe a similar improve-
ment for in-domain settings (see Table 19 in the
appendix).

To further validate the effectiveness of EPL for
general context compression, we test on the PwC
dataset (Ge et al., 2023) which contains diverse
scenarios and question types. The results in Ta-
ble 5 show that EPL significantly improves down-
stream task performance compared to its counter-
part, demonstrating its effectiveness.

4.3 Pretraining Results

Through pretraining, LLMs have learned to com-
press context into memory tokens, allowing evalu-
ation over memory tokens for their reconstruction
and language modeling capability. The evaluation
methodology is widely adopted for soft prompt-
ing (Ge et al., 2024; Li et al., 2024a) and we expect
EPL to bring a similar improvement to the fine-
tuning settings since EPL incorporates useful prior

8As context often exceeds the chunk size, we exten-
sively evaluate multi-chunk settings, contrary to ICAE and
500xCompressor.

to reconstruction and language modeling through
its position layouts. The reconstruction quality
and language modeling capability are evaluated us-
ing BLEU-4 (Papineni et al., 2002) and perplexity
(PPL), respectively9.

Table 4 confirms the EPL improvement. For
both ICAE and 500xCompressor architectures, we
observe better language modeling capability with
lower perplexity as well as better reconstruction
capability with higher BLEU. The improvement is
more significant with the weaker ICAE model but
significant for both architectures.

4.4 Applications to Multimodal Models

As EPL can be applied to all applications that com-
press context into special tokens, in this subsection,
we showcase its application in multimodality. We
follow VoCo-LLaMA (Ye et al., 2025) for visual
question-answering tasks. Given a triplet (I,Q,A),
the model encodes image I into a sequence of
576 visual tokens V t = {vt0, vt1, ..., vt575}, and
subsequently compresses V t into the KV values
of Vision Compression (VoCo) tokens. VoCo-
LLaMA adopts a single training stage akin to fine-
tuning stage in 500xCompressor and employs a
single-forward via an attention mask (see Figure 8
for the attention mask detail) to prevent Q and A
from directly accessing V t. VoCo-LLaMA uses
DPL and we follow its experimental setup to ex-
amine the effect of changing DPL to EPL. The
position layout changes are illustrated on top of
Figure 8.

We evaluate VoCo-LLaMA with 128 VoCo to-
kens (i.e. 4.5x compression ratio) and report per-
formance on multimodal benchmarks. As shown
in Table 6, VoCo-LLaMA combined with EPL sig-
nificantly outperforms both its DPL counterpart
from our reproduction and the results reported by
Ye et al. (2025). We observe improvement across
all three tasks, validating the universality of EPL.

4.5 Ablation Studies

We conduct ablation studies to analyze the inde-
pendent effects of UPL and CPL in EPL (see Sec-
tion 3.2 for the detailed description of UPL and
CPL). LM perplexity and AE BLEU are measured
under the same experimental settings as in Sec-
tion 4.3 while out-of-domain performance is mea-
sured in the same way as in Section 4.2. We show
the results in Table 7 which confirm that:

9Reconstruction texts are generated via greedy search.
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LM AE BioASQ DROP DuoRC RACE RE TQA Avg.

PPL BLEU F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

ICAE(DPL) 12.18 31.80 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(EPL) 11.42 95.98 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 11.22 93.73 44.22 31.38 40.47 29.34 32.20 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(EPL) 10.80 98.50 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 31.14 48.03 32.29

Table 4: Pretraining and fine-tuning results. For the pretraining results, we report perplexity for completion and
BLEU-4 (Papineni et al., 2002) score for reconstruction calculated on a held-out set of 1k examples. For the
fine-tuning results, we report out-of-domain results, which include 6 datasets: BioASQ (Tsatsaronis et al., 2015),
DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction (RE) (Levy et al.,
2017), and TextbookQA (TQA) (Kembhavi et al., 2017). F1 in all the tables is ROUGE-1 F1 (Lin, 2004).

ROUGE-1 F1 BLEU4

ICAE-1B (DPL) 42.71 18.05
ICAE-1B (EPL) 45.59 21.04

Table 5: Results on PwC (Ge et al., 2024).

SQA(OOD) MMB(OOD) VQAv2(ID)

DPL* - 61.0 76.9
DPL 64.9 59.9 76.9
EPL 66.5 64.6 78.4

Table 6: Results of VoCo-LLaMA on SQA (Lu et al.,
2022), MMB (Liu et al., 2024b), and VQAv2 (Goyal
et al., 2017). Results marked with * are from (Ye et al.,
2025).

UPL improves performance by injecting com-
pression prior For all testing cases (AE and LM
during pretraining and MRQA out-of-domain per-
formance for fine-tuning) over all architectures
(ICAE and 500xCompressor), UPL improves per-
formance compared to its counterparts. We note
that the improvement is more significant for the
weaker ICAE model. For example, the MRQA out-
of-domain ROUGE-1 F1 improves by 3.72 points
while the improvement is 1.07 points for 500xCom-
pressor. The results confirm that by carefully de-
signing the memory position layout for compres-
sion tasks, the memory tokens obtain useful com-
pression inductive prior, which improves the com-
pression efficiency (i.e. AE task performance)
and consequently downstream task performance
as shown by MRQA out-of-domain performance.

CPL improves performance by maintaining to-
ken sequential orders Similarly, we observe
consistent improvement across the board by in-
corporating CPL. We note that the performance
improvement for CPL on top of UPL is more
prominent for the stronger 500xCompressor model;
MRQA out-of-domain ROUGE-1 F1 improves by
1.20 points while the improvement is only 0.20 for

LM AE Out-of-Domain

PPL BLEU F1 EM

ICAE-1B 12.18 31.80 39.95 27.31
+UPL 11.50 72.35 43.67 29.11
+UPL & CPL (i.e. EPL) 11.42 95.98 43.87 29.50
500x-1B 11.22 93.73 45.76 31.45
+UPL 10.94 95.86 46.83 31.64
+UPL & CPL (i.e. EPL) 10.80 98.50 48.03 32.29

Table 7: Ablation study on EPL integration. +UPL
applies only UPL to encoder; UPL & CPL (i.e. EPL) ap-
plies both UPL and CPL. Reported values are averages.
More ablation results are in Tables 21 and Tables 22.

ICAE. We think this is because ICAE DPL main-
tains the token sequential orders between Xcontext,
[LM], and Xcompletion while 500xCompressor does
not. As illustrated in Table 3, while the ICAE DPL
coincides with physical token sequence positions,
the 500xCompressor DPL exhibits KV position
IDs larger than the [LM] token position ID (and
some Xcompletion position IDs), breaking the causal
relationship between {Xcontext, [LM], Xcompletion}
in the position layout.

4.6 Scalability Results
We conduct experiments at 3B and 8B scales from
the same model family to verify method scalability.
Table 8 shows that EPL achieves performance im-
provements at all scales and the improvement does
not attenuate with larger scale. For example, at 8B
scale, the MRQA ROUGE-1 F1 increases by 14.03
points for ICAE and by 1.89 points for 500xCom-
pressor, which is similar to the improvement ob-
served in 1B case in Table 4, holding promise for
the method’s effectiveness on large-scale language
models. More detailed results on MRQA can be
found in Table 19 and 20.

4.7 Result of Fine-Grained Compression
To further validate the effectiveness of EPL, we
conduct additional experiments on Fine-Grained
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LM AE Out-of-Domain

PPL BLEU F1 EM

Llama-3.2-3B
ICAE(DPL) 10.33 48.12 42.49 29.87
ICAE(EPL) 9.07 97.05 55.03 38.54
500x(DPL) 9.44 96.86 51.37 36.58
500x(EPL) 8.68 99.34 57.71 40.49
Llama-3.1-8B
ICAE(DPL) 9.22 49.08 43.09 30.01
ICAE(EPL) 7.61 98.82 57.12 39.76
500x(DPL) 7.61 97.68 57.42 40.32
500x(EPL) 7.40 99.49 59.31 41.45

Table 8: Results at Llama-3.2-3B (Grattafiori et al.,
2024), and Llama-3.1-8B. Reported values are averages.

Compression (FGC) (Zhang et al., 2025). FGC
shares a similar motivation with our UPL, as it
divides the context into finer-grained units and in-
terleaves memory tokens among them. Since FGC
places memory tokens after these fine-grained units,
EPL can be naturally applied to enhance its perfor-
mance by setting each memory token’s position ID
to the middle position of the corresponding fine-
grained unit. Given that FGC utilizes the KV cache
as its compression carrier like the 500xCompressor,
we incorporate FGC into the 500xCompressor ar-
chitecture maintaining the same experimental setup
as in Section 4.2.

LM AE Out-of-Domain

PPL BLEU F1 EM

500x-1B 11.22 93.73 45.76 31.45
+EPL 10.80 98.50 48.03 32.29
+FGC 11.03 94.49 45.52 30.40
+FGC & EPL 10.80 98.58 47.54 32.45

Table 9: Results of fine-grained compression (Zhang
et al., 2025).

EPL consistently enhances FGC performance
As shown in Table 9, applying EPL to the FGC
yields consistent performance improvements across
all evaluation metrics. These results demonstrate
that EPL’s position layout adjustments provide a
generalizable enhancement to existing compression
methods.

4.8 Sensitivity Analysis for Compression
Ratios

We conduct a sensitivity analysis of compression
ratios to evaluate EPL’s robustness with experimen-
tal settings aligned with Table 4.

As shown in Table 10, the results demonstrate

LM AE Out-of-Domain

PPL BLEU4 F1 EM

ICAE-1B (DPL) 5x 12.18 31.80 39.95 27.32
ICAE-1B (EPL) 5x 11.42 95.98 43.87 29.50
ICAE-1B (DPL) 15x 12.18 8.12 34.46 23.33
ICAE-1B (EPL) 15x 12.43 52.90 36.71 23.90
ICAE-1B (DPL) 31x 12.30 6.83 33.46 22.65
ICAE-1B (EPL) 31x 12.55 18.09 31.63 21.01
ICAE-1B (DPL) 51x 12.18 3.81 29.99 20.39
ICAE-1B (EPL) 51x 12.55 10.19 31.46 21.01

Table 10: Results of different compression ratios.

that EPL significantly outperforms DPL across
compression ratios up to 15x, encompassing the
majority of practical application scenarios, al-
though improvement attenuates as the compression
ratio goes up. This performance range is particu-
larly relevant, as lossless encoders typically fail to
achieve compression ratios exceeding 10x (Kuratov
et al., 2025). EPL performance improvement be-
comes less consistent at higher compression ratios,
which we discuss further in the Limitation Section.

5 Analysis

5.1 Training Curve

During pretraining, we observe that the adoption
of EPL significantly accelerates the convergence
speed of the AE loss. In the 8B-500xCompressor
setting, for example, EPL reduces the training steps
required to achieve an AE loss of 0.01 from 9.7k
to 1.0k steps, while effectively mitigating AE loss
fluctuations. This suggests that the prior informa-
tion that EPL incorporates is well-suited for AE
tasks. For more discussion, see Appendix E.

5.2 Attention Visualization

To verify whether the performance improvement
is indeed due to more suitable attention patterns
for compression tasks idealized in Figure 1, we
visualize the summed attention matrices of all at-
tention heads in the second and final layers of the
ICAE-3B model (Figure 6 and Figure 7) after the
model has been fine-tuned on MRQA tasks.

For the second layer, we observe that the mem-
ory token under UPL attends to its surrounding10

context tokens, forming a slope (central top of Fig-
ure 6), in contrast to DPL that only exhibits self-
attention among memory tokens, showing that the
attention adheres to our specified prior through EPL

10In terms of position IDs, not physical token positions.
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even after learning11. In the final layer (Figure 7),
UPL maintains the slope pattern, while DPL over-
comes the position encoding resistance and attends
to distant context tokens through learning without
a clear pattern.

5.3 Learnable PEs
Our results rely on the local bias of PEs that are
explicitly defined in (Vaswani et al., 2017; Su et al.,
2023; Press et al., 2022). We examine in this sec-
tion empirically the properties of learnable position
encodings (Devlin et al., 2019; Raffel et al., 2020).

Figure 9 shows the cosine similarity of
BERT’s (Devlin et al., 2019) position embeddings
where we observe significantly higher similarity
between adjacent position embeddings compared
to distant tokens. Similarly, the bias values of T5
Bias (Raffel et al., 2020) decay with increasing rel-
ative distance as shown in Figure 2, indicating that
attention is stronger among close tokens.

BERT’s [CLS] token (position ID 0) shows a
special pattern as shown in Figure 10: in contrast
to other tokens, its cosine similarities are not higher
with its adjacent tokens. Given that the [CLS] token
behaves like a compressed memory token trained
using the next sentence prediction, the phenomenon
motivates our current work, suggesting that differ-
ent priors should be given to special tokens for best
performance.

6 Related Work

Soft Prompt Methods GIST (Mu et al., 2023)
trains LLMs with modified attention mechanisms
(similar to Figure 8) to compress prompt infor-
mation into a few gist tokens. AutoCompres-
sor (Chevalier et al., 2023) trains an LLM to recur-
sively compress long prompts by combining com-
pressed tokens with new sub-prompts in each iter-
ation, ultimately collecting all compressed tokens
to form a compact representation. ICAE (Ge et al.,
2024) introduces an AE task enabling LLMs to pre-
train compression capabilities on large-scale cor-
pora, requiring only minimal parameter tuning for
the encoder while freezing the decoder. 500xCom-
pressor (Li et al., 2024b) builds upon ICAE by
changing the information carrier from memory to-
ken outputs to memory tokens’ KV values. Uni-
ICL (Gao et al., 2024b) and SelfCP (Gao et al.,
2024a) freeze both the encoder and decoder and

11The angle of the slope is around 11◦ (arctan(1/5) =
11.3◦ at a compression rate of 5), which is consistent with our
UPL conception illustrated in Figure 1.

train only a connector module to transform the en-
coder’s output memory tokens into decoder inputs.
VoCo-LLaMA (Ye et al., 2025) is the first to use
LLMs for compressing visual tokens. Similar to
GIST, it compresses visual token information into
VoCo tokens through modified attention masks, out-
performing methods like Q-Former (Li et al., 2023)
and average pooling with linear projection (Li et al.,
2024a). None of these methods discuss the impact
of position layout and our EPL can be applied to
all these soft prompt methods.

Position Layout Although we are not aware of
position layout work in the compression domain,
we find related work in multimodality by consid-
ering memory tokens as another modality. Due
to images being two-dimensional and text being
one-dimensional, handling mixed image-text posi-
tional layout remains an open question. Current
mainstream approaches in multimodality flatten 2D
images into 1D sequences (Liu et al., 2023b,a; Bav-
ishi et al., 2023; Lu et al., 2024; Sun et al., 2024).
Seeking a more elegant solution, Su (2024) pro-
poses RoPE-Tie by placing visual and text tokens
along the diagonal (y = x) in 2D space. Although
Su (2024) does not thoroughly validate its design,
as the approach maintains the sequence order be-
tween modalities and the internal locality of images
and text respectively, our empirical results suggest
that the design can result in better performance.
Qwen2-VL (Wang et al., 2024) adopts similar de-
signs in video domains.

7 Conclusion

We examine position layout, an understudied topic
in context compression, and propose EPL for soft
prompt methods. EPL improves over default posi-
tion layout by bringing memory tokens close to its
context and at the same time maintains the logical
sequence token ordering among context, memory
tokens and the subsequent tokens. Extensive exper-
iments show EPL enhances compression efficiency
and downstream performance across architectures
and modalities.

Given LLM’s widespread use, we believe exam-
ining position layout will benefit problems beyond
context compression by adopting a prior tailored
to tasks that can be expressed in the position lay-
out. We hope EPL’s success fosters research in this
underexplored area.
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Limitations

Throughout our experiments, we have tested and
confirmed EPL’s effectiveness under 5x, 15x, 51x
compression ratios for text reconstruction and QA
tasks and 4.5x compression ratio for visual QA.
There remains a question as to whether our method
is still effective at high compression ratio. We don’t
have a positive outlook on this question.

First, EPL, requiring memory tokens to achieve
uniform coverage across the context, intrinsically
aligns with lossless compression scenarios (i.e., au-
toencoding tasks) which assume that “all tokens in
the context are equally important”; however, un-
der high compression ratio (lossy compression),
with information carrier capacity being limited, fo-
cus should be placed on important tokens, which
violates our “equally important” assumption. Em-
pirically, Figure 10 shows that the BERT’s [CLS]
would have higher attention to some tokens without
a clear pattern. Our compression ratio analysis in
Table 10 and results in Table 13 on VoCo-LLaMA
also show that EPL does not demonstrate any sig-
nificant gains when used under high compression
ratios.

The analysis suggests that high-ratio lossy com-
pression may require a compression mechanism
that goes beyond our current work. At a higher
level, this suggests that when one adapts position
layout methods to different application scenarios,
the success can highly depend on whether the con-
ceived layout captures the underlying prior charac-
teristics of specific tasks.
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A Detailed Position Layout

Detailed position layouts are provided in this sec-
tion. Table 14 illustrates the position layout for
LLMs without compression under standard condi-
tions, reflecting natural language priors. Table 15
details the encoder’s position layout. For the de-
coder, position layouts are described in Tables 16,
17, and 18, with slight variations depending on the
specific task (AE, LM, or QA). Each of these tables
(Tables 15, 16, 17, and 18) includes a formula at
the top representing the generalized layout. Be-
low the formula, an illustrative example is given
using a context length |C| = p = 1020, chunk size
L = 510, compression ratio r = 5, total sequence
length |X| = 2040, question length |Q| = 50, and
answer length |A| = 5.

B Overview of ICAE

ICAE (Ge et al., 2024) is an autoencoder frame-
work to compress long contexts into short compact
memory slots. The method operates by concate-
nating designated memory tokens to the end of the
input sequence before an encoder processes the en-
tire combined sequence. Subsequently, a decoder
reconstructs the original sequence using only the
information contained within the memory tokens.
ICAE is trained in two main phases. It is first pre-
trained on massive text data using a combination
of autoencoding and language modeling objectives,
enabling it to generate memory slots that represent
the original context. Following pretraining, the
model is fine-tuned on instruction data for the pur-
pose of producing desirable responses to various
prompts. An overview of the ICAE framework is
shown in Figure 3.

C Hyperparameters

For the 1B and 3B models, we perform continued
pre-training on sequences with lengths |X| rang-
ing from 510 to 2040. For the 8B model, the in-
put sequence length |X| ranges from 510 to 4080
during continued pre-training. We take the first
p = ⌊|X|/2⌋ tokens as the context. Additional
hyperparameters are listed in Table 11.

D Detailed Results

In this section, we provide detailed results. Consid-
ering the potential risk of data leakage where LLMs
may have encountered context information from
evaluation datasets during the pretraining phase(Li

Hyperparameter Value

Optimizer AdamW
Betas (0.9, 0.95)
Weight decay 0.1
Learning rate 1e-4 (pretrain)

5e-5 (fine-tuning)
Scheduler Constant
Batch size 16
Warmup 300
Training steps 20k (pretrain)

20k (fine-tuning)
Clip norm 2.0

Table 11: Hyperparameters for training

et al., 2024b), we also report on NoContext and
FullContext settings where NoContext performs
inference solely based on the question and Full-
Context utilize the complete context and the ques-
tion for inference. In both cases, we only train
[AE] and [LM] tokens to guide the model execut-
ing corresponding tasks.

Table 12 fully presents the performance of ICAE
and 500xCompressor of different scales on LM
tasks and AE tasks. Table 19 and Table 20 respec-
tively show all results of these models in-domain
and out-of-domain in MRQA. Ablation results in-
domain and out-of-domain in MRQA are presented
in Table 21 and Table 22, respectively. Table 13
shows all results of VoCo-LLaMA on multimodal
benchmarks.

PPL(AE) PPL(LM) BLEU(AE)

Llama-3.2-1B

NoContext 11.56 13.25 0.00
ICAE(DPL) 1.40 12.18 31.80
ICAE(EPL) 1.04 11.42 95.98
500x(DPL) 1.04 11.22 93.73
500x(EPL) 1.01 10.80 98.50
FullContext 1.02 9.90 33.49

Llama-3.2-3B

NoContext 9.58 11.02 0.00
ICAE(DPL) 1.49 10.33 48.12
ICAE(EPL) 1.02 9.07 97.05
500x(DPL) 1.02 9.44 96.86
500x(EPL) 1.00 8.68 99.34
FullContext 1.06 8.25 60.16

Llama-3.1-8B

NoContext 7.79 9.02 0.00
ICAE(DPL) 1.58 9.22 49.08
ICAE(EPL) 1.00 7.61 98.82
500x(DPL) 1.01 7.61 97.68
500x(EPL) 1.00 7.40 99.49
FullContext 1.00 7.30 98.00

Table 12: Perplexity of Xcontext and Xcompletion, and
BLEU score for the reconstruction quality of Xcontext,
calculated on a held-out set of 1k examples.
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voco_num SQA(OOD) MMB(OOD) VQAv2(ID)

Lower Bound* 1 60.7 22.3 41.2

DPL* 2 - 60.1 73.5
DPL 2 66.1 61.5 73.7
EPL 2 67.6 61.4 69.5

DPL* 128 - 61.0 76.9
DPL 128 64.9 59.9 76.9
EPL 128 66.5 64.6 78.4

Upper Bound* 576 66.5 64.0 77.7

Table 13: Results of VoCo-LLaMA on SQA (Lu et al.,
2022), MMB (Liu et al., 2024b), and VQAv2 (Goyal
et al., 2017) from our experiments. Results marked with
* are from (Ye et al., 2025).

Figure 2: T5 bias.

E Training Curves

This section provides training curves. Figure 4 and
Figure 5 respectively show the training curves of
ICAE and 500xCompressor of different scales dur-
ing pretraining. For AE loss, it can be observed
that ICAE(DPL) struggles to decrease to 0, while
500xCompressor(DPL) requires a period of oscil-
lation before converging near 0. When UPL is
applied, their AE loss rapidly converges to around
0.

F VoCo-LLaMA

VoCo-LLaMA (Ye et al., 2025) employs a modi-
fied attention mask which restricts text tokens from
attending to vision tokens. Figure 8 illustrates this
mask, and we have indicated its position layout at
the top of the figure.

G Attention Visualization

Attention maps are presented in this section. Due
to the low attention values of memory tokens in
the first layer (which appear almost empty in the
figure), we present the attention map of the second
layer. See Figure 6. We provide a magnified view
of the self-attention of memory tokens and their

attention to other tokens. It can be observed that
in the second layer, memory tokens in DPL only
attend to themselves, while in UPL, they are able to
attend to the entire context. Additionally, we also
present the attention map of the last layer, shown
in Figure 7. We use grey dashed lines to indicate
the special attention pattern of UPL.

H Local bias of Position Encodings

H.1 Sinusoidal Position Encoding
The sinusoidal position encoding (Vaswani et al.,
2017; Su et al., 2023) is given by:

PE(pos,2i) = sin
( pos

100002i/dmodel

)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)

Consider two nearby positions, pos and pos+ δ,
where δ is a small number.

For any dimension i, the argument to the
sine/cosine function changes from pos

100002i/dmodel

to pos+δ

100002i/dmodel
. The change in the argument is

δ
100002i/dmodel

.
For small δ, this change in the argument is small

for all dimensions.
Since sine and cosine functions are continuous,

a small change in their input argument results in a
small change in their output value.

sin(x+ ϵ) ≈ sin(x) for small ϵ

cos(x+ ϵ) ≈ cos(x) for small ϵ

Therefore, each dimension of PE(pos+δ) is very
close to the corresponding dimension of PE(pos).

This means the entire vector PE(pos+δ) is very
similar to PE(pos) when δ is small.

This property injects a local inductive bias.

H.2 Learnable Position Encodings
In this section, we present figures related to learn-
able position embeddings. Figure 9 illustrates the
cosine similarity between different positions of
BERT (Devlin et al., 2019). It can be observed
that the cosine similarity between nearby positions
is significantly high. To illustrate the special behav-
ior of the [CLS] token’s position embedding, we
show in Figure 10 the cosine similarity of position
0 (i.e., the position ID of [CLS]), position 100, po-
sition 200, and position 300 with other positions.
Figure 2 illustrates that as the relative distance in-
creases, the learnable bias added by T5 (Raffel
et al., 2020) to the attention scores decreases.
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x0 x1 . . . x|X|−1 y0 y1 . . . y|Y |−1

Default Position ID 0 1 . . . |X| − 1 |X| |X| + 1 . . . |X| + |Y | − 1

KV (x0) KV (x1) . . . KV (x|X|−1) y0 y1 . . . y|Y |−1

Default Position ID 0 1 . . . |X| − 1 |X| |X| + 1 . . . |X| + |Y | − 1

Table 14: Default position layout of Transformers.

x(i−1)L x(i−1)L+1 . . . xiL−1 m0 m1 . . . m|M|−1

DPL 0 1 . . . L − 1 L L + 1 . . . L + |M| − 1
EPL (i − 1)L + 1 (i − 1)L + 2 . . . iL ⌊b⌉ ⌊b + r⌉ . . . ⌊(b + (|M| − 1)r⌉

i = 1, L = 510, |M| = 102, r = 5

x0 x1 . . . x509 m0 m1 . . . m101

DPL 0 1 . . . 509 510 511 . . . 611
EPL 1 2 . . . 510 3 8 . . . 508

i = 2, L = 510, |M| = 102, r = 5

x510 x511 . . . x1019 m0 m1 . . . m101

DPL 0 1 . . . 509 510 511 . . . 611
EPL 511 512 . . . 1020 513 518 . . . 1018

Table 15: Position Layout of Encoder for S(i). r = L
|M | ; b = (i − 1) ∗ L + 1 + r−1

2 . The notation ⌊·⌉ indicates
rounding to the nearest integer.

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(k)
|M|−1

/KV
(k)
|M|−1

[AE] x0 x1 . . . xp−1

DPL(ICAE) 0 1 . . . k|M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + p
DPL(500x) L L + 1 . . . L + |M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + p

EPL ⌊b⌉ ⌊b + r⌉ . . . ⌊b + (k|M| − 1)r⌉ 0 1 2 . . . p

k = 2, L = 510, |M| = 102, r = 5, p = 1020

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(2)
101/KV

(2)
101 [AE] x0 x1 . . . x1019

DPL(ICAE) 0 1 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 511 . . . 611 204 205 206 . . . 1224

EPL 3 8 . . . 1018 0 1 2 . . . 1020

Table 16: Position Layout of Decoder in AE Task. r = L
|M | ; b = 1 + r−1

2 . The notation ⌊·⌉ indicates rounding to
the nearest integer.

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(k)
|M|−1

/KV
(k)
|M|−1

[LM] xp xp+1 . . . x|X|−1

DPL(ICAE) 0 1 . . . k|M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + |X| − p
DPL(500x) L L + 1 . . . L + |M| − 1 k|M| k|M| + 1 k|M| + 2 . . . k|M| + |X| − p

EPL ⌊b⌉ ⌊b + r⌉ . . . ⌊b + (k|M| − 1)r⌉ p p + 1 p + 2 . . . |X|

k = 2, L = 510, |M| = 102, r = 5, |X| = 2040, p = 1020

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(2)
101/KV

(2)
101 [LM] x1020 x1021 . . . x2039

DPL(ICAE) 0 1 . . . 203 204 205 206 . . . 1224
DPL(500x) 510 511 . . . 611 204 205 206 . . . 1224

EPL 3 8 . . . 1018 1020 1021 1022 . . . 2040

Table 17: Position Layout of Decoder in LM Task. r = L
|M | ; b = 1 + r−1

2 . The notation ⌊·⌉ indicates rounding to
the nearest integer.

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(k)
|M|−1

/KV
(k)
|M|−1

[LM] q0 . . . q|Q|−1 a0 . . . a|A|−1

DPL(ICAE) 0 1 . . . k|M| − 1 k|M| k|M| + 1 . . . t t + 1 . . . t + |A|
DPL(500x) L L + 1 . . . L + |M| − 1 k|M| k|M| + 1 . . . t t + 1 . . . t + |A|

EPL ⌊b⌉ ⌊b + r⌉ . . . ⌊b + (k|M| − 1)r⌉ |C| |C| + 1 . . . t′ t′ + 1 . . . t′ + |A|

k = 2, L = 510, |M| = 102, r = 5, |C| = 1020, |Q| = 50, |A| = 5

m̃
(1)
0 /KV

(1)
0 m̃

(1)
1 /KV

(1)
1 . . . m̃

(2)
101/KV

(2)
101 [LM] q0 . . . q49 a0 . . . a4

DPL(ICAE) 0 1 . . . 203 204 205 . . . 254 255 . . . 259
DPL(500x) 510 511 . . . 611 204 205 . . . 254 255 . . . 259

EPL 3 8 . . . 1018 1020 1021 . . . 1070 1071 . . . 1075

Table 18: Position Layout of Decoder in QA Task. r = L
|M | ; b = 1 + r−1

2 ; t = k|M |+ |Q|; t′ = |C|+ |Q|. The
notation ⌊·⌉ indicates rounding to the nearest integer.
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Figure 3: Overview of the ICAE framework proposed by (Ge et al., 2024). Source: ICAE official repository
(CC0-1.0).

SQuAD NewsQA TriQA SearchQA HQA NQ Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B

NoContext 9.34 1.92 4.80 0.59 3.04 0.92 14.99 8.71 9.47 3.27 10.88 3.91 8.75 3.22
ICAE(DPL) 54.58 36.99 37.57 21.25 57.96 48.85 68.90 56.68 59.61 43.01 59.40 42.01 56.34 41.47
ICAE(EPL) 59.94 39.39 43.61 24.95 61.50 51.98 69.31 57.11 64.22 46.84 61.21 42.11 59.97 43.73
500x(DPL) 68.26 49.15 43.17 25.31 60.30 51.03 70.33 57.96 66.44 49.45 64.69 46.78 62.20 46.61
500x(EPL) 67.87 47.54 49.23 29.58 64.53 55.16 72.51 60.39 68.51 51.06 65.55 46.97 64.70 48.45
FullContext 58.72 39.20 38.72 16.62 31.82 24.42 49.15 36.27 53.22 39.08 53.47 36.12 47.51 31.95

Llama-3.2-3B

NoContext 15.65 7.09 6.15 1.26 8.68 6.38 42.54 31.83 16.31 9.02 16.43 8.18 17.63 10.63
ICAE(DPL) 58.95 41.53 39.70 23.12 60.49 51.64 66.35 53.81 58.68 42.55 58.55 41.94 57.12 42.43
ICAE(EPL) 73.82 53.67 58.02 36.51 71.22 62.26 71.41 59.90 72.61 55.77 70.19 51.33 69.55 53.24
500x(DPL) 68.28 50.15 50.98 32.15 68.10 59.54 74.16 62.11 70.63 53.57 67.58 50.19 66.62 51.28
500x(EPL) 77.74 58.38 61.19 41.62 71.62 62.66 74.32 62.67 75.06 58.52 72.03 54.07 71.99 56.32
FullContext 74.07 55.43 48.99 24.62 63.92 54.05 67.69 52.31 63.73 48.33 64.32 46.54 63.79 46.88

Llama-3.1-8B

NoContext 21.84 11.74 9.52 3.28 31.58 26.37 59.66 45.49 20.34 12.71 29.62 17.94 28.76 19.59
ICAE(DPL) 56.56 38.87 36.99 20.06 64.54 55.58 71.35 58.92 57.04 41.20 58.04 41.19 57.42 42.64
ICAE(EPL) 78.44 58.90 61.69 40.17 73.92 65.05 80.05 67.65 74.93 58.33 72.43 54.14 73.58 57.37
500x(DPL) 80.56 62.11 60.31 40.65 74.00 65.39 79.60 67.51 76.18 59.62 74.17 56.48 74.14 58.63
500x(EPL) 80.60 61.37 64.43 44.35 74.75 66.04 79.39 67.74 77.17 60.53 74.71 56.16 75.18 59.36
FullContext 80.53 61.97 60.24 40.05 72.65 63.28 76.54 61.99 73.07 57.19 72.25 54.01 72.55 56.42

Table 19: Results on the in-domain validation set, including six QA datasets: SQuAD (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), TriviaQA (TriQA) (Joshi et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA
(HQA) (Yang et al., 2018), and NaturalQuestions (NQ) (Kwiatkowski et al., 2019).

BioASQ DROP DuoRC RACE RE TQA Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B

NoContext 10.63 4.52 17.72 10.18 3.93 0.53 6.58 0.30 11.74 3.70 20.50 9.78 11.85 4.83
ICAE(DPL) 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(EPL) 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 44.22 31.38 40.47 29.34 32.20 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(EPL) 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 31.14 48.03 32.29
FullContext 45.72 31.45 40.74 30.27 39.20 27.85 29.57 7.72 74.85 64.01 53.31 34.60 47.23 32.65

Llama-3.2-3B

NoContext 24.84 17.22 21.17 13.37 5.87 1.93 8.87 1.19 20.60 13.30 37.34 22.82 19.78 11.64
ICAE(DPL) 41.75 31.65 38.77 29.81 28.40 18.99 21.58 3.56 76.56 64.82 47.85 30.41 42.49 29.87
ICAE(EPL) 50.83 36.70 54.10 43.38 45.66 33.24 38.78 9.35 82.71 71.64 58.13 36.93 55.03 38.54
500x(DPL) 50.20 37.63 48.64 38.32 38.77 26.85 31.86 8.16 83.67 73.71 55.08 34.80 51.37 36.58
500x(EPL) 53.15 39.03 57.00 45.84 50.35 36.51 42.45 10.83 85.20 75.20 58.09 35.53 57.71 40.49
FullContext 59.20 42.82 50.30 35.53 39.09 27.51 36.72 9.20 81.73 73.27 67.50 43.65 55.76 38.66

Llama-3.2-8B

NoContext 43.16 33.64 25.60 18.43 6.15 2.33 7.98 1.63 33.89 25.27 50.27 32.67 27.84 19.00
ICAE(DPL) 47.42 33.98 35.98 27.41 22.54 13.99 21.48 4.60 77.58 65.98 53.55 34.13 43.09 30.01
ICAE(EPL) 53.21 37.90 58.83 47.50 47.26 33.44 40.65 9.64 84.35 73.91 58.39 36.13 57.12 39.76
500x(DPL) 51.50 37.70 59.85 47.64 47.95 34.44 41.17 10.39 85.86 75.85 58.22 35.93 57.42 40.32
500x(EPL) 54.80 39.43 62.46 50.70 51.33 37.38 43.40 11.13 85.77 75.10 58.11 35.00 59.31 41.45
FullContext 59.80 42.95 60.64 47.64 26.91 16.86 42.80 10.53 85.11 74.08 71.68 47.57 57.83 39.94

Table 20: Results on the out-of-domain validation set, including six QA datasets: BioASQ (Tsatsaronis et al., 2015),
DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction (RE) (Levy et al.,
2017), and TextbookQA (TQA) (Kembhavi et al., 2017).
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SQuAD NewsQA TriQA SearchQA HQA NQ Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B

ICAE(DPL) 54.58 36.99 37.57 21.25 57.96 48.85 68.90 56.68 59.61 43.01 59.40 42.01 56.34 41.47
ICAE(UPL) 62.22 42.25 44.49 26.16 61.35 51.88 70.33 57.73 63.85 46.89 61.71 43.00 60.66 44.65
ICAE(EPL) 59.94 39.39 43.61 24.95 61.50 51.98 69.31 57.11 64.22 46.84 61.21 42.11 59.97 43.73
500x(DPL) 68.26 49.15 43.17 25.31 60.30 51.03 70.33 57.96 66.44 49.45 64.69 46.78 62.20 46.61
500x(UPL) 65.92 46.35 49.33 29.89 63.97 54.98 71.85 59.77 67.04 50.53 64.20 45.66 63.72 47.86
500x(EPL) 67.87 47.54 49.23 29.58 64.53 55.16 72.51 60.39 68.51 51.06 65.55 46.97 64.70 48.45

Table 21: Ablation results on the in-domain validation set, including six QA datasets: SQuAD (Rajpurkar et al.,
2016), NewsQA (Trischler et al., 2017), TriviaQA (TriQA) (Joshi et al., 2017), SearchQA (Dunn et al., 2017),
HotpotQA (HQA) (Yang et al., 2018), and NaturalQuestions (NQ) (Kwiatkowski et al., 2019).

BioASQ DROP DuoRC RACE RE TQA Avg.

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

Llama-3.2-1B

ICAE(DPL) 38.39 26.99 37.13 27.28 27.90 18.32 21.67 4.30 76.98 64.45 37.62 22.55 39.95 27.32
ICAE(UPL) 41.82 29.32 37.77 27.41 33.73 22.45 26.90 4.90 73.61 60.62 48.19 29.94 43.67 29.11
ICAE(EPL) 42.66 29.19 37.03 26.95 32.50 21.39 26.87 5.34 76.90 64.31 47.25 29.81 43.87 29.50
500x(DPL) 44.22 31.38 40.47 29.34 32.20 21.19 27.67 5.93 83.03 71.98 47.00 28.88 45.76 31.45
500x(UPL) 45.71 32.38 40.19 28.81 37.66 26.12 29.02 6.08 78.22 64.55 50.19 31.87 46.83 31.64
500x(EPL) 46.11 31.91 40.94 29.41 39.07 26.32 31.89 7.27 80.39 67.71 49.80 31.14 48.03 32.29

Table 22: Ablation results on the out-of-domain validation set, including six QA datasets: BioASQ (Tsatsaronis
et al., 2015), DROP (Dua et al., 2019), DuoRC (Saha et al., 2018), RACE (Lai et al., 2017), Relation Extraction
(RE) (Levy et al., 2017), and TextbookQA (TQA) (Kembhavi et al., 2017).

1B-ICAE-DPL 3B-ICAE-DPL 8B-ICAE-DPL

1B-ICAE-EPL 3B-ICAE-EPL 8B-ICAE-EPL

Figure 4: Training Loss of ICAE.

1B-500x-DPL 3B-500x-DPL 8B-500-DPL

1B-500x-EPL 3B-500x-EPL 8B-500x-EPL

Figure 5: Training Loss of 500xCompressor.
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DPL UPL

DPL DPL UPLUPL

Figure 6: Attention Matrix in the 2nd layer of ICAE after MRQA fine-tuning.

DPL UPL

DPL DPL UPLUPL

Figure 7: Attention Matrix in the last layer of ICAE after MRQA fine-tuning.

Figure 8: Attention mask and position layout of VoCo-LLaMA (Ye et al., 2025). The Position IDs modified by EPL
are marked in green (UPL) and blue (CPL) on top of the figure.
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Figure 9: The cosine similarity of BERT’s positional encodings. To improve readability, we have removed results
beyond the top 10 and zoomed in on the first 50 positions.

Figure 10: The cosine similarity between the positional encoding of the [CLS] token and other positions.
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