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Abstract

Large language models are reshaping inter-
net services. Serving these models is often
costly, as it requires multiple high-end GPUs.
Consumer-grade GPUs offer cheaper compu-
tational power, providing an opportunity for
more cost-efficient LLM serving.

Prior efforts have explored distributed serving
at scale, primarily focusing on model deploy-
ment strategies. However, communication ef-
ficiency has emerged as a challenge due to the
imbalance in data transfer volumes between
the two phases of inference: prefill and de-
code. Prefill requests can involve transmitting
up to 1000 times more data than decode re-
quests, leading to decode requests being de-
layed. Consequently, servers are underutilized
while waiting for decode requests. In this pa-
per, we present MoLink, an efficient distributed
LLM serving system. It splits the prolonged
transmission volume of prefill requests into
smaller chunks and carefully scheduling their
transmission. It consists of two parts: (i) a
transmission scheduling algorithm that fairly
determines whether to transmit prefill or de-
code requests, and (ii) a chunking determina-
tion algorithm that determines the transmit vol-
ume for prefill requests just-in-time. Our evalu-
ation demonstrates that MoLink reduces TTFT,
TPOT, and latency compared to the state-of-
the-art distributed LLM serving system, with a
maximum reduction of up to 46%.

1 Introduction

Large language models represent a groundbreaking
shift in generative Al, reshaping existing Internet
services, ranging from search engines to personal
assistants. Yet, these advances come with a signifi-
cant challenge: serving these models can be very
expensive. For example, OPT-175B requires over
350 GB of accelerator memory for inference. As a
result, even basic inference for these LLMs neces-
sitates multiple high-end GPUs within a cluster.

In contrast to high-end GPUs, consumer-grade
GPUs offer more affordable computation power.
For instance, an RTX 4090 delivers 330 TFLOPS
at FP16 precision, compared to the 312 TFLOPS
of an A100, with over 4x lower hourly pricing in
cloud markets [3]. It is reported that 101 million
PC GPUs were shipped in Q4 2021 [11]. Although
these consumer-grade GPUs are widely deployed,
they remain underutilized. This presents the oppor-
tunity for more cost-efficient LLM serving.

Prior efforts have explored distributed comput-
ing at scale. For example, Folding@Home [22]
sources upwards of 40,000 Nvidia and AMD GPUs.
Petals [4] studies the fault-tolerance for serving
LLMs on unsteady servers. HexGen [10] optimizes
the deployment of LLMs in decentralized environ-
ments. Helix [14] discovers optimal LLM deploy-
ment and request scheduling under heterogeneous
clusters. These studies effectively schedule LLM
deployment for distributed serving.

In this paper, we focus on the communication op-
timization in bandwidth-constrained environments.
This is primarily due to the imbalance in trans-
ferred data volume between the two phases of in-
ference: prefill and decode. Prefill requests can
involve transmitting up to 1000 times more data
than decode requests, as their volume scales with
the number of processed tokens. Ideally, many de-
code requests can be executed concurrently while
prefill data is still being transmitted.

However, existing systems [28, 14, 4, 12] suffer
from transmission competition between requests
at different phases. For example, the decode re-
quest may be delayed by up to one second due to
the prefill request occupying the available band-
width during transmission—even though the de-
code request itself requires only a few milliseconds
to transmit. Consequently, the server receiving the
decode request remains idle during this period.

To address the issue, we present MoLink, an
efficient distributed LLM serving system. It mit-
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igates the transmission competition by splitting
the prolonged transmission volume into smaller
chunks and carefully scheduling these chunks to
transmit. It consists of two part: (i) an transmis-
sion scheduling algorithm that determine when to
transmit the prefill or the decode requests. It also
guarantees that the transmission of prefill requests
are not starved. (ii) an chunking determination
algorithm that determine the transmit volume for
prefill requests just-in-time, so that the decode re-
quest is not blocked by the prolonged transmission
for prefill request.

We summary our contribution as follows:

* We identify a performance bottleneck in dis-
tributed LLM serving under bandwidth con-
strained environments—transmission compe-
tition among requests from different inference
phases.

* We propose a novel transmission scheduling
strategy—chunk transmission—which miti-
gates competition by splitting large transmis-
sion volumes into smaller chunks and care-
fully scheduling their transmission.

* We present MoLink, an efficient distributed
LLM serving system that incorporates several
optimizations. Our evaluation shows that it
reduces TTFT, TPOT, and latency, with a max-
imum reduction of up to 46%.

2 Background

2.1 Distributed LLM Serving

LLM inference. Modern LLMs [16, 24] predict
the next token given an input sequence. This pre-
diction involves computing a hidden representation
for each token within the sequence. An LLM can
take a variable number of input tokens and com-
pute their hidden representations in parallel, and
its computation workload increases superlinearly
with the number of tokens processed in parallel.
The prefill step deals with a new sequence, often
comprising many tokens, and processes these to-
kens concurrently. Unlike prefill, each decoding
step only processes one new token generated by the
previous step.

Model parallelism. Open source LLMs now
feature up to hundreds of billions of parameters, far
exceeding the memory capacity of a single GPU.
Consequently, serving an LLM requires multiple
GPUs operating in parallel. Tensor Parallelism
(TP) [23] partitions the weight of each operator
among GPUs. However, it is highly sensitive to

mcommunication mcomputation

3000 . 80
— 2500 { Prefil Decode
2 60
£ 2000
o 1500 40
£ 1000
F 500 20
0 0
S5 S L O
N R RO 1 2 4 8 16
Sequence Length Batch Size

Figure 1: Computation and communication costs of
prefill (left) and decode (right) with different input size
for LLaMa-30B running on RTX 4090(s) servers linked
with 100 mbps bandwidth.
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Figure 2: Computation and communication time as a
function of the number of tokens. Decode tends to be
in computation bound region while prefill tends to be in
communication bound region.

network conditions. Because it perform all-Reduce
commnication. Conversely, Pipeline Parallelism
(PP) [8] assigns multiple layers across GPUs to
create pipeline stages. It splits inputs into multiple
independent micro batches. These batches are run-
ning through the servers in the pipeline, which we
referred as an iteration of inference. When employ-
ing pipeline parallelism for LLM serving on multi-
ple servers, the activation tensor are transferred as
the intermediate results between the servers.

3 Performance Analysis

3.1 Cost analysis of prefill and decode.

The prefill step processes a new sequence, often
handling many tokens concurrently. In contrast,
each decoding step processes only one new token
generated by the previous step. This discrepancy
leads to differences in computation and communi-
cation costs for requests at different phases.

To demonstrate this, we analyze the cost of a
single inference iteration for LLaMA-30B across
two RTX 4090-equipped servers connected via a
100 Mbps link. The costs are dissected into com-
putation and communication components. Results
are shown in Figure 1. We can see that the pre-
fill phase for a single request as the prompt length
increases. The results reveal that communication
time dominates computation time. In contrast, the
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Figure 3: A case of transmission competition between prefill and decode for LLaMa-30B running on RTX 4090(s)
linked with 100 mbps bandwidth. The prompt length is 1000. The batch size is 4.

decode phase for a batch of requests as the batch
size grows, where computation time far exceeds
communication time.

Figure 2 plots the trend of communication and
computation time as a function of the number of
tokens. We can see that the computation overhead
of decode is more than the communication over-
head (the number of tokens ranges from 1 to 32),
which we refer to as a computation bound task. On
the other hand, although the number of tokens for
prefill can easily exceed the compute saturation
point ¢ (i.e., 256), the communication overhead
is much greater than the computation overhead,
which we refer to as a communication bound task.
This suggests that interleaving the two phases of-
fers an opportunity to overlap communication with
computation and thus improve overall throughput.

3.2 Transmission competition of prefill and
decode.

It is non-trivial to achieve high transmission
and computation overlap. When multiple micro-
batches are processed concurrently, competition
between decode and prefill phases occurs. Fig-
ure 3a shows two iteration of a request with input
length of 1000 under two-degree pipeline paral-
lelism under the bandwidth of 100 mbps. For the
prefill, it takes 1000ms to completely transfer the
activation, while it takes only about 2ms to transfer
the volume for decode.

Transmission competition. The competition
often happens when sequentially processing a new

arriving request in prefill phase and an existing
batch of requests in decode phase. Figure 3b shows
a naive transmission schedule, which we referred
as serial transmission. It serially transfer the activa-
tion volume of both prefill and decode. We can see
that the activation volume of prefill can be large
and takes a long time to transfer, during which the
transmission of decode is blocked and the server2
idles at the time between t1 and 5.

To address the issue, existing distributed serving
systems [12, 14, 4] employ a concurrent transmis-
sion schedule, which asynchronously sends the ac-
tivations of both prefill and decode requests. Figure
3c shows an example. We can see that although
the volume of decode is sent once the computa-
tion is finished at t9, the transmission of decode
is delayed by several milliseconds since a large
part of the bandwidth is allocated to prefill. In
real practice, we observe that the delay of decode
can be hundreds of times greater compared to the
transmission without competition.

Opportunity. To solve this problem, our idea is
to transfer the activation generated in prefill phase
in chunks, which we referred as chunking trans-
mission. Figure 3(d) shows an option of chunking
and transmitting the activation of prefill requests.
We can see that when prefill request finishes its
execution, it start to transmit only a chunk of the
activation generated. While this transmission is
always finished before the transmission of decode,
the decode are not delayed during its transmission.
As aresults, server2 finishes more iterations.
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Figure 4: The architecture of MoLink. Different part of model layers are deployed on workers with the pipeline
parallelism strategy. It supports accessing both Linux servers and Windows PCs.

4 MoLink

4.1 Architecture

Figure 4 shows the architecture of MoLink. Differ-
ent part of model layers are deployed on workers
with the pipeline parallelism strategy. We further
improve the performance of MoLink by (i) schedul-
ing the transmission of prefill and decode requests
(Section 4.2). (ii) scheduling the number of micro-
batches (Section 4.3).

Platform support. We present MoLink as a plat-
form designed for serving large language models
(LLMs) using distributed consumer-grade GPUs.
MoLink supports both Windows PCs and Linux
servers. For Linux servers, we use Kubernetes to
manage Docker containers. For Windows PCs and
containerized environments such as AutoDL [3],
we implement lightweight Kubernetes-like func-
tionality to manage resources and deployments.

4.2 Transmission Scheduling

To mitigate the transmission competition between
prefill and decode requests, our solution is to chunk
the prolonged activation of prefill request and trans-
mit them without occupying the bandwidth for
decode request. It is designed to maximize the
throughput of our serving system. It should also
guarantee that the activation transmission for prefill
requests is not starved in the extreme situation.
Weighted-priority transmission scheduling.
Algorithm 1 shows our schedule policy of trans-
mission. We continuously check whether there are
requests finished in the server, and put their volume
to transfer in the queue. The volume is divided into
two type of queue depending on the phase of the
requests (line 5-9). We priories activation transmis-
sion for decode requests. Therefore, we choose to
transmit a decode request even there exits prefill
requests needing transmission (line 12-14). Then,
we set a waiting weight W to guarantee that the
activation transmission of prefill request will not be

Algorithm 1 Transmission schedule (a server)

1: Initialize volume queue vqq, vgo < ()
2: Initialize waiting weight W =0

3: Initialize max waiting weight N = 30
4: While True do

5 While v,,.,, = get_next_volume() do
6 if vy,e in phase.decode:
7: add vyey to vqy
8: else
9: add vyeq to v
10: if vg1 # 0 and vgo # 0
11: W=W+1
12: ifvgy #0and W <N
13: send(vq [0])
14: pop(vq1)
15: elif vgy # 0
16: if W >=N
17: vy =vq2[0].left
18: else
19: vy = chunk(vgz[0].le ft)
20: vg2[0].le ft = vg2[0].le ft - vy
21: if vga[0].left ==
22: pop(vg2)
23: send(v;)
24: W=0

starved. When a decode request takes precedence
over the prefill request transmission, W is counted
as incremented by 1 (Line 10-11). Only if the wait-
ing weight W are exceeding a threshold /V or there
is no decode requests in queue. We calculate the
volume of the transmission and start the transmis-
sion for prefill requests. The waiting weight W is
reset to 0 after this transmission (line 15-23).
Just-in-time chunk determination. We pro-
pose an adaptive chunking determination algorithm
that performs a just-in-time determination of the
chunk volume of activations for the next transmis-
sion. Our goal is to predict the available time inter-
val for chunk transmission when a transmission is
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Figure 5: Determining the volume of a chunk. T, indicates the duration of chunk transmission. The calculation of
T, has three cases, which depend on the relationship between ¢. and ¢5. t. indicates the start time of the transmission.
ts indicates the start time of the current (or next) decode execution. dec* denotes the first batch of the iteration.

Variable Description

te The start time of prefill transmission.

ts The start time of the current (or next)
decode execution.

ty The finish time of the current (or
next) decode execution.

tp The finish time of the first decode
batch execution in latest iteration.

Ty The duration of the current (or next)
decode execution.

T The transmission overhead for first
decode execution in latest iteration.

T The computing overhead for first de-
code execution in latest iteration.

Ts The duration of the prefill transmis-

sion.

Table 1: Notations of variables.

to start. We define variables to address the issue,
whose details are shown in Table 1.

Since the available time interval is dependent
on the transmission for decode requests, we show
three methods for calculating the chunk volume
in relation to the decode transmission. Consid-
ering the decode transmission start time t., and
the current (or next) execution time, denoted as ¢,
as illustrated in Figure 5. Our goal is to predict
the available time T, which can be calculated as:
Ty = ts+ T4 —t. where T, represents the duration
of the current (or next) decode execution.

Case 1: The start time of transmission ¢,
equals the start time of the current execution
ts. This situation typically occurs with the first
chunk of prefill requests, where the transmission
of the prefill and the execution of the subsequent
decode batch begin simultaneously. In this case,
the finishing time of the decode execution ¢, can
be calculated as: ¢y = t5 + T};. Since the execution
time of a decode batch primarily depends on the

number of tokens processed, we express the execu-
tion duration as a function of token count: T,(x),
where x denotes the number of tokens. This func-
tion is derived from profiling data collected on our
real system. Therefore, the available time interval
T; can be computed as: T, =ty —t. = Tj.

Case 2: The start time of transmission . is
later than the start time of the current execution
ts. This situation occurs when the transmission
of a chunk (e.g., from a prefill stage) begins after
the completion of one of multiple serial decode
batches. In this scenario, the system has already
started executing a decode batch when the trans-
mission begins. As in Case 1, the finishing time
of the decode execution ¢ f» can be calculated as:
ty = ts+Ty. However, since t. > ts, the available
time interval T}, is reduced and can be computed
as: T, = ty —t. = Ty + ts — t.. This value is
smaller than in Case 1, due to the delayed start of
transmission.

Case 3: The start time of transmission ¢ is
earlier than the start time of the current execu-
tion ¢,. This situation arises when the transmission
of a chunk (e.g., from a prefill stage) begins after
the completion of the final decode batch in a se-
quence of multiple serial decode executions. In this
case, there is no decode batch currently executing
in the system. Therefore, we consider the finishing
time ¢7 of the next decode execution, which will
occur in the upcoming iteration of the system.

Since LLMs follow the auto-regressive property,
the execution of the next iteration can be predicted
based on the execution trace of the previous itera-
tion. Let {By, Ba, ..., By} denote the sequence
of decode batches in the latest iteration. The batch
B is expected to be the next to execute, as indi-
cated by dec* in Figure 5. Hence, we focus on the
start time (i.e., arrival time) of the next execution
of By, denoted as ¢ ¢.
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Figure 6: The impact of micro-batch number in pipeline.

We now model both the transmission overhead
T, and the computation overhead T, required for
By to complete its iteration across servers.

The computation overhead T, is calculated as:

M
To = Z Tdi (n)a
=1

where Ty, (n) represents the execution time on
server ¢ for n tokens, and is a function derived
from profiling data collected per server.

The transmission overhead 7, is given by:

t X
S 3

where M is the plpehne degree (i.e., number of
servers), Lat; is the latency between server ¢ and
server 7 + 1 for 1 < M — 1, and between server
M and server 1 when ¢ = M, Band; denotes the
corresponding bandwidth, n is the number of to-
kens processed in this batch, act_sz and tok_sz are
the activation and token sizes, respectively (e.g.,
13312B and 2B for LLaMa-30B).

The estimated finishing time of the decode ex-
ecution is: ty = t, + T, + T},, where ,, denotes
the completion time of the first decode batch in the
latest iteration. Thus, the available time interval T,
is: Ty =ty —t. =ty + T, + Ty, — te. This value
is typically larger than in Case 1 due to the delayed
start of the next decode execution.

tok_sz X n

Band M

4.3 Extending the number of micro-batch

To fully utilize GPUs, existing systems often set
the number of micro-batches equal to the degree
of pipeline parallelism [12, 28]. This approach
assumes that the transmission overhead between
servers is negligible, given the relatively small vol-
ume of activations. However, when servers are
connected via limited bandwidth, the transmission
overhead for activations can increase significantly.
This can lead to pipeline bubbles, reducing the
overall efficiency of the system.

Figure 6a shows a example when we use a micro-
batch number equals to the pipeline degree. We can
see that the transmission process of intermediate
activations takes times and delays the execution
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Figure 7: Distribution of
input and output length.

Figure 8: Arrival rate

of micro-batches (i.e., B1 and B2) in the target
server. As a result, the server idles when finishing
one of the micro-batch (i.e., B2) since the arrival
of another micro-batch (i.e., B1) is always delayed.
This under-utilization of servers naturally exists
when the number of micro-batch is equals to the
pipeline degree, since there is no more micro-batch
fitting in the idle time of servers.

To address the issue, we extend the micro-batch
to a larger number than the pipeline degree. Figure
6b shows a example. By adding a new micro-batch
(i.e., B3) that sequentially executing after the B2,
we can see that the transmission time of B1 are
overlapped by the execution of B3. Therefore re-
duce the idle time of servers. The optimal number
of micro-batch can be different according to both
the hardware and network conditions. We set the
search space of micro batch number as IV to 2N,
where NNV indicate the degree of pipeline. We emu-
late the number of micro-batches to find a optimal
value, since the search space of micro-batch num-
ber is limited.

5 Evaluation

Models. We evaluate MoLink on Qwen, a represen-
tative and popular open-source Transformer model
family. Specifically, we use Qwen 7B [19] to study
the system performance on models. We run model
inference with half-precision (FP16).

Cluster setup. The distributed cluster setup
has clusters that contain 3 servers, each server is
equipped with a RTX 4090 GPU. Inter-node com-
munication has an average bandwidth of 100 Mps
and an average latency of 30 ms (as our profiling
results on lab servers). These servers are config-
ured to use pipeline parallelism for LLM serving.
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Table 2: The comparison results at different request rate. The bandwidth is 100 mbps, and the delay is 30 ms. The
percentages displayed after each value represent the comparison with the corresponding value of vLLM.

Rate TTFT (s)

TPOT (s) End-to-end Latency (s)

(req/s) | vVLLM Helix MoLink | vVLLM

Helix MoLink | vLLM Helix MoLink

0.7 173 142 (82%) 9.29 (54%) | 3.49 3.42(98%) 3.01 (86%) | 509 497 (98%) 449 (88%)

0.3 620 5.66(91%) 5.23(84%) | 1.69 1

.65 (98%) 1.30(77%) | 306 299 (98%) 256 (83%)

0.2 374  3.42091%) 330@88%) | 050 047 (94%) 0.4182%) | 111 106 (96%) 93 (83%)
0.1 339  327096%) 3.23(95%) | 0.28 0.29(104%) 0.26 (93%) 74 75 (102%) 69 (94%)

Table 3: The comparison results at different bandwidths. The request rate is 0.3 req/s, and the delay is 30 ms. The
percentages displayed after each value represent the comparison with the corresponding value of vLLM.

bandwid- TTFT (s) TPOT (s) End-to-end Latency (s)
th (mbps) | VLLM Helix MoLink vLLM Helix MoLink vLLM Helix MoLink
60 8.07 73491%) 7.32091%) | 124 121 (97%) 1.07(86%) | 229 223 (97%) 213 (93%)

100 374 3.42(92%) 3.30 (88%) 0.5
200 202 1.86(92%) 1.83(91%) | 0.29
400 145 1.35093%) 1.26(87%) | 0.25

047 (95%) 0.41(82%) | 111 106 (96%) 93 (83%)
0.28 (97%) 0.25 (86%) 68 64 (94%) 58 (85%)
0.23 (95%) 0.21 (86%) 56 53 (95%) 47 (85%)

We also study the impact of bandwidth, latency and
pipeline degree on serving metrics.

Trace. We use Azure Conversation [2] to sim-
ulate the arrival of requests. It is a representative
trace of LLM inference invocations with input and
output tokens. Fig. 7 shows the length distribution
of the datasets. Fig. 8 shows the arrival rate of the
datasets. We remove requests with input lengths
larger than 2048 or output lengths larger than 1024,
and scale the frequency of requests arrival to fit in
the GPUs we use, which we indicate as the arrival
rate in our experiment. We warm up the cluster for
1 minute and test for 30 minutes.

Metrics. We measure the latency of the LLM
service using two key metrics: Time to First Token
(TTFT), which indicates the duration of the prefill
phase, and Time per Output Token (TPOT), which
represents the average time taken to generate each
token after the first one. Additionally, we report the
end-to-end latency for each request. These metrics
are averaged over the serving duration to provide a
comprehensive view of the service’s performance.

Baselines. We compare MoLink against two
state-of-the-art distributed LLM serving systems.

e vVLLM [12]. Itis arepresentative LLM serving
system widely used in both academia and in-
dustry. It uses concurrent transmission sched-
ule. It asynchronously sends the prefill or
decode volumes using sockets. We use ver-
sion v0.7.2 [25]. It is the same version as the
basic implementation of MoLink.

e Helix [14]. It is a high-throughput serving
system for distributed clusters. It sequentially
sends the prefill or decode volume into the
ZeroMQ message queue. The underlying Ze-
roMQ asynchronously sends messages.

5.1 Main results

Table 2 shows the average TTFT (Time to First To-
ken), TPOT (Tokens Per Second), and end-to-end
latency for state-of-the-art systems and MoLink at
different request rates. We set the rate from 0.1 to
0.7 req/s, which typically represents low to high
workloads. For example, when the rate is 0.7 req/s,
the TPOT of the serving systems has exceeded 3s,
which is unacceptable for a serving scenario. From
the table, we can see that MoLink achieves the
smallest values for TTFT, TPOT, and end-to-end
latency at all request rates, with a maximum reduc-
tion of 46%. Since both vLLM and Helix asyn-
chronously send activation volumes of requests
without awareness of prefill and decode, they suffer
from transmission competition between prefill and
decode. This can be most severe when comparable
prefill and decode requests are concurrently pro-
cessed, which typically happens at an arrival rate of
0.3 req/s. This is the point where MoLink achieves
the most reduction in TTFT, TPOT, and end-to-end
latency compared to vLLM and Helix. On the con-
trary, the benefits of MoLink decrease with high
workloads (e.g., 0.7 req/s) and low workloads (e.g.,
0.1 reqg/s), since a type of request (e.g., prefill or
decode) dominates the execution.

Table 3 shows the average TTFT (Time to First
Token), TPOT (Tokens Per Second), and end-to-
end latency for MoLink at different bandwidth lev-
els. We can see that MoLink benefits from the
proposed optimization techniques across a wide
range of bandwidth. Although the communica-
tion overhead can decrease with the increase of
bandwidth (e.g., from 100 Mbps to 400 Mbps), re-
sulting in the impact of transmission competition
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Table 4: The comparison results at different delay. The request rate is 0.3 req/s, and the bandwidth is 100 mbps. The
percentages displayed after each value represent the comparison with the corresponding value of vLLM.

Delay TTFT (s) TPOT (s) End-to-end Latency (s)

(ms) | VLLM Helix MoLink vLLM Helix MoLink vLLM Helix MoLink
10 325 3.13(96%) 3.12(96%) | 0.31 0.31(100%) 0.27 (87%) 72 72 (97%) 63 (87%)
20 346 328 (95%) 3.19(92%) | 0.41 0.40 (98%) 0.34 (83%) 94 92 98%) 79 (84%)
30 3.74 3.42(92%) 3.3 (88%) 0.5 0.47 (95%) 0.41 (82%) 111 106 (96%) 93 (83%)
50 381 3.73098%) 3.7 (97%) 0.67 0.65 (97%) 0.59 (88%) 143 139 97%) 127 (89%)

Table 5: Ablation study of proposed techniques. The
request rate is 0.3 req/s, the bandwidth is 100 mbps and
the delay is 30ms.

TTFT (s) TPOT (s) Latency (s)
All opimizations 3.30 0.41 93.07
w/ chunk 3.37 0.44 99.25
transmission
w/micro-batch 5 0.43 97.23
extending
No opmizations 3.56 0.48 107.45

being mitigated, the communication volume is still
non-negligible. This is because the prompts of pre-
fill requests can be large in long-context scenarios,
such as summarization tasks.

Table 3 shows the average TTFT (Time to First
Token), TPOT (Tokens Per Second), and end-to-
end latency for MoLink at different network delays.
As the delay increases, the benefits of MoLink de-
crease. This is because pipeline bubbles become
more frequent due to the more delayed arrival of
micro-batches, as illustrated in Figure 6. In this
experiment, we used a fixed number (5) of micro-
batches. Increasing the number of micro-batches
could mitigate the impact of delay to some extent.

5.2 Ablation Study

We then isolate the improvement brought by each
individual technique in MoLink through an ablation
study. Table 5 lists the TTFT, TPOT, and end-to-
end latency that MoLink achieves when enabling
each technique individually. We set the number
of micro-batches to 5. We can see that, although
individual techniques contribute to the reduction
of TTFT, TPOT, and end-to-end latency, their com-
bined effect is more significant. For example,
chunk transmission reduces TPOT by 8.4%, while
micro-batch extension reduces TPOT by 10.5%.
When both techniques are combined, they reduce
TPOT by 14.6%, demonstrating the efficiency of
these optimizations.

6 Related Work

Machine Learning Model Serving. Many recent
LLM-specific systems tackle the unpredictable exe-
cution time and high memory consumption in LLM
serving. Orca [28] proposed iteration level schedul-
ing to release resources once a request is finished.
vLLM [12] introduced PageAttention to reduce the
memory consumption by allocating the exact num-
ber of pages a request requires. Speculative Infer-
ence [13, 15] applies a small model to predict mul-
tiple output tokens. Splitwise [18] and DistServe
[29] disaggregates the prompt and decode phase of
requests. All the above works are orthogonal to our
work. Sarathi [1] introduced chunked prefill, which
allocates a budget to the prompt phase. However,
it does not optimize the the transmission of prefill
requests by chunking the volume.

Distributed LLM Serving. Several methods
explored the potential of utilizing distributed GPUs
for ML tasks. Some of them [9, 17] co-design
the model partition and placement on a heteroge-
neous cluster. Learninghome [21] and DeDLOC
[5] studied network-aware routing on a decentral-
ized cluster. SWARM [20] optimize the pipeline
communication in a heterogeneous network. There
are also several efforts on using approximations to
reduce network communication [26] or synchro-
nization [7]. SkyPilot [27] and Mélange [6] se-
lect the best type of GPUs for a request. Petals
[4] studies a decentralized pipeline parallel setup.
It designs a greedy model allocation and request
scheduling for a dynamical device group, losing
optimization opportunities for a fixed device group.
They are only focus on the model placement and
request scheduling.

Limitations

At this stage,we concentrate on two limitations of
this work, aiming to inspire future potential re-
search directions.

Network Fluctuation Adaptation. Currently,
we assume the network is static in our design. How-
ever, networks can be highly dynamic. Future work
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could explore adaptive mechanisms to handle net-
work fluctuations, ensuring consistent performance
under varying network conditions.

Fault tolerance. Currently, we assume the
devices are reliable in our design. However, in
real-world scenarios, devices can fail or experi-
ence faults. Future work could investigate fault-
tolerance mechanisms to ensure system robustness
and reliability, even in the presence of device fail-
ures.
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