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Abstract

Document-level relation extraction (DocRE)
task aims to identify relations between entities
in a document. In DocRE, an entity may ap-
pear in multiple sentences of a document in
the form of mentions. In addition, relation in-
ference requires the use of evidence sentences
that can provide key clues to entity pairs. These
make DocRE more challenging than sentence-
level relation extraction. Existing work does
not fully distinguish the contribution of dif-
ferent mentions to entity representation and
the importance of mentions in evidence sen-
tences. To address these issues, we observe
that entity types can provide consistent seman-
tic constraints for entities of the same type
and implicitly preclude impossible relations be-
tween entities, which may help the model bet-
ter understand both intra- and inter-entity men-
tions. Therefore, we propose a novel model ET-
MIER, which for the first time leverages Entity
Types to guide key Mention Identification and
Evidence Retrieval. In this way, entity types
not only help learn better entity representation
but also enhance evidence retrieval, both of
which are crucial for DocRE. We conduct ex-
periments on widely-adopted datasets and show
that our model achieves state-of-the-art perfor-
mance.1

1 Introduction

Relation extraction (RE) is a fundamental task in
natural language processing (NLP) and knowledge
graph construction, typically categorized into two
levels: sentence-level and document-level (Delau-
nay et al., 2023). Document-level relation extrac-
tion (DocRE) focuses on identifying relations be-
tween entities within a document. In DocRE, an
entity can have multiple mentions, and multiple
relations for an entity pair can exist and may be
expressed across different evidence sentences. Due
1Code: https://github.com/NEU-IDKE/ET-MIER
† Equal contribution. * Corresponding author.

[ 0 ]  Juan Guzmán (born Hans Gutmann Guster , also known as " Juanito " , 28 October 1911 – 1982) 

was a German born Mexican photojournalist . ... [ 2 ]  Hans Gutmann was born in Cologne . ... [ 8 ]  

After the war Guzmán fled to Mexico , where he arrived in 1940 . ... [ 10 ]  In the 1950s he took a large 

number of photographs of Kahlo and her husband Diego Rivera . ...

Type Relation Evidence

  Head: Gutmann [ PER ] p19:   place of birth   √
[ 0, 2 ]

  Tail:    Cologne [ LOC ] p26:   spouse   ×

Figure 1: An example of DocRE. Multiple mentions of
an entity are marked with the same color.

to this complexity, DocRE better aligns with real-
world scenarios and is, thus, more challenging.

In DocRE, an important issue is how to learn
accurate semantic representation of entities. Given
that the semantic information of an entity is mainly
conveyed through its mentions (including type, con-
text, and connections to other entities), many stud-
ies focus on enhancing entity representation based
on these mentions. They usually use pooling func-
tions (the most commonly used of which is log-
sumexp pooling (Zhou et al., 2021)) to aggregate
the semantic information in mentions into entity
representation. However, since the pooling is essen-
tially an aggregation operation, it may not be able
to effectively distinguish the unique contributions
of individual mentions, especially when dealing
with scenarios involving complex interactions and
multiple relations.

As illustrated in Figure 1, the contributions of
different mentions to entity representation may
vary, where the mentions in the sentences [0] and
[2] offer richer semantics for “Gutmann” than the
mention in the sentence [8]. These mentions may
also help extract evidence sentences and play a
more important role in extracting the relations be-
tween (“Gutmann”, “Cologne”). Existing methods
may overlook such subtle differences. While some
studies generate relation-specific entity representa-
tion (Yu et al., 2022; Dai et al., 2023), this can lead
to excessive parameters due to the diversity of rela-
tions in DocRE. Therefore, effectively leveraging
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mentions to capture fine-grained entity semantic
information remains a key challenge.

To better capture entity semantics, it is crucial to
apply fine-grained attention based on the contribu-
tion of each mention, enabling the model to focus
on key mentions. As shown in Figure 1, entity
types provide consistent semantic cues for similar
entities and implicitly constrain possible relations
(e.g., no “spouse” relation between PER and LOC),
helping the model better understand both intra- and
inter-entity mentions. Based on the above obser-
vations, we propose for the first time leveraging
entity types to guide key mention identification and
evidence retrieval for DocRE.

Specifically, we propose three innovative strate-
gies: (1) Optimization of entity type represen-
tation. The existing method mainly uses entity
type information to directly filter out impossible
relations (Xiao et al., 2022), without considering
the semantic information contained within the en-
tity types themselves and the differences between
entity types. Therefore, we propose a method to
optimize entity type representation, which will fur-
ther facilitate the identification of key mentions. (2)
Identification of key mentions guided by entity
types. Our goal is to generate type-specific entity
representation with high discrimination of men-
tions. To achieve this, we carefully design a key
mention identification task, which distinguishes
the importance of mentions for entity representa-
tion by identifying the semantic relevance between
mentions and entity types, thereby generating high-
quality entity representation. (3) Enhancement
of evidence retrieval incorporating entity types.
We introduce evidence retrieval following previous
work (Xie et al., 2022; Dai et al., 2023; Lu et al.,
2023), as an auxiliary task to help the model fil-
ter out irrelevant sentences. Different from these
works that capture evidence sentences by integrat-
ing all mention features, we innovatively introduce
the type-specific entity representation into this task,
thereby focusing on local key mentions at the same
time. This enables the task to extract evidences
from both global and local perspectives.

Based on the above three strategies, we pro-
pose a novel Entity Type-guided key Mention
Identification and Evidence Retrieval (ET-MIER)
for DocRE. Our contributions include:

• We propose a contrastive learning-based
method to optimize entity type representa-
tions, generating more accurate representa-

tions while capturing differences between en-
tity types.

• We design an entity type-guided key mention
identification task, which distinguishes the
contribution of mentions to entity represen-
tation, thereby learning better type-specific
entity representation to achieve DocRE. This
is the first work to consider the impact of en-
tity types on mentions.

• We innovatively incorporate the entity types to
guide evidence retrieval, enabling the model
to extract evidence sentences more compre-
hensively.

• We conduct experiments on two widely-
adopted DocRE benchmarks, DocRED (Yao
et al., 2019) and Re-DocRED (Tan et al.,
2022b). Experiments show that our model
achieves state-of-the-art (SOTA) results while
maintaining good efficiency.

2 Related Work

Existing DocRE methods may be roughly divided
into two categories: graph-based and transformer-
based methods.

Graph-based DocRE constructs a heteroge-
neous graph by treating mentions, entities, or
sentences as nodes to model their interactions,
thereby enabling relation reasoning. Representa-
tive methods include GAIN (Zeng et al., 2020),
SIRE (Zeng et al., 2021), DRN (Xu et al., 2021b),
and FCDS (Zhu et al., 2024), among others.

Transformer-based DocRE leverages Trans-
formers (Vaswani et al., 2017) to capture long-
range dependencies among entities for relation pre-
diction. ATLOP (Zhou et al., 2021) first introduces
an adaptive threshold for multi-relation prediction.
EIDER (Xie et al., 2022) proposes an evidence-
enhanced DocRE framework. Other works have
also proposed various frameworks to further en-
hance performance, including RSMAN (Yu et al.,
2022), DREEAM (Ma et al., 2023), AA (Lu et al.,
2023), SRF (Zhang et al., 2024), TTM-RE (Gao
et al., 2024), AMTL (Xu et al., 2025) and VaeDiff-
DocRE (Tran et al., 2025), among others. Addi-
tionally, several large-model-based DocRE meth-
ods have also emerged gradually (Xue et al., 2024;
Zhang et al., 2025a,b).

With respect to entity types in the DocRE task,
SAIS (Xiao et al., 2022) employs entity type clas-
sification to filter out impossible relations but does
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Original Document:  [0] The Second River, or Watsessing River, in the state of  New Jersey in the 
United States ,  …  [6] Finally, it joins the Passaic River, on its way to Newark Bay. [8] The Reformed 
Dutch Church of Second River is named after this river .      … 
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Figure 2: The overall architecture of our model ET-MIER.

not incorporate type information into entity repre-
sentations. In contrast, our approach integrates
types into entity representations and leverages them
to guide key mention identification and evidence
retrieval, leading to improved performance. More-
over, entity types are also used in other NLP
tasks, but for different purposes. For instance,
(Raiman, 2022) uses types to eliminate invalid can-
didates in entity linking, (Ayoola et al., 2022) uses
them to initialize entity scores for entity disam-
biguation, and (Bhargav et al., 2022) treats hierar-
chical types as an auxiliary task to enhance entity
linking. This is fundamentally different from
our method and purpose of using entity types: we
dynamically use entity types in DocRE to guide
key mention selection and evidence retrieval.

3 Problem Formulation

Given a document D containing sets of tokens
XD = {xl}|XD|

l=1 , sentences SD = {sn}|SD|
n=1 , and en-

tities ED = {ei}|ED|
i=1 , each entity ei corresponds to

an entity type τi ∈ T , where T = {τi}Ti=1 is a pre-
annotated set containing T different entity types.

And, there is a set of mentions Mei =
{
mi

j

}Nei

j=1

for an entity ei, where Nei is the number of men-
tions of ei. The DocRE task is a multi-label classi-
fication task, aiming to predict a subset of relations
R = R∪{NA} for each entity pair (eh, et), where
R is a predefined set of relations, and NA denotes

no relation between entities.

4 Methodology

Our ET-MIER model in Figure 2 consists of three
main parts: a type-specific entity representation
(TSER) module, which aims to obtain entity repre-
sentation through joint entity type optimization and
key mention identification tasks; a type-guided
evidence retrieval module, which extracts more
relevant evidence sentences by introducing type-
specific entity pair features when calculating the
importance distribution of sentences; and a rela-
tion extraction module.

4.1 Document Encoding
Given a document D, a pair of tokens “*” are in-
serted at the beginning and end of each mention to
indicate the position of the entity mention (Zhang
et al., 2017). Then, we feed D into a pre-trained
language model (PLM) to obtain d-dim token em-
beddings H and the cross-token attention A:

H,A = PLM(
[
x1, x2, . . . , x|XD|

]
) (1)

where H ∈ R|XD|×d , d is the PLM dimension of
the encoder, and A ∈ R|XD|×|XD| is the average of
the attention heads in the last transformer layer. For
the j-th mention mi

j ∈ Mei of an entity ei, we use
the feature of the special beginning token “*” to get
its embedding mi

j and attention ai
j . To obtain the

embedding hei ∈ Rd for entity ei, most previous
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works use pooling functions (e.g., the logsumexp
(Zhou et al., 2021)), to fuse mention embeddings:

hei = log

Nei∑

j=1

exp(mi
j) (2)

4.2 Type-Specific Entity Representation

In the DocRE task, the performance of the model
usually depends on the quality of entity represen-
tation. The semantic information of an entity is
mainly expressed by the mentions corresponding
to the entity. Existing methods ignore the con-
tribution of mentions to the semantic representa-
tion of entities when using Eq. (2) to obtain entity
representation. To this end, we propose the type-
specific entity representation (TSER) module to
obtain entity representation by jointly optimizing
entity types and identifying key mentions.

4.2.1 Entity Type Optimization
To better capture the semantic information con-
tained within the entity types themselves and high-
light the differences between entity types, we pro-
pose an entity type optimization method. The op-
timized entity type representation will also further
facilitate the identification of key mentions.

We first use the Xavier initialization (Glorot and
Bengio, 2010) to encode each entity type into a
prototype representation Pτ ∈ Rd, τ ∈ T . Then,
we introduce contrastive learning to adjust the pro-
totype representations of different entity types to
make them significantly distinguishable, which
helps the model learn the semantic differences be-
tween entity types. Based on this idea, we design
the following entity type contrastive learning loss:

LETO =
∑

τ∈T
log

∑

t∈T ,t̸=τ

exp(Pτ ·P t/ς) (3)

where ς ∈ R+ is a temperature parameter. During
the training process, the entity types will be used to
guide the model to select key mentions for subse-
quent relation extraction. The interaction between
mentions and entity types will be updated to make
the type semantics expressed by entities of the same
type more consistent and the semantics expressed
by different entity types more distinguishable.

4.2.2 Type-guided Key Mention Identification
To distinguish the contribution of mentions to en-
tity representation, we first propose an entity type-
guided key mention identification method, which

identifies the semantic relevance of an entity’s men-
tions to its entity type to help the model distinguish
which mentions are key ones, thereby learning bet-
ter type-specific entity representation.

Specifically, we calculate the semantic correla-
tion between each optimized Pτ and mi

j , and ob-
tain attention weight ατ

ij :

ατ
ij =

exp
(
f(mi

j ,Pτ )
)

∑Nei
k=1 exp

(
f(mi

k,Pτ )
) (4)

where f is a dot product, and ατ
ij ∈ R+ represents

the degree of attention paid by entity ei to the men-
tion mi

j under a specific entity type τ . We fuse the
key mentions to obtain type-specific entity features:

eτi =

Nei∑

j=1

ατ
ijm

i
j ; Aτ

i =

Nei∑

j=1

ατ
ija

i
j (5)

where eτi ∈ Rd represents the embedding of entity
ei belonging to the specific type τ , ai

j ∈ R|XD| rep-
resents the attention score of the j-th mention of en-
tity ei to all tokens, and Aτ

i ∈ R|XD| represents the
attention score of entity ei belonging to the specific
type τ . This process leverages type information to
identify key mentions that better capture entity se-
mantics, yielding fine-grained type-specific entity
features and enhancing entity representation.

On this basis, for a given entity pair (eh, et),
assuming that the specific entity types are τh and
τt, the localized context embedding is calculated:

pτhτt =
Aτh

h ◦Aτt
t

1⊤(Aτh
h ◦Aτt

t )
; cτhτt(h,t) = H⊤pτhτt (6)

where ◦ is the Hadamard product, pτhτt ∈ R|XD|

represents the importance of each token for the
pair (τh, τt), c

τhτt
(h,t) ∈ Rd represents the localized

context embedding calculated for (eh, et) based on
the entity types τh and τt.

Further, as shown in Eq. (2), the previous work
fuses all mention features through pooling to form
a coarse-grained entity representation. In contrast,
the type-specific entity embedding in Eq. (5) fo-
cuses on key mentions to form a fine-grained rep-
resentation. To make the final entity representation
more comprehensive, we fuse these two representa-
tions and use localized context embedding to form
type-specific context-aware entity embeddings:

zτ
eh

= tanh(W h[heh ; e
τ
h] +W chc

ττ∗t
(h,t)) (7)

zτ
et = tanh(W t[het ; e

τ
t ] +W ctc

τ∗hτ
(h,t)) (8)
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where [·; ·] represents concatenation, W h,W t ∈
Rd×2d, W ch ,W ct ∈ Rd×d are learnable param-
eters. When calculating the tail entity, the head
entity uses its ground-truth type τ∗h .

Now, for an entity e, it can appear at the head
or tail of the entity pair (i.e., eν for ν ∈ {h, t}),
we obtain its embedding zτ

eν corresponding to each
entity type τ ∈ T , thus forming an embedding set
Φeν = {zτ

eν |τ ∈ T }. We further design an embed-
ding selection way based on entity type recognition,
which aims to select the embedding from the set
Φeν that best matches the entity’s type. We use a bi-
linear classifier to calculate the probability that the
entity eν belongs to each entity type and employ
cross-entropy as the objective:

P(τ |eν) = σ(zτ
eνW τPτ + bτ ) (9)

LKMI = −
∑

e∈ED

∑

τ∈T

∑

ν∈{h,t}
yET
e,τ (logP(τ |eν))

(10)

where W τ ∈ Rd×d, bτ ∈ R are parameters, Pτ ∈
Rd is the optimized prototype representation of
entity type τ , yET

e,τ ∈ {0, 1}, and yET
e,τ = 1 denotes

the type of the entity e is τ .
This selected embedding z′

eν ∈ Φeν serves as
final type-specific representation of the entity eν ,
used for subsequent relation extraction and evi-
dence retrieval. During inference, to ensure align-
ment with datasets, we directly consider the embed-
ding of pre-annotated entity type label in datasets
as the final type-specific entity representation.

4.3 Type-guided Evidence Retrieval

To reduce the noise introduced by sentences irrel-
evant to entity pairs, we propose an enhanced evi-
dence retrieval method guided by entity types.

Previous evidence retrieval works (Xie et al.,
2022; Ma et al., 2023; Lu et al., 2023) calculate the
importance distribution of sentences by integrat-
ing all mention features corresponding to an entity
pair. The importance of the sentences in which
the mentions appeared is not fully distinguished.
Through our TSER module, we effectively distin-
guish the key mentions when obtaining the feature
of the entity pair. Therefore, we propose to further
introduce the type-specific entity pair feature that
incorporate key mentions when calculating the im-
portance distribution of sentences, which can help
to determine the importance of sentences, thereby
extracting more relevant evidence sentences.

For each entity pair (eh, et) with a valid relation,
we first calculate the sentence-level importance dis-
tribution q(h,t) ∈ R|SD|:

p(h,t) =
ah ◦ at

1⊤(ah ◦ at)
; q(h,t)n =

∑
j∈sn

p
(h,t)
j

(11)

where ah,at ∈ R|XD| denote entity-level atten-
tion vectors, obtained by pooling the mention-
level attentions ai

j (Eq. (5)) for each entity, and
p(h,t) ∈ R|XD| is a distribution representing the
importance of each token for an entity pair (eh, et).

Further, we calculate the sentence-level impor-
tance distribution qτ

′
hτ

′
t ∈ R|SD| that incorporates

type-specific entity features:

q
τ ′hτ

′
t

n =
∑

j∈sn
p
τ ′hτ

′
t

j (12)

where p
τ ′hτ

′
t

j ∈ pτ ′hτ
′
t is the token importance distri-

bution (Eq. (6)) corresponding to the type-specific
entity representations z′

eh
and z′

et .
Then, we fuse two distributions qτ

′
hτ

′
t and q(h,t):

q̂(h,t) = εqτ
′
hτ

′
t + (1− ε)q(h,t) (13)

where ε ∈ R+ is a balance parameter, q̂(h,t) ∈
R|SD| represents the fused sentence-level impor-
tance distribution. Final, we optimize the evidence
retrieval by minimizing the Kullback-Leibler (KL)
divergence between q̂(h,t) and the evidence distri-
bution v(h,t) derived from gold evidence labels:

LEvi = −DKL(v
(h,t)||q̂(h,t)) (14)

4.4 Relation Extraction
This module extracts the relation between an entity
pair (eh, et) by using their type-specific represen-
tations z′

eh
and z′

et . A grouped bilinear classifier
(Tang et al., 2020) computes the relation score r:

P(h,t)
r = σ(

K∑

k=1

z′k⊤
eh

W k
rz

′k
et + br) (15)

where W k
r ∈ Rd/K×d/K for k = 1...K and

br ∈ R are learnable parameters, σ is the sig-
moid function, and P(h,t) ∈ R|R| represents the
probability score of the relation between the entity
pair (eh, et). To dynamically adjust the prediction
probability of each relation, we use the Adaptive
Thresholding Loss (ATL) from ATLOP (Zhou et al.,
2021). During training, a virtual category TH is
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Model PLM Dev Test

Ign-F1 F1 Ign-F1 F1

DocGNRE (Li et al., 2023) ⋄ LLMs 11.10 11.18 11.04 11.12
LMRC (Li et al., 2024) ⋄ LLMs 52.29 52.56 52.15 52.45
D-F (Xue et al., 2024) ⋄ LLMs 53.48 54.22 52.50 53.33
D-R-F (Xue et al., 2024) ⋄ LLMs 56.10 56.58 54.35 54.84
AutoRE (Xue et al., 2024) ⋄ LLMs 59.25 60.17 58.33 59.29
EP-RSR (Zhang et al., 2025b) ⋄ LLMs 63.93 65.14 63.03 64.24

ATLOP (Zhou et al., 2021) * BERT_base 73.35 74.22 73.22 74.02
DocuNet (Zhang et al., 2021) * BERT_base 73.68 74.65 73.60 74.49
KD-DocRE (Tan et al., 2022a) * BERT_base 73.76 74.69 73.67 74.55
KMGRE (Jiang et al., 2022) * BERT_base 73.33 74.44 73.39 74.46
DocRE-BSI (Zhang et al., 2023) * BERT_base 75.03 75.85 74.85 75.77
FCDS (Zhu et al., 2024) ‡ BERT_base - 73.26 - 72.79
SRF (Zhang et al., 2024) † BERT_base 73.76 74.66 73.16 74.06
VaeDiff-DocRE (Tran et al., 2025) † BERT_base 74.96 75.89 74.13 75.07

ET-MIER BERT_base 77.54±0.21 78.26±0.18 77.13 77.84

ATLOP (Zhou et al., 2021) RoBERTa_large 76.88 77.63 76.94 77.73
DocuNet (Zhang et al., 2021) RoBERTa_large 77.53 78.16 77.27 77.92
KD-DocRE (Tan et al., 2022a) RoBERTa_large 77.92 78.65 77.63 78.35
DREEAM (Ma et al., 2023) RoBERTa_large - - 79.66 80.73
PEMSCL (Guo et al., 2023) RoBERTa_large 79.02 79.89 79.01 79.86
AA (Lu et al., 2023) RoBERTa_large 80.04 81.15 80.12 81.20
TTM-RE (Gao et al., 2024) † RoBERTa_large 78.22 78.25 78.54 80.08
VaeDiff-DocRE (Tran et al., 2025) † RoBERTa_large 78.35 79.19 78.22 79.03

ET-MIER RoBERTa_large 80.72±0.07 81.36±0.11 80.83 81.41

Table 1: Results on Re-DocRED dataset. Results with * are from Zhang et al. (2023). ‡ from our reproduction
utilizing its public code. † from the original paper, and ⋄ from Zhang et al. (2025b). Others are reported in Lu et al.
(2023). Best results are in bold.

learned for each entity pair (eh, et) as a threshold,
ensuring that valid relation scores Ph,t ⊂ R exceed
TH, while invalid relation scores Nh,t ⊆ R remain
below it. The relation extraction loss is defined as:

LRE =−
∑

h̸=t

∑

r∈Ph,t

log(
exp(P(h,t)

r )
∑

r′∈Ph,t∪{TH} exp(P
(h,t)
r′ )

)

− log(
exp(P(h,t)

TH )
∑

r′∈Nh,t∪{TH} exp(P
(h,t)
r′ )

) (16)

Finally, we jointly optimize the model and use
λ1, λ2, and λ3 to balance the impact of the losses:

LAll = LRE + λ1LEvi + λ2LETO + λ3LKMI

(17)

5 Experiments and Analysis

5.1 Experiment Setup
Datasets and Parameters. We evaluate our
model on two widely-adopted document-level re-
lation extraction datasets containing entity types,
DocRED (Yao et al., 2019) and Re-DocRED (Tan
et al., 2022b). We use BERT_base (Devlin et al.,

2019) and RoBERTa_large (Liu et al., 2019) as doc-
ument encoders. We run 5 times independently and
give the average results. Comprehensive dataset
statistics, parameter configurations, and parameter
experimental analysis are provided in Appendix A.

Baselines. We conduct a comprehensive compar-
ison with graph-based methods (including GAIN,
SIRE, etc.) and transformer-based methods (in-
cluding ATLOP, EIDER, AA, etc.) as detailed in
Section 2 of Related Work. Additionally, a com-
parison is also made with methods based on large
models. We also use F1 and Ign-F1 as evaluation
metrics. Ign-F1 is measured by ignoring relation
triples present in train set.

5.2 Main Results

We perform experiments on two datasets. Results
on Re-DocRED in Table 1 indicate that our method
is consistently better than the competitive base-
lines. On the test set, our model achieves im-
provements of 2.07 in F1 and 2.28 in Ign-F1 over
the previous best baseline under the BERT_base
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Model PLM Dev Test

Ign-F1 F1 Ign-F1 F1

DocGNRE (Li et al., 2023) * LLMs 13.65 13.84 13.67 13.93
LMRC (Li et al., 2024) * LLMs 38.62 39.25 38.09 38.66
D-F (Xue et al., 2024) * LLMs 44.77 46.38 45.30 47.08
D-R-F (Xue et al., 2024) * LLMs 44.32 45.77 45.98 47.50
AutoRE (Xue et al., 2024) * LLMs 45.58 47.17 45.45 47.15
EP-RSR (Zhang et al., 2025b) * LLMs 51.25 53.77 51.77 54.57

LSR (Nan et al., 2020) BERT_base 52.43 59.00 56.97 59.05
RSMAN (Yu et al., 2022) BERT_base 57.22 59.25 57.02 59.29
GAIN (Zeng et al., 2020) BERT_base 59.14 61.22 59.00 61.24
ATLOP (Zhou et al., 2021) BERT_base 59.22 61.09 59.31 61.30
DocuNet (Zhang et al., 2021) BERT_base 59.86 61.83 59.93 61.86
KD-DocRE (Tan et al., 2022a) BERT_base 60.08 62.03 60.04 62.08
SAIS (Xiao et al., 2022) BERT_base 59.98 62.96 60.96 62.77
EIDER (Xie et al., 2022) BERT_base 60.51 62.48 60.42 62.47
DREEAM (Ma et al., 2023) BERT_base 60.51 62.55 60.03 62.49
RSEEA (Dai et al., 2023) BERT_base 60.87 62.91 60.79 62.84
AA (Lu et al., 2023) BERT_base 61.31 63.38 60.84 63.10
SRF (Zhang et al., 2024) BERT_base 60.46 62.50 59.84 62.11

ET-MIER BERT_base 61.55±0.13 63.51±0.14 61.08 63.24

ATLOP (Zhou et al., 2021) RoBERTa_large 61.32 63.18 61.39 63.40
DocuNet (Zhang et al., 2021) RoBERTa_large 62.23 64.12 62.39 64.55
KD-DocRE (Tan et al., 2022a) RoBERTa_large 62.16 64.19 62.57 64.28
EIDER (Xie et al., 2022) RoBERTa_large 62.34 64.27 62.85 64.79
DREEAM (Ma et al., 2023) RoBERTa_large 62.29 64.20 62.12 64.27
AA (Lu et al., 2023) RoBERTa_large 63.15 65.19 62.88 64.98

ET-MIER RoBERTa_large 63.07±0.15 64.93±0.19 62.91 65.02

Table 2: Performance on DocRED dataset. Results of RSMAN, RSEEA and SRF are from their original papers.
Results of the other models are referred from Lu et al. (2023). * from (Zhang et al., 2025b). Best results are in bold.

setting. When using RoBERTa_large, our model
also surpasses the previous SOTA model AA, and
demonstrates significant gains over the represen-
tative model ATLOP, with improvements of 3.68
in F1 and 3.89 in Ign-F1. Moreover, we directly
compare our model (ET-MIER) with recent LLMs
approaches on Re-DocRED. ET-MIER achieves
state-of-the-art performance on both the dev and
test sets, reaching an Ign-F1 of 80.83 and an F1 of
81.41 on the test set, surpassing the EP-RSR model
by +17.17 F1.

Results on DocRED are shown in Table 2. Our
model outperforms most of baselines and achieves
improvements of 1.77 and 1.94 in F1 and Ign-
F1 over the representative ATLOP-BERT_base
model on test set. Compared with the DocRED,
our model has a more obvious improvement on
the Re-DocRED, which may be attributed to the
clearer data annotation in Re-DocRED, providing
a more reliable basis for comparison. The improve-
ments demonstrate the effectiveness of our idea

of leveraging entity types as guidance for DocRE.
Moreover, we compare ET-MIER directly with sev-
eral recent competitive LLMs approaches. Using
a BERT_base encoder, it surpasses the strongest
baseline (EP-RSR) by around 8.7 F1 points on the
test set, showing that its lightweight design does
not compromise its generalization ability or its ef-
fectiveness in handling long-context documents.

5.3 Ablation Study

To verify the effectiveness of different modules, we
conduct a series of ablation experiments as shown
in Table 3:
w/o TSER or w TSER (frozen). We use the

original pooling function instead of the type-
specific entity representation we proposed (w/o
TSER). We also freeze the prototype representa-
tion of the entity type (w TSER frozen), leaving
the semantic information contained in the type rep-
resentation unchanged, resulting in a decrease in
performance. This emphasizes that updating type
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Model Dev Test

Ign-F1 F1 Ign-F1 F1

DocRED
Ours-BERT_base 61.55 63.51 61.08 63.24
w TSER (frozen) 61.16 63.31 60.69 63.02
w/o TSER 60.90 63.04 60.33 62.65
w/o KMI 60.92 62.91 60.40 62.62
w/o ETO 61.04 63.08 60.86 63.12
w/o Type-guided EviR (ε = 0) 61.16 63.24 60.92 63.22
w/o Type-guided EviR (ε = 1) 60.82 63.07 60.48 62.97
Re-DocRED
Ours-RoBERTa_large 80.72 81.36 80.83 81.41
w TSER (frozen) 80.33 80.98 80.38 80.98
w/o TSER 80.17 80.88 80.26 80.90
w/o KMI 79.84 80.53 80.05 80.68
w/o ETO 80.43 81.12 80.56 81.19
w/o Type-guided EviR (ε = 0) 80.34 81.02 80.65 81.27
w/o Type-guided EviR (ε = 1) 80.17 80.88 80.26 80.90

Table 3: Ablation study on DocRED and Re-DocRED.

representation can better capture semantic informa-
tion, thereby improving performance.
w/o KMI or w/o ETO. We eliminate LKMI ,

LETO during training and find that all indicators
decreased to varying degrees. This shows the effec-
tiveness of our entity type optimization and type-
guided key mention identification, and also reflects
that the model’s ability to understand entity types
directly affects the overall performance.
w/o Type-guided EviR. In evidence extraction

module, when we only use the entity feature cal-
culated by pooling (ε = 0) or only use the entity
feature of a specific entity type (ε = 1), we find
that the performance on both datasets decreases.
This may be because the fused features contain
more semantic information from multiple angles
compared to a single feature, thereby enhancing
the model’s expressiveness.

5.4 Complexity Analysis

To evaluate the complexity of our model, we show
in Table 4 the comparison results. We find that our
model is close to ATLOP in the number of trainable
parameters, but less than RSMAN. This indicates
that the number of parameters introduced by the
type-specific entity representation we proposed is
similar to the number of parameters introduced by
the pooling function, but less than the number of pa-
rameters introduced by the relation-specific entity
representation. Our model achieves a good bal-
ance between performance and complexity without
introducing too many additional parameters. Com-
pared with the models with evidence retrieval,
our model shows better efficiency in both mem-
ory usage and the number of trainable parameters,

Model Memory Trainable
(GiB) Params (M)

(a) without Evidence Retrieval
ATLOP (Zhou et al., 2021) 10.8 115.4
SSAN (Xu et al., 2021a) 6.9 113.5
RSMAN (Yu et al., 2022) 13.5 117.8
KD-DocRE (Tan et al., 2022a) 15.2 200.1

(b) with Evidence Retrieval
EIDER (Xie et al., 2022) 43.1 120.2
SAIS (Xiao et al., 2022) 46.2 118.0
DREEAM (Ma et al., 2023) 11.8 115.4
AA (Lu et al., 2023) 21.9 130.8

Ours (with Evidence Retrieval) 20.4 115.4

Table 4: Complexity comparison in terms of memory
and parameters on DocRED. BERT_base is used as the
document encoder.

demonstrating that our approach has relatively
lower complexity while maintaining higher per-
formance.

5.5 Comparison of Our TSER with Other
Entity Representation Methods

We compare the proposed type-specific entity rep-
resentation (TSER) method with other mainstream
methods for entity representation. To ensure fair-
ness, we uniformly compare the performance with-
out evidence retrieval. There are two main types
of existing methods for computing entity repre-
sentation: using pooling (Zhou et al., 2021) and
using relation-specific entity representation (Yu
et al., 2022). The results in Table 5 show that our
TSER method achieves better performance than
other methods. This demonstrates that, compared
to other methods, the type-specific entity repre-
sentation more effectively captures key mention
information, thereby improving the quality of entity
representation.

Model Dev Test

Ign-F1 F1 Ign-F1 F1

ATLOP (LogSumExp) 59.22 61.09 59.31 61.30
RSMAN (Relation-Specific) 58.25 60.22 57.40 59.68
Ours (Type-Specific) 59.90 61.73 59.86 61.69

Table 5: Comparison of different methods for calculat-
ing entity representation on DocRED.

5.6 Generalization Analysis of TSER

To evaluate the generalization performance of the
TSER module, we integrate it as a plug-in to sev-
eral different backbone models. The results on
DocRED, presented in Table 6, demonstrate that
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integrating TSER enhances the extraction per-
formance of the baselines. On ATLOP, the Ign-F1
and F1 scores on the test set are increased by 0.55
and 0.39, indicating that the TSER module plays
a positive role in improving entity representation
and relation extraction. Similarly, the DREEAM
and AA models also show comparable improve-
ments after incorporating the TSER module, fur-
ther verifying the effectiveness and generalization
of our idea of leveraging entity types as guidance
for DocRE.

Model Dev Test

Ign-F1 F1 Ign-F1 F1

ATLOP 59.22 61.09 59.31 61.30
+TSER 59.90 61.73 59.86 61.69

AA 61.31 63.38 60.84 63.10
+TSER 61.35 63.41 61.01 63.23

DREEAM 60.51 62.55 60.03 62.49
+TSER 61.16 63.31 60.69 63.02

Table 6: Generalization analysis of the TSER module.

5.7 Weakly Supervised Generalization Ability

To further evaluate the generalization ability of
ET-MIER, we conduct experiments by training
the model on DocRED and testing it directly on
Re-DocRED. As shown in Table 7, ET-MIER
continues to outperform large language model
(LLM)-based methods under this challenging set-
ting, achieving an Ign-F1 of 58.95 and an F1 of
59.94 on the Re-DocRED test set, with a +32.80
F1 improvement over the GPT-4o + ICL (3-shot)
model. These results clearly validate the robustness
and generalization capability of ET-MIER, high-
lighting its superiority not only in fully supervised
settings but also under weakly supervised general-
ization scenarios.

Model F1 Ign-F1

GPT-3.5 * 4.68 -
GPT-3.5 + NLI * 9.74 -
LLaMA2 * 9.32 8.04
LLaMA2 + DP * 10.56 9.03
GPT-4o * 21.41 21.17
GPT-4o + ICL (1 shot) * 27.75 27.36
GPT-4o + ICL (3 shot) * 27.14 26.53

ET-MIER (ours) * 59.94 58.95

Table 7: Performance of LLM-based models trained
on DocRED and tested on the Re-DocRED. Results
marked with * are reported from Fan et al. (2024). In
our model, BERT_base serves as the document encoder.

5.8 Case Studies

We conduct some case studies in Appendix B;
the cases also demonstrate the positive role of the
TSER, entity type optimization, and type-guided
evidence retrieval modules in improving model per-
formance.

6 Conclusions

In this paper, we propose an entity type-guided
key mention identification and evidence retrieval
method for DocRE. We first propose the idea of
optimizing and leveraging entity types to guide
the model to distinguish the importance of differ-
ent mentions and obtain better type-specific entity
representation based on these key mentions. We
also incorporate the entity types to guide evidence
retrieval, enabling the model to extract evidence
sentences more comprehensively. Experimental
results show that our method outperforms the ex-
isting methods while maintaining good efficiency
and generalization.

Limitations

For the dependency on entity type annotations,
while ET-MIER leverages entity type informa-
tion to guide key mention identification and ev-
idence retrieval, thereby improving performance
on document-level relation extraction, this design
introduces a reliance on the quality of entity type
annotations. In cases where type labels are missing,
inaccurate, or inconsistent in the training or testing
data, the model’s performance may be adversely af-
fected. Although the model demonstrates a certain
ability to predict types after training, such predic-
tions are based on previously annotated data. As a
result, noise in type information may propagate into
the relation inference process and impact final pre-
dictions. For the generalization in cross-domain
scenarios, although ET-MIER demonstrates strong
performance on DocRE tasks, it may still pose
challenges in cross-domain scenarios, where type
definitions can be ambiguous or differ significantly
from those seen during training. In such cases,
strategies based on type-guided mention selection
and evidence filtering may not generalize well, po-
tentially limiting the model’s ability to accurately
extract relations when entity types differ signifi-
cantly in cross-domain scenarios. We leave the
challenge of improving type-robustness under do-
main shift as a promising direction for future work.
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A Datasets and Parameter Analysis

Datasets. We evaluate our model on two widely-
adopted document-level relation extraction datasets
containing entity types. DocRED (Yao et al., 2019)
is the most commonly used manually annotated
dataset for DocRE, built from Wikipedia and Wiki-
data. It contains 96 predefined relations and 6 en-
tity types, with an average of 19.5 entities per doc-
ument. However, Huang et al. (2022) finds that
many entity-pair relations in DocRED are incor-
rectly labeled, which will introduce noise during
model training and reduce model performance. To
address this problem, Tan et al. (2022b) re-label
the DocRED dataset and propose the Re-DocRED
dataset. Compared to DocRED, this dataset pro-
vides a cleaner dev and test set. Many recent works
suggest that the results on Re-DocRED should be
considered as a fair comparison.

The statistics of the DocRED and Re-DocRED
datasets are shown in Table 8, including the number
of documents and the number of entity types in
the datasets. Moreover, Table 9 gives the entity
type information in the DocRED and Re-DocRED
datasets.

Datasets DocRED Re-DocRED

# Train 3053 3053
# Dev 1000 500
# Test 1000 500
# Entity Type (T ) 6 6
# Relations 97 97
Avg. # Entities 19.5 19.4

Table 8: Statistics of DocRED and Re-DocRED.

Types Description

PER (Person) People, including fictional.
ORG (Organization) Companies, universities, institutions, political or religious groups, etc.
LOC (Location) Geographically defined locations, including mountains, waters, etc.

Politically defined locations, including countries, cities, states, streets, etc.
Facilities, including buildings, museums, stadiums, hospitals, factories,
airports, etc.

TIME (Time) Absolute or relative dates or periods.
NUM (Number) Percents, money, quantities.

Products, including vehicles, weapons, etc.
MISC (Other Types) Events, including elections, battles, sporting events, etc.

Laws, cases, languages, etc.

Table 9: Entity type information in the DocRED and
Re-DocRED datasets.

Parameters. We implement our model based on
HuggingFace’s Transformers (Wolf et al., 2019)
and conduct experiments on a single NVIDIA
V100 32GB GPU. We use BERT_base (Devlin
et al., 2019) and RoBERTa_large (Liu et al.,
2019) as document encoders. The embedding
dimension d is 768 for BERT and 1,024 for
RoBERTa. The model is trained with 30 epochs
using a batch size of 4, a warmup ratio is 6e-
2. We conduct grid search for the tempera-
ture parameter ς ∈ {0.1, 0.2, 0.5, 1.0, 2.0}, ε ∈
{0, 0.01, 0.1, 0.2, ..., 1.0}, loss coefficients λi ∈
{0.1, 0.25, 0.3, 0.325, 0.5, 1.0, 2.0}, i ∈ {1, 2, 3}.
The type optimization parameter ς in Eq. (3) is 2.
The number of groups K in Eq. (15) is 64. During
inference, similar to DREEAM, we set q̂(h,t)n > 0.2
in Eq. (13) as evidence sentences. We tune all
hyperparameters based on the performance of the
model on the dev set, and list the key hyperparame-
ters in Table 10.

Dataset DocRED Re-DocRED

BERT RoBERTa BERT RoBERTa

epoch 30 30 30 30
lr_encoder 5e-5 3e-5 5e-5 3e-5
lr_classifier 1e-4 1e-4 1e-4 1e-4
batch size 4 4 4 4
warmup 6e-2 6e-2 6e-2 6e-2
ς/ε 2/0.01 2/0.1 2/0.9 2/0.9
λ1/λ2/λ3 0.1/2/0.25 0.1/2/0.3 0.1/2/0.25 0.1/2/0.325

Table 10: Training parameters for DocRED and Re-
DocRED datasets.
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(a)    

(b) 

Figure 3: Analysis of key hyperparameters.

Analysis of Key Hyperparameters. We analyze
the impact of two key hyperparameters, ε and λ3,
on model performance.

First, in the evidence retrieval module, ε controls
the fusion ratio between global and local informa-
tion. Figure 3(a) shows the performance of the
BERT_base model on the DocRED dataset. The
results indicate that the model achieves the best
performance when ε = 0.01. This suggests that
combining global and local information yields bet-
ter results than using either alone (i.e., ε = 0 or
ε = 1). This is because the granularity of infor-
mation captured by pooling functions and by type-
aware attention differs, and their combination pro-
vides complementary perspectives that enhance the
model’s capability.

Moreover, another important parameter λ3 bal-
ances the weight of the loss term LKMI , which
governs the model’s ability to recognize key men-
tions under the guidance of entity types. As shown
in Figure 3(b), increasing λ3 initially improves
overall performance, but performance begins to
decline after reaching a peak. This is because
when λ3 is too small, the model struggles to iden-
tify entity types accurately, impairing relation ex-
traction. Conversely, when λ3 is too large, the

model overemphasizes type information and ne-
glects other important features, also leading to per-
formance degradation. Therefore, tuning λ3 ap-
propriately is crucial for overall performance. In
other words, while type-guided relation extraction
benefits from entity type information, excessive
reliance on it may hinder the model’s ability to
leverage other features, ultimately affecting its per-
formance.

B Case Study

Figure 4 provides detailed case studies. In the cases,
we conduct a detailed analysis of the model’s key
modules, including type-specific entity represen-
tation (TSER), entity type optimization, and type-
guided evidence retrieval.

In (a), we evaluated the impact of TSER and
entity type optimization modules. The analysis
showed that when both modules were removed
(w/o T+O), the model failed to effectively utilize
document information to predict the relation be-
tween the entity pair (“Thorvald Hansen” and “Nor-
way”), incorrectly classifying it as “NA”. This re-
sult indicates that the TSER and entity type opti-
mization modules enable the model to fully lever-
age entity type information, thereby identifying
new potential relations (such as “P27”) and enhanc-
ing its relation prediction capability. This demon-
strates that the two modules strengthen the model’s
ability to understand the complex interactions be-
tween entities and their types.

In (b), we evaluated the role of the type-guided
evidence retrieval module. When this module was
removed, the model failed to retrieve all relevant
evidence sentences for the entity pair (“Gifu” and
“Japan”). Although the model identified some rel-
evant information, the absence of complete evi-
dence led to an incorrect prediction of the relation
(“P131”). In contrast, when this module was in-
cluded, the model could retrieve the full set of rel-
evant evidence sentences, enabling it to correctly
predict the relation (“P17”). This analysis high-
lights that the module not only helps the model
comprehend document but also accurately extracts
the complete set of evidence sentences related to
an entity pair.

The case studies also demonstrate the positive
role of the TSER, entity type optimization, and
type-guided evidence retrieval modules in improv-
ing model performance.
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... [4]When the union of Norway and Sweden was ended in 1905, Norway sent the consul-

general, Thorvald Hansen, to Shanghai. ...
(a) Head Tail Relation Evidence

w/o T+O Thorvald 
Hansen

[  LOC ] Norway [  LOC ]
NA × [ 4 ]

w T+O P27 √ [ 4 ]

T: TSER          O: Entity Type Optimization          E: Type-guided Evidence Retrieval 

(b) Head Tail Relation Evidence

w T+O
Gifu [  LOC ] Japan [  LOC ]

P131 × [ 0,2 ]   ×

w T+O+E P17 √ [ 0,2,4 ] √

[0] The is a subregion of the Chūbu region and Kansai region in Japan that ... [2] ... Aichi, 

Gifu and Mie prefectures. [4] ... Gifu, and Mie; this area is sometimes referred to as the ...

Figure 4: Several case studies.
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