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Abstract

The Transformer architecture has long domi-
nated the development of large language mod-
els, but its quadratic complexity in sequence
length presents scalability challenges. Re-
cent advances in State Space Models, partic-
ularly Mamba series, offer a promising alterna-
tive with linear-time inference and competitive
performance. While scaling model capacity
via sparsification, exemplified by Mixture-of-
Experts, has proven effective in reducing com-
putation while expanding knowledge capacity,
the integration of sparsification with Mamba
remains largely unexplored. Existing attempts
typically apply naive block-level stacking, fail-
ing to leverage Mamba’s internal structure for
fine-grained sparsification. In this work, we
mainly explore how to sparsify the parameters
inside Mamba. We found that the effects of
using sparsification strategies on parameters re-
lated to various mechanisms inside mamba are
significantly different. Our proposed Mamba-
MoZ framework introduces a flexible and effec-
tive sparsification mechanism inside Mamba,
which can independently achieve parameter
scalability and has stronger performance.

1 Introduction

The evolution of language models has been pro-
foundly shaped by the Transformer architecture
(Vaswani et al., 2017), which introduced self-
attention mechanisms to capture long-range de-
pendencies in sequential data. While Transform-
ers have dominated large-scale language model-
ing tasks, their quadratic computational complexity
and memory demands pose significant challenges
for scaling to ever-growing datasets. Recent ad-
vancements in sequence modeling have introduced
State Space Models as a promising alternative, with
Mamba (Gu and Dao, 2023; Dao and Gu, 2024)
emerging as a standout architecture due to its selec-
tive state mechanism and linear-time inference effi-
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ciency. By dynamically adjusting parameters based
on input context, Mamba achieves performance
that is competitive with attention-based models
while dramatically reducing computational over-
head.

As modern Al systems increasingly rely on scal-
ing model capacity to harness massive datasets, tra-
ditional dense architectures face prohibitive train-
ing costs and hardware limitations. A proven strat-
egy to address this is Mixture-of-Experts (MoE)
sparsification (Lepikhin et al., 2020; Fedus et al.,
2022), where only subsets of specialized subnet-
works (“experts”) activate per input. This paradigm
decouples model size from computation, enabling
knowledge storage across multiple experts with-
out proportional increases in FLOPs. Recently,
sparse architectures have been verified to pre-
serve efficiency while benefiting from scaling laws
(Ludziejewski et al., 2024). However, such a phe-
nomenon remains underexplored in SSM-based
models like Mamba. Could Mamba’s core inno-
vations be combined with sparsification to unlock
new Pareto frontiers in accuracy-efficiency trade-
offs?

Pioneer efforts to integrate Mamba with MoE
have focused on naive block-level stacking, such
as interleaving Mamba layers with sparse feed-
forward networks (Pidro et al., 2024). However,
these approaches inherit two critical limitations:
(i) They simply treat Mamba as a monolithic op-
erator rather than exploring internal structural op-
portunities for sparsification, potentially overlook-
ing component-specific optimization pathways; (ii)
The ad hoc combination lacks systematic analy-
sis of how sparsification interacts with Mamba’s
unique mechanism, risking suboptimal parameter
utilization. Consequently, existing designs do not
consider the effective integration of Mamba and
sparsification techniques inside Mamba.

In this work, we conduct a systematic explo-
ration of various sparsification strategies meticu-
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lously designed inside Mamba. Notably, the ma-
jority of Mamba’s parameters are densely concen-
trated within its linear layers. Accordingly, we
prioritize sparsification efforts on these parameter-
intensive components across various functional
mechanisms within the model. To distinguish their
roles, we categorize these layers into two groups:
those involved in context-information fusion and
those not. Our experiments reveal that sparsi-
fying layers related to the context-information
fusion mechanism yields no significant perfor-
mance improvement. In contrast, sparsifying
the non-fusion layers—specifically the z branch
in Mamba—Ieads to notable performance gains.
These findings not only deepen our understanding
of sparsification strategies for Mamba but also pro-
vide a foundation for developing more efficient and
scalable language models. The proposed sparsified
Mamba variants emerge as a highly promising al-
ternative to the original Mamba block, paving the
way for further advancements in LLMs.

2 Methods

2.1 Basic Structure of Mamba

Mamba (Gu and Dao, 2023) introduces a novel
approach to sequence modeling through SSMs. Its
successor, Mamba2 (Dao and Gu, 2024), further
enhances this framework with tensorized attention
mechanisms. Below, we detail the computational
formulations of Mamba2 architectures.

The Mamba2 (Dao and Gu, 2024) architecture
builds upon its predecessor by incorporating a ten-
sorized reparameterization technique that merges
the strengths of state-space models with attention
mechanisms. The core computations of Mamba2
are described as follows:
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Here, o denotes the softplus (Zheng et al., 2015)
activation function, and § represents the SiLU (Sig-
moid Linear Unit) function. The architecture fea-
tures input-dependent parameterization through
A}, which modulates both the discretization rate
and the effective state transition. In this formula-
tion, the Hadamard product (o) between the learn-
able tensor A< and the outer product CB allows

for a structured interaction between the different
components. This operation enables Mamba2 to
capture both global and local relationships within
the data, enhancing its expressive power. Because
Mamba?2 outperforms the original Mamba in both
performance and speed, our new methods are pro-
posed based on Mamba2 architecture.

2.2 Sparsifying Linear Layers inside Mamba

In the Mamba?2 architecture, we explore the sparsi-
fication of all linear layers in the model, specifically
replacing a single parameter matrix with multiple
parameter matrices and a routing mechanism as
shown in Figure 1. This design aims to reduce
the computational complexity of the model while
maintaining its expressive power. By introducing a
sparse routing mechanism, we allow the model to
selectively activate different transformations based
on the input, which can lead to more efficient com-
putations and a better trade-off between perfor-
mance and resource utilization.

The sparsification of linear layers is applied to
the weights Wpg, We, WA, and W, in the Mamba
block, where traditional dense layers are often the
computational bottleneck. By applying sparsifica-
tion, we aim to capture essential features with fewer
active parameters, while the routing mechanism en-
sures that only the most relevant transformations
are applied at each step, leading to improved scala-
bility and efficiency in training and inference.

2.3 Sparsifying Z Branch inside Mamba

In this subsection, we focus on the sparsification
of the W, matrix in the computation oy = yj, X
0(xx W) in the Mamba2 model. The matrix Wz
represents a linear transformation that affects the
output og, and sparsifying it has the potential to
reduce the number of parameters involved in this
critical computation.

The sparsification of W, follows a similar logic
to the sparsification of linear layers described in
the previous subsection, but with a focus on trans-
formations that are not dependent on positional
information. In the Mamba model, there are two
types of linear transformations: those that oper-
ate on position-dependent data and those that are
position-agnostic. We hypothesize that sparsify-
ing the position-agnostic transformations yields
greater benefits in terms of both efficiency and ef-
fectiveness, as these transformations do not require
intricate contextual information tied to specific po-
sitions in the sequence.
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Figure 1: Overview of the original structure and different intra-sparsification strategies of Mamba.

This approach aligns with current trends in the
use of MoE (Mixture of Experts) models (Dai et al.,
2024; Jiang et al., 2024; Wang et al., 2024), where
attention layers remain dense, but FEN layers are
sparsified to optimize the model’s capacity and
efficiency. By adopting this strategy, Mamba2 can
maintain its expressive power while reducing the
overall complexity of the model.

3 Experiment

To evaluate the effectiveness of sparsifying dif-
ferent components in Mamba, we conduct experi-
ments on three benchmark tasks (we use accuracy
as the metric, with a O-shot evaluation setting):
ARC (Clark et al., 2018), HellaSwag (Zellers et al.,
2019), SIQA (Sap et al., 2019). All models are
trained at the 650M activated parameter and 1.3B
total parameter scale (for sparsified mamba) under
comparable conditions. Our experiments are or-
ganized to address two key questions: (1) Which
sparsification strategy best improves accuracy and
efficiency trade-offs in Mamba? (2) How do hy-
brid architectures, combining the original Mamba
blocks and the MoE blocks, perform in comparison
to fully sparse Mamba variants?

3.1 Model Setting

For all Mamba and its variant models, we configure
48 Mamba blocks, where the hidden dimension of
each Mamba block is set to 1024. In the mamba
layer, we employ 16 mamba2 heads, each with a
dimension of 64. To ensure the total parameter
count remains consistent across different models,
our Mamba-MoL model utilizes 4 experts in total;
the Mamba-MoL, except Z, employs 5 experts; the
Mamba-MoZ model uses 7 experts. During both
training and inference, only one expert is activated.

3.2 Training Settings

All models are trained on 8 NVIDIA H800 GPUs,
each equipped with 80 GB of memory. We employ
the AdamW optimizer with 5; = 0.9, 82 = 0.999,
and a weight decay coefficient of 1 x 107>, The
learning rate is linearly warmed up from O to
1 x 10~* over the first 1000 steps, after which
it remains constant. Each model is trained with a
context length of 4096 tokens and a global batch
size of 1024. To ensure reproducibility, all experi-
ments use a fixed random seed of 12345. All model
implementations and training procedures are devel-
oped using the Megatron-LM framework (Shoeybi
et al., 2019). The training corpus consists of a mix
of web data, code data, and mathematical data.

3.3 Competitors

To assess the effectiveness of our proposed sparsi-
fication strategies, we compare several variants of
Mamba, summarized below:

e Mamba2 (Baseline) (Dao and Gu, 2024): The
standard dense Mamba model serving as the per-
formance reference for all sparsified variants.

* MoE-Mamba (Piéro et al., 2024): A hybrid
model alternating dense Mamba blocks with
sparse expert-based modules, mimicking stacked
sparsification without modifying internal Mamba
structure.

* Mamba-MoL: Applies Mixture-of-Experts
(MOoE) sparsification to all linear transformation
layers in Mamba2, including Wz.

* Mamba-MoL except Z: Applies sparsification
to all linear layers except for the Wz branch,
allowing us to isolate its contribution.

* Mamba-MoZ: Applies sparsification only to the
z-branch linear transformation, preserving the
rest of the Mamba model in dense form.
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Scores

Model Variant Activated Params Total Params Training Tokens

ARC Hellaswag SIQA AVG
Mamba 650M 650M 160B 27.42 37.37 3393 3291
Mamba-MoL 650M 1.3B 160B 25.75 38.87 33.57 32.73
Mamba-MoL except Z 650M 1.3B 160B 26.75 38.88 3485 33.49
Mamba-MoZ 650M 1.3B 160B 32.11 39.21 38.23  36.52

Table 1: Model Performance Comparison. AVG means average performance across three benchmarks.

These settings allow us to explore both fine-
grained and block-level sparsification. In partic-
ular, Mamba-MoZ isolates the effect of sparsify-
ing position-agnostic components and serves as a
testbed for evaluating targeted internal sparsifica-
tion strategies.

3.4 Results and Model Analyses

We analyze the impact of different sparsification
strategies on downstream performance and com-
pare their efficiency and effectiveness under consis-
tent training conditions. All models have roughly
comparable activation parameters, computational
cost, and training speed. Table 1 summarizes the
accuracy on ARC, HellaSwag, and SIQA at 160B
training tokens. The key findings are:

(a) Sparsification brings benefit. Targeted spar-
sification consistently improves model efficiency
without catastrophic accuracy losses, demonstrat-
ing its potential to reduce computational overhead
while preserving— or even enhancing—task per-
formance. However, the gains are highly depen-
dent on the choice of sparsification strategy, as
indiscriminate sparsity can degrade performance if
improperly applied.

(b) Full Sparsification is Suboptimal. Apply-
ing sparsification across all linear layers (Mamba-
MoL) may lead to degraded performance across
part of tasks. This suggests that Mamba
blocks contain critical, non-redundant computa-
tions—particularly those governing sequential dy-
namics—that are disrupted by indiscriminate spar-
sity. The adverse effects highlight the need for
selective sparsity to balance efficiency and expres-
siveness.

(c) Selective Sparsification of the z-Branch is
better. Remarkably, sparsifying only the z-branch
(Mamba-MoZ) outperforms all other configura-
tions, achieving higher accuracy with equivalent
or lower FLOPs. This underscores the z-branch’s
unique role in position-agnostic output modula-
tion: expert selection within this branch enhances

Comparison of MoE-Mamba and Mamba-MoZ

Model Variant
35 MoE-Mamba
mem Mamba-MoZ

Hellaswag SIQA
Evaluation Benchmark

Figure 2: Comparison between MoE-Mamba with
Mamba-Moz.

model expressiveness without compromising se-
quential dependencies. Notably, Mamba-MoZ sig-
nificantly outperforms Mamba-MoL (excluding the
z-branch), demonstrating that isolating sparsity to
context-independent parameters (e.g., the z-branch)
is a more effective sparsification strategy.

These results collectively demonstrate that spar-
sification in Mamba is not just about reducing
FLOPs—it must be applied strategically. By isolat-
ing sparsification to the most effective components
(like the z-branch), models can achieve higher ac-
curacy with less computation, pushing the Pareto
frontier in accuracy-efficiency trade-offs.
Sparsified Mamba vs. MoE-Mamba. We
also compared the hybrid structure that combines
Mamba and Moe with the pure sparse Mamba as
shown in Figure 2. We found that the effect of
pure sparse Mamba is comparable to or even better
than the hybrid while ensuring the simplicity of the
model structure. This proves the effectiveness of
the Mamba-MoZ structure we proposed.

3.5 Loss Comparision

We compared the loss curves of models using differ-
ent sparsification strategies in Figure 3, including
the original mamba and its variants, after applying
the sparsification strategy. We found that the loss
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Figure 3: Loss comparison between models using dif-
ferent sparsification strategies.
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Figure 4: Loss comparison between different hybrid
models. Hybrid_Mamba_FFN is to replace half of
the Mamba model layers with FFN layers of the same
size. Hybrid_Mamba_ATT is to replace 4 layers of the
Mamba model with attention layers of the same size.
Hybrid_Mamba-MoZ_MoE_ATT replaces half of the
model layers with MoE layers of the same size, and
then replaces the remaining 4 Mamba sparse layers with
Attention layers of the same activation size.

curve of the original mamba model was the highest,
and after applying the sparsification strategy, the
loss curve dropped significantly. Among them, the
loss curve using MoZ was the lowest. This proves
the superiority of our proposed strategy.

Recent work (Lieber et al., 2024; Blakeman
et al., 2025) has demonstrated the benefits of in-
tegrating Mamba modules with Transformer com-
ponents. To investigate this, we replaced selected
layers of a pure Mamba model with MLP and at-
tention layers. As shown in Figure 4, while sub-
stituting MLP layers had a negligible impact on
loss, introducing a small number of attention lay-
ers led to a notable reduction. This highlights the
role of attention in enhancing the expressive capac-
ity of Mamba models. Extending this approach,

we incorporated MoE and attention layers into the
Mamba-MoZ architecture. Under the same total
parameter budget but with fewer activated param-
eters, the model achieved further loss reductions,
confirming both the effectiveness of Mamba-MoZ
and its compatibility with other modules.

4 Related Work

Transformers (Vaswani et al., 2017) dominate
sequence modeling but face quadratic complex-
ity challenges. State Space Models (SSMs) like
Mamba (Gu and Dao, 2023) address this with
linear-time inference, though prior work (Piéro
et al., 2024) mainly applies MoE at the block level
without internal sparsification. Sparse architectures
like Mixture-of-Experts (Lepikhin et al., 2020; Fe-
dus et al., 2022) improve efficiency but remain
largely unexplored in SSM contexts. While net-
work pruning (Liu et al.) targets dense models,
they lack mechanisms for SSM’s temporal dynam-
ics. Our work pioneers component-aware sparsi-
fication within Mamba, particularly targeting its
linear layers, which contrasts with prior uniform
or block-level approaches. This targeted strategy
optimizes both efficiency and performance by lever-
aging Mamba’s internal structure.

5 Conclusion

We explore sparsification strategies within Mamba,
revealing that selectively sparsifying the z-branch
achieves superior accuracy-efficiency trade-offs
compared to full sparsification or block-level ap-
proaches. The proposed Mamba-MoZ frame-
work enhances performance while maintaining
linear-time complexity, outperforming hybrid MoE-
Mamba architectures. Our findings establish inter-
nal sparsification as a promising direction for scal-
ing SSM-based models, paving the way for more
efficient large-scale language models.
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Limitations

Our work is limited by evaluating models on a
650M activated parameter model and three bench-
marks due to computational constraints, leaving the
scalability to larger models and diverse NLP tasks
uncertain. The sparsification strategy for linear lay-
ers is relatively simple, and more methods can be
explored in the future. In addition, although the
sparsification strategy does not increase the amount
of computation, it will bring about an increase in
memory. Therefore, in large-scale model training,
it is necessary to design a reasonable expert parallel
strategy.
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A Introduction of Mamba Architecture

The original Mamba (Gu and Dao, 2023) frame-
work operates through discrete-time parameteriza-
tion of continuous SSMs. Given an input sequence
{x}, its core computations can be summarized as:

AL =0 (XkWA + bA)
Ay = A

Bk =4 (XkWB)

Ck =94 (XkWC) (2)
ho = BOAOX0

hy = Ay _1h, 1 + BrAgxy

yr = Crhy

O =y X 5(XkWZ)

Here, o denotes the softplus (Zheng et al., 2015)
activation function, and § represents the SiLU (Sig-
moid Linear Unit) function. The architecture fea-
tures input-dependent parameterization through
A, which modulates both the discretization rate
and the effective state transition.
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