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Abstract

Commonsense reasoning in multimodal con-
texts remains a foundational challenge in arti-
ficial intelligence. We introduce Multimodal
UNcommonsense (MUN), a benchmark de-
signed to evaluate models’ ability to handle sce-
narios that deviate from typical visual or con-
textual expectations. MUN pairs visual scenes
with surprising or unlikely outcomes described
in natural language, prompting models to ei-
ther rationalize seemingly odd images using
everyday logic or uncover unexpected interpre-
tations in ordinary scenes. To support this task,
we propose a retrieval-based in-context learn-
ing (R-ICL) framework that transfers reasoning
capabilities from larger models to smaller ones
without additional training. Leveraging a novel
Multimodal Ensemble Retriever (MER), our
method identifies semantically relevant exem-
plars even when image and text pairs are de-
liberately discordant. Experiments show an av-
erage improvement of 8.3% over baseline ICL
methods, highlighting the effectiveness of R-
ICL in low-frequency, atypical settings. MUN
opens new directions for evaluating and improv-
ing visual-language models’ robustness and
adaptability in real-world, culturally diverse,
and non-prototypical scenarios.

1 Introduction

In everyday life, commonsense functions as an in-
visible framework, akin to "dark matter" in the
universe. Though we cannot directly perceive it,
commonsense subtly influences our decisions, such
as recognizing social norms or interpreting ambigu-
ous situations (Bosselut et al., 2019; Tao et al.,
2024).

While this commonsense often leads to stable
reasoning in familiar contexts, it can falter when
confronted with visual or textual cues that fall
outside typical experience or cultural familiarity

*Equal contribution

Uncommon Outcome:
Arrested by the police.

Uncommon to Common Common to Uncommon

Multimodal
Uncommonsense 

Reasoning

Someone secretly placed
illegal drugs in the bag.

Uncommon Context

Common Outcome:
I made and ate banana cake.

 It was sweet and moist, 
just the way I like it.

Common Context

Overripe bananas 
that turn black are still edible

and perfect for baking.
 

Figure 1: Multimodal UNcommonsense Reasoning
aims to produce explanations that make given outcomes
appear likely. For example, overripe bananas (an uncom-
mon context) can still be used for baking a sweet, moist
banana cake (a common outcome), while a bag on a
bench (common context) leads to an arrest (uncommon
outcome). This highlights the challenge of bridging
visual cues with logical reasoning, as addressed in our
Multimodal Uncommonsense (MUN) dataset.

(Wang et al., 2023). However, most existing bench-
marks for commonsense reasoning evaluate mod-
els on frequent or prototypical cases that are well-
covered by large-scale English-language corpora
and standard vision-language datasets (Brown et al.,
2020b; Raffel et al., 2020; Hendricks et al., 2016;
Agrawal et al., 2017; Li et al., 2019). As a result,
current AI systems exhibit significant brittleness
when faced with rare, ambiguous, or culturally-
specific phenomena that lie beyond the training
distribution.

To address this gap, we introduce the Multi-
modal UNcommonsense (MUN) benchmark: a
human-curated dataset specifically designed to eval-
uate models’ ability to reason about uncommon
or counterintuitive outcomes in visual contexts.
Unlike prior datasets that emphasize prototypical
commonsense, MUN centers on visual situations
that violate typical expectations, such as an over-
ripe banana being preferable for baking, or cultur-
ally specific gestures like the Indian head wobble
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Visual Context Textual Context Outcome Explanation

Black spots in a banana.

Person enjoyed the banana 

bread without any health 

concerns.

The overripe bananas were likely 

used for baking banana bread, which 

was enjoyed without any health issues.

Air bubbles in freshly

poured concrete.

Person observed the concrete 

setting well, providing a 

solid foundation for 

construction.

The air bubbles in freshly poured 

concrete, a common occurrence 

during mixing, did not compromise 

its integrity, as the concrete set 

properly to form a solid foundation.

A blue backpack

resting on 

a wooden bench.

Arrested by the police.

While the owner went to the restroom, 

someone placed illegal drugs 

in the bag 

without their knowledge.

A laptop and coffee 

cup on a café table.
Lost money due to fraud.

Someone attempted hacking through 

an unsecured Wi-Fi connection, 

stealing personal information and 

committing fraud.

Figure 2: MUN examples. The first two examples are from MUN-vis and the next two examples come from
MUN-lang; explanations are written by human annotators. Note that textual context is only used during dataset
generation.

indicating agreement. These cases challenge the
model to reconcile visual oddities with logically or
culturally grounded explanations.

The necessity of MUN lies in its focus on low-
frequency, multimodal reasoning, a facet criti-
cal for real-world applications where visual inputs
and commonsense expectations often diverge. By
constructing and evaluating against such examples,
MUN serves as a benchmark that complements
existing datasets, expanding the scope of common-
sense evaluation beyond conventional boundaries.

We collected human-written and LLM-generated
explanations for each case, revealing a significant
gap in interpretability and diversity. While LLM
explanations are often precise, human annotations
offer a broader range of perspectives, as noted in
prior work (Zhao et al., 2023). We leverage both
via augmentation to build a high-quality benchmark
that supports rich supervision and evaluation.

To enhance reasoning in visually and contextu-
ally atypical scenarios, we adopt a retrieval-based
in-context learning (R-ICL) method (Lin et al.,
2022, 2023), which improves smaller models by
leveraging semantically relevant exemplars gener-
ated by larger models. Specifically, to effectively
identify these exemplars within scenarios exhibit-
ing visual-textual discordance, we introduce an
innovative retrieval framework known as the Multi-
modal Ensemble Retriever (MER). MER indepen-
dently scores similarity in each modality and fuses
them via a tunable weighting mechanism, enabling
flexible retrieval in the presence of intentionally
discordant image-text pairs in MUN.

Unlike conventional retrievers that assume
strong cross-modal alignment, MER accommo-
dates the unaligned nature of our benchmark. To
the best of our knowledge, this is the first applica-
tion of R-ICL in a setting where visual and textual
signals are deliberately discordant, enabling abduc-
tive reasoning over unaligned multimodal inputs.
This approach yields an average 8.3% increase in
win rate over a random baseline, demonstrating the
effectiveness of R-ICL in boosting nuanced multi-
modal reasoning.

By connecting intuitive impressions with under-
lying truths in visually uncommon scenarios, MUN
lays the groundwork for building trustworthy AI
systems capable of reasoning beyond the obvious
across cultures, contexts, and expectations.

2 Related Work

Abductive Reasoning. Abductive reasoning,
central to commonsense, involves inferring the
most plausible explanations from incomplete obser-
vations. While various efforts have explored textual
and multimodal abductive reasoning, each existing
approach exhibits limitations (Table 1). For ex-
ample, Abductive-NLI (Bhagavatula et al., 2019)
focuses solely on textual input in everyday scenar-
ios without visual grounding. Sherlock (Hessel
et al., 2022) integrates real images and text but re-
mains constrained to common situations and unidi-
rectional reasoning. UNcommonsense (Zhao et al.,
2023) targets uncommon contexts but lacks visual
signals, while NL-Eye (Ventura et al., 2024) em-
ploys synthetic images without adequately address-
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Dataset Modality Real
image Uncommon Bi-direction

Reasoning?

Abductive-NLI T ✗ ✗ ✗

Sherlock I+T ✓ ✗ ✗

Uncommonsense T ✗ ✓ ✗

NL-Eye I+T ✗ ✗ ✗

MUN (Ours) I+T ✓ ✓ ✓

Table 1: Comparison with Abductive reasoning bench-
mark. (Bhagavatula et al., 2019; Hessel et al., 2022;
Zhao et al., 2023; Ventura et al., 2024) "I" stands for
Image and "T" stands for Text. The MUN uniquely
supports "Bi-direction UNcommonsense Reasoning,"
combining unusual contexts, outcomes, and nuanced
visual scenarios.

ing non-commonsensical scenarios or bidirection-
ality. As a result, none of these existing approaches
simultaneously incorporate real imagery, handle
uncommon contexts, and support bidirectional ab-
ductive inference. In contrast, our proposed MUN
(Multimodal UNcommonsense) dataset integrates
real images and text, actively considers uncom-
mon scenarios, and enables bidirectional reasoning,
thereby addressing these gaps and offering a more
comprehensive and nuanced abductive reasoning
benchmark.

Retrieval-Augmented and In-Context Learn-
ing Recent advances in large language models
(LLMs)(Brown et al., 2020a; Chowdhery and et al.,
2022; OpenAI, 2023) and large vision-language
models (VLMs)(Alayrac et al., 2022; Li et al.,
2023a) have shown remarkable zero- and few-shot
learning capabilities. However, their reasoning of-
ten remains tied to patterns entrenched in their train-
ing data. Retrieval-augmented paradigms (Liu and
et al., 2022b; Thoppilan and et al., 2022) and in-
context learning (ICL) techniques (Wei and et al.,
2022; Zhou and et al., 2022) represent promis-
ing strategies to extend model capabilities beyond
memorized knowledge. By dynamically incorporat-
ing external documents, exemplars, or contextual
cues, models can handle more complex reasoning
tasks and adapt to new domains. In visual domains,
multi-source retrieval (Zhu and et al., 2020; Liu and
et al., 2022a) and retrieval-based image grounding
show potential. Our work aligns with this trend
by using a retrieval-based ICL approach. We re-
trieve both textual and visual exemplars from MUN
scenarios, guiding model reasoning and distilling
complex abductive and cultural logic into accessi-
ble formats. This approach assists smaller VLMs
in navigating unusual scenarios and producing co-

herent, contextually rich explanations.

3 Multimodal UNcommonsense (MUN)

To advance research in Visual Uncommonsense
Reasoning, we have constructed the benchmark
Multimodal UNcommonsense (MUN), created
to challenge models with scenarios that diverge
from standard visual or contextual expectations.
Inspired by prior work (Zhao et al., 2023) on un-
commonsense reasoning, specifically abductive rea-
soning about unusual situations, our dataset adopts
a structured context-results-explanation paradigm.
In this framework, models are required to interpret
an image-based context along with a textual sce-
nario (the results) and then generate an explanation
that reconciles the two.

3.1 Task Settings

We focus on two complementary task settings that
emphasize the delicate interplay between visual
cues and textual reasoning.

MUN-vis: Uncommon Image (Context) → Com-
mon Results In this task, the model is presented
with an image that initially appears visually pecu-
liar or “uncommon,” representing situations that
occur with low frequency or probability. Despite
this apparent strangeness, the goal is to generate a
coherent explanation that normalizes the scenario
and demonstrates that it is actually common or per-
fectly reasonable. For instance, in the first row
of Figure 2, a photograph of a blackened banana
might initially seem unusual. However, the out-
come states, "Person enjoyed the banana bread
without any health concerns," indicating that an
explanation such as "The bananas were overripe
and therefore used for baking banana bread, which
was enjoyed without any health issues" is needed
to bridge the gap between the context and the out-
come. This task involves generating explanations
that connect seemingly peculiar visual inputs to
familiar and logical everyday contexts.

MUN-lang: Common Image (Context) → Un-
common Results In this scenario, the model is
presented with an image that appears completely
ordinary but must explain an unusual or "uncom-
mon" textual outcome associated with it. In Figure
2, the context depicted in the third row shows a
seemingly typical scene of a blue backpack resting
on a wooden bench, while the outcome is "Arrested
by the police," which does not naturally align with
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the given context. The explanation must bridge
this gap by uncovering less obvious details, such
as "While the owner was in the restroom, someone
secretly placed illegal drugs in the bag without their
knowledge," providing a surprising yet plausible
rationale to make sense of the discordant situation.

3.2 Dataset Creation

We constructed the MUN dataset through a multi-
step process, generating diverse “uncommonsense”
scenarios that challenge multimodal reasoning
models.

Scenario Generation We used GPT-4o to pro-
duce a diverse range of textual scenarios(contexts).
For MUN-vis, we instructed the model to depict
scenes initially appearing visually odd but ulti-
mately normal. For MUN-lang, we asked for
ordinary-looking scenes that conceal surprising ra-
tionales. Our prompting strategy encouraged the
model to analyze hypothetical image-text pairs,
classify them as “normal” or “anomalous,” and
provide brief explanations. By varying visual and
contextual cues and highlighting underlying rea-
sons, we obtained scenarios rich in cultural con-
text, sensory detail, and conceptual twists. This
approach guided GPT-4o to produce structured, log-
ically grounded explanations. In MUN-vis entries,
seemingly strange images were normalized by un-
covering rational backstories. In MUN-lang entries,
mundane appearances were reinterpreted through
hidden surprises or unconventional practices.

Filtering for Ensuring Diversity To ensure a
diverse dataset, we implemented a comprehensive
filtering process after generating a large pool of
candidate scenarios. Observing numerous similar
scenarios, we prioritized removing them to pro-
mote diversity and minimize redundancy. Using
the Dedupe library,1 A specialized tool for data
deduplication, we effectively eliminated duplicates.

Inspired by diversity filtering (Han et al., 2023),
we further enriched the diversity of contexts by
identifying a list of specific keywords. Examples
were filtered out if the language description of an
image contained any of these keywords. To main-
tain balance, we ensured that the occurrence of
these keywords in the contexts remained below 20.

Image Pairing and Selection Process For each
textual scenario(context), we first retrieved five can-

1https://github.com/dedupeio/dedupe.

didate images using the Bing Web Search API2,
then manually reviewed them to select the image
that best reflected the scenario’s uniqueness or ordi-
nariness. If suitable images were not found through
automated searches, we conducted additional man-
ual searches to identify appropriate options.

By incorporating real-world images, the model
can achieve more stable and generalizable reason-
ing capabilities, as demonstrated by research on
ALBEF(Li et al., 2021), BLIP(Li et al., 2022), and
LLaVA(Liu et al., 2023a), as well as large-scale, di-
verse image resources like LAION-5B(Schuhmann
et al., 2022). Building datasets grounded in au-
thentic visuals enables expansion to cover rare sit-
uations and cultural nuances. Through iterative
refinement, this approach surpasses existing limi-
tations and supports more nuanced cross-domain
reasoning.

Human Explanation Generation We recruited
26 graduate students specializing in computer sci-
ence and artificial intelligence as annotators to par-
ticipate in the primary explanation-writing tasks.
All participants were proficient in English, and the
interface and instructions were provided in English.
To ensure a fair and efficient workflow, the tasks
were divided into small batches, with the workload
evenly distributed among the annotators. This ap-
proach prevented any single annotator from being
overburdened, thereby maintaining the consistency
and quality of the dataset. Additionally, to enhance
the contextual reliability of the dataset, annotators
were instructed not to write explanations for scenar-
ios they deemed irrelevant or inappropriate. This
measure prevented the inclusion of unnecessary or
non-essential explanations. Furthermore, annota-
tors were encouraged to logically infer and artic-
ulate the reasons behind outcomes that appeared
mismatched within the provided visual context.

LLM-Enhanced Human-Written Explanations
As shown in subsequent analysis, and consistent
with previous studies (Zhao et al., 2023), human-
written explanations demonstrate the diversity and
broad understanding, while LLM-generated re-
sponses tend to be relatively narrow and specific.
We aim to combine these complementary strengths
to further refine human annotations. Specifically,
we use carefully crafted prompts to guide GPT-4o
in improving human-written explanations, enabling

2The Bing Web Search API:https://www.microsoft.
com/en-us/bing/apis/bing-web-search-api.
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LV Human(%) LLM(%) Human+LLM(%)

1 30.5 0.3 1.3
2 40.1 8.9 9.3
3 8.6 35.4 20.5
4 11.9 55.0 62.6
5 8.9 0.3 6.3

Avg. 2.29 3.46 3.63

Table 2: Comparison of the specificity of explanations
written by humans (Human), explanations generated
by LLMs (LLM), and human-written explanations en-
hanced by LLMs (LLM+Human). Each value in the
table represents the proportion of explanations rated at
each specificity level (1 to 5) in percentile.

it to present clearer and more specific logical con-
nections between visual scenarios and the given
uncommon outcomes. This process preserves the
diversity and nuance of human explanations while
leveraging the precision of LLMs, resulting in an
improved set of explanations that provide a more
informative baseline for comparison.

3.3 Data Analysis
The MUN dataset includes two subtasks: MUN-
vis with 515 instances of visually uncommon con-
texts and common outcomes, and MUN-lang with
500 instances of visually common contexts and un-
common outcomes, totaling 1,015 visual context-
outcome pairs. Human explanations were collected
for 143 instances from MUN-vis and 156 from
MUN-lang, with LLM-generated explanations for
all pairs.

Diversity of MUN The MUN dataset spans a
broad range of scenarios across various categories,
with each example including detailed textual expla-
nations linking visual context to outcomes. While
certain categories may be emphasized, individ-
ual examples still capture complex, multilayered
scenes. For detailed reports on the frequencies of
topics and their combinations, see Appendix I.

The t-SNE(Van der Maaten and Hinton, 2008)
visualization (Figure 3) reveals that textual contexts
cluster into distinct groups, covering a wide array
of subjects.

3.4 Comparison Analysis of Explanations
Consistent with Uncommonsense (Zhao et al.,
2023), there were noticeable differences in both
the length and lexical diversity of explanations
generated by LLM, Human, and Human+LLM.
Figure 4 illustrates the distribution of explanation
lengths. In the MUN-vis task, human explana-
tions were relatively long and variable, averaging
32.0±38.5 tokens. LLM explanations, on the other

hand, were shorter and more stable at 25.1 ± 4.4
tokens, whereas Human+LLM explanations were
longer at 50.7 ± 37.2 tokens, offering more de-
tailed content. In the MUN-lang task, humans
produced shorter explanations (16.3± 7.9 tokens),
while LLM outputs were longer and more consis-
tent (44.5± 6.4 tokens). This pattern suggests that,
in more open-ended tasks like MUN-lang, LLMs
produce richer and longer explanations, whereas in
more structured tasks like MUN-vis, humans tend
to provide longer descriptions. Human+LLM ex-
planations reached 44.6±13.1 tokens, approaching
LLM-level length while combining human creativ-
ity with LLM stability.

To quantify lexical diversity, we measured n-
gram entropy (n ∈ {1, . . . , 5}) as shown in Fig-
ure 5, conducting 1,000 bootstrap iterations3. In
MUN-vis, human explanations displayed higher
n-gram entropy than LLM explanations, and Hu-
man+LLM exceeded human entropy, reflecting a
synergy where human variability and LLM preci-
sion were combined. LLM explanations showed
lower entropy, possibly due to the task’s structured
nature. In MUN-lang, LLM entropy was similar
to or even higher than Human+LLM’s and signif-
icantly exceeded that of humans, indicating that
LLMs employ more diverse wording in open-ended
tasks, whereas human language use is more con-
strained. Human+LLM still maintained high en-
tropy, effectively blending human creativity and
LLM rigor.

Recent work (Stiennon et al., 2020; Liu et al.,
2023b) suggests that LLMs can reliably evaluate
qualitative aspects of text, such as specificity, given
well-structured prompts. Following this approach,
we employed GPT-4o to evaluate the specificity
(scores 1 to 5).

Table 2 shows that human explanations had a
high proportion (70.6%) of low specificity (scores
1 to 2) and a relatively low proportion (20.8%)
of high specificity (scores 4 to 5). LLM explana-
tions generally maintained moderate to high speci-
ficity (scores 3 to 4), with a large proportion of
4-point ratings (55.0%), but very few achieved the
highest specificity (0.3% for score 5). In contrast,
Human+LLM had an even higher proportion of
4-point ratings (62.6%) and improved the propor-
tion of 5-point ratings (6.3%), thereby maximizing
overall specificity. This demonstrates that LLMs

3In each iteration, one explanation was randomly selected
per context-outcome pair from each subset.
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(a) MUN-vis (normal text, anomal image) (b) MUN-lang (anomal text, normal image)

white foam in ocean waves

dolls standing side by side

floating vegetables 

in pickle jars

A pet cat relaxing on the couch.

carbonation bubbles sticking to glass

floating vegetables in canned goods

small holes 

in leafy vegetables

foggy glasses 

when stepping indoors

A colorful swing set in a backyard.

slightly blue flame in gas stove

An electric kettle sitting 

on a kitchen countertop.

popped blood vessels in eyes

scum formation in homemade soup

Figure 3: t-SNE visualization of MUN-vis (a) and MUN-lang (b) based SimCSE (Gao et al., 2021) across categories.
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Figure 4: Explanation token length distributions in
MUN: The left section represents MUN-vis, while the
right section depicts MUN-lang, derived from calcula-
tions on the development sets of each data subset.
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Figure 5: The n-gram distribution entropies for MUN-
vis (left) and MUN-lang (right) were calculated based
on the development sets for each data subset.

can refine and expand upon human input, achieving
a higher level of detail and specificity, and that a
Human+LLM approach can combine the strengths
of both while compensating for their respective
weaknesses. Based on these results, Human+LLM
was deemed to be the best and was selected as the
baseline for evaluation.4

4 Visual Uncommonsense Reasoning with
Retrieved In-Context Learning

The core aim of the MUN dataset is to challenge
models with atypical, low-frequency visual-text
scenarios that resist conventional commonsense in-

4Further analysis of how humans perceive differences be-
tween human-written and LLM-generated or LLM-augmented
responses is provided in the Appendix D.

terpretations. Unlike standard benchmarks, MUN
focuses on “uncommonsense” reasoning, where the
model must infer nuanced, often abductive ratio-
nales for unusual outcomes. This pushes beyond
the straightforward pattern matching that large
vision-language models (VLMs) typically excel
at due to their extensive pretraining on statistically
dominant patterns.

However, when confronted with such atypical
scenes, models tend to regress to high-probability
patterns learned during pretraining, producing lit-
eral or overly generic captions rather than abductive
explanations (Hessel et al., 2022). To enable more
contextually grounded reasoning in these unfamil-
iar scenarios, we adopt retrieval-based in-context
learning (ICL) to surface relevant yet semantically
non-obvious examples.

Conventional retrieval methods, which assume
strong alignment between modalities, often strug-
gle with the intentional divergence of image-text
pairs in MUN. To address this, we introduce a Mul-
timodal Ensemble Retriever (MER) that scores im-
age and text similarities separately and combines
them via a tunable fusion mechanism. This ap-
proach enables MER to retrieve semantically co-
herent examples even when the visual and textual
cues signal distinct or conflicting commonsense
expectations.

Specifically, MER embeds (image, text) pairs us-
ing a CLIP-style image encoder and a BERT-based
text encoder, and computes cosine similarity be-
tween the query and dataset entries for each modal-
ity. The two similarity scores are then integrated
using a weighting coefficient α that balances the
contribution of each modality. This separate-but-
aligned retrieval strategy allows MER to flexibly
accommodate modality-specific signals, providing
a principled mechanism for bridging conceptual
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Dataset Model 0-shot 1-shot 3-shot 5-shot

Rand. R-ICL Rand. R-ICL Rand. R-ICL

MUN
vis

Gemma3 0.335 0.428 0.457 0.422 0.491 0.393 0.382
InternVL 2.5 0.243 0.121 0.254 0.208 0.312 0.387 0.434
LLaVA OV 0.301 0.439 0.405 0.434 0.376 0.474 0.445
Phi 3.5v 0.283 0.324 0.335 0.387 0.387 0.428 0.445
Phi 4mm 0.410 0.312 0.272 0.393 0.387 0.630 0.618
Qwen2.5 VL 0.364 0.428 0.387 0.422 0.428 0.439 0.538
Qwen2 VL 0.225 0.399 0.405 0.283 0.376 0.272 0.486

MUN
lang

Gemma3 0.257 0.341 0.418 0.430 0.454 0.498 0.546
InternVL 2.5 0.325 0.273 0.293 0.361 0.357 0.430 0.470
LLaVA OV 0.285 0.301 0.325 0.333 0.369 0.365 0.369
Phi 3.5v 0.337 0.353 0.329 0.410 0.390 0.430 0.442
Phi 4mm 0.357 0.502 0.582 0.534 0.554 0.651 0.655
Qwen2.5 VL 0.422 0.353 0.329 0.357 0.357 0.410 0.426
Qwen2 VL 0.349 0.349 0.321 0.365 0.341 0.365 0.357

Table 3: Comparison of models in different shot set-
tings, measured by winning ratio against human-assisted
explanations(higher is better). "Random" indicates
randomly chosen examples, and "R-ICL" indicates re-
trieved examples for in-context learning. Model outputs
were compared with Human+LLM explanations, judged
using LLM.

gaps in visually grounded abductive reasoning.
To the best of our knowledge, this is the first ap-

plication of such a dual-scoring retrieval framework
in a setting where the visual and textual modalities
are intentionally discordant. The full formulation
and algorithmic implementation are provided in
Appendix B.

5 Experiments

We evaluate the effectiveness of our proposed re-
trieved in-context learning (ICL) approach for mul-
timodal uncommonsense reasoning using the MUN
dataset. Our experimental study is organised to
shed light on two core questions:
RQ1. How does the number of in-context exam-

ples (shots) affect model performance?
RQ2. What is the impact of retrieval-based exam-

ples compared to randomly selected ones?
To establish robust baselines and ensure compre-
hensive evaluation, we benchmark several state-of-
the-art vision-language models (VLMs) and utilize
a multimodal ensemble retriever for our retrieval-
based ICL approach.

5.1 Models Selection and Retrieval
Mechanism

We evaluate seven interleaved VLMs spanning dif-
ferent architecture families and size scales: Qwen2-
VL (Wang et al., 2024), Qwen2.5-VL (Bai et al.,
2025), Phi-3.5-vision (Abdin et al., 2024), Phi-4-
multimodal (Abouelenin et al., 2025), InternVL-
2.5 (Chen et al., 2024), Gemma3 (Team et al.,
2025), LLaVA-Onevision (Li et al., 2024). To sup-

Model LR LC LE CS

Gemma3 3.16 (+0.12) 3.59 (+0.15) 4.12 (+0.14) 3.59 (+0.14)

InternVL 2.5 2.83 (+0.45) 3.40 (+0.52) 3.79 (+0.63) 3.33 (+0.54)

LLaVA-OV 3.21 (+0.07) 3.77 (+0.07) 4.13 (+0.04) 3.84 (+0.11)

Phi 3.5v 3.23 (+0.14) 3.75 (+0.09) 4.16 (+0.11) 3.77 (+0.15)

Phi 4mm 3.31 (+0.21) 3.85 (+0.29) 4.11 (+0.25) 3.82 (+0.28)

Qwen2.5 VL 3.29 (+0.08) 3.87 (+0.13) 4.25 (+0.07) 3.89 (+0.12)

Qwen2 vl 3.28 (+0.11) 3.86 (+0.14) 4.22 (+0.11) 3.94 (+0.15)

Table 4: Effect of retrieval–based in-context selection
on flask-based skill metrics(higher is better). LR stands
for Logical Robustness, LC for Logical Correctness, LE
for Logical Efficiency, and CS stands for Commonsense.
Each cell shows the R-ICL score with the gain over the
random baseline in parentheses.

port retrieved ICL, we use a multimodal ensem-
ble retriever combining textual and visual inputs.
BERT-based text encoder (Xiao et al., 2023) en-
codes and retrieves text examples based on query
outcomes, while a CLIP-based image encoder
(Radford et al., 2021) handles images. The ensem-
ble merges similarity scores from both modalities
with hyperparameters α assigned to 0.4. For ex-
periments, we created a database with 372 and 344
image-scenario pairs from MUN-vis and MUN-
lang, which lack human label explanations and
are not used for testing. For baseline compar-
isons, we implement standard in-context learning
(ICL) prompts where examples are randomly cho-
sen from the MUN dataset, irrespective of their
relevance to the query.

5.2 Experimental Setup

Varying the Number of In-Context Examples.
To investigate how the number of in-context ex-
amples affects model performance, we vary the
number of retrieved exemplars (from 1, 3, to 5) pro-
vided to the models. This setup allows us to assess
the scalability of the ICL approach and determine
the optimal number of examples for effective rea-
soning.
Retrieval-Based vs. Randomly Selected Shots.
To evaluate the importance of retrieval quality, we
compare our retrieval-based ICL with a baseline
ICL approach that uses randomly selected exam-
ples from the MUN dataset.

As for the metric, we adopted the Alpaca-Eval
framework (Li et al., 2023b) to evaluate the quality
of the generated explanations by comparing them
against human and LLM-generated explanations.
Specifically, we prompt GPT-4o to rank the expla-
nations produced by different models against the
Human+LLM explanations. The ranking assesses
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the coherence, relevance, and abductive reasoning
quality of the model-generated explanations.

5.3 Results

Table 3 summarizes the performance of the selected
VLMs under various in-context example configu-
rations and retrieval strategies. We report results
for two tasks, MUN-vis and MUN-lang, to capture
both visual and linguistic reasoning quality.
RQ1. Effect of Shot Scaling. All models gener-
ally improve as the number of in-context examples
increases from zero to 1, 3, and 5 shots, especially
when using R-ICL. Across the seven VLMs the
median gain is +6.1 pp on vis and +7.2 pp on lang.
While MUN-lang also benefits from more exam-
ples and R-ICL, the improvement in MUN-vis is
generally more pronounced, highlighting that vi-
sual reasoning gains more from the effective selec-
tion and increased number of in-context examples.
RQ2. Retrieval vs Random. Comparing the two
columns under each shot size in Table 3 shows
that R-ICL beats random selection in 12 of 14
model-dataset combinations. The stronger gains
on vis(+0.040) over lang(+0.023) confirm that sup-
plying semantically aligned image exemplars is
particularly helpful for visual reasoning. Notable
examples include InternVL 2.5 (+13 pp at 1-shot)
and Qwen2.5-VL (+9.9 pp at 5-shot) on vis; im-
provements on lang are positive but smaller (e.g.,
Phi-4mm +3.4 pp at 3-shot). Appendix C offers a
detailed qualitative analysis of these patterns and
examples in the Qualitative Results section.

5.4 Analysis of Model Response

To rigorously quantify the contribution of R-ICL to
the logical-reasoning capacities of VLMs, we con-
ducted two complementary analyses: an automated
evaluation and a human analysis.

Automatic evaluation In the automated, skill-
based evaluation framework proposed by FLASK
(Ye et al., 2023), four complementary criteria are
considered: Logical Robustness (LR), Logical Cor-
rectness (LC), Logical Efficiency (LE), and Com-
monsense Understanding (CS). Each scored on a
1-to-5 scale by GPT-4o using the rubric in the
FLASK frameworks. As summarized in Table
4, retrieval-based in-context selection yields con-
sistent improvements on every metric for every
model. The largest absolute gains are observed for
InternVL-2.5 (+0.63 LE; +0.54 CS), while even
the smallest gains remain positive across all four

Setting MUN-vis (%) MUN-lang (%)

Zero-shot 16 36
Random 5-shot 12 44
Retrieval 5-shot 32 56

Table 5: Human preference win rates (%). Percentage
of cases (out of 50 samples per modality) where human
annotators preferred the model-generated explanation
over the LLM+Human.

skills. These findings indicate that supplying se-
mantically relevant exemplars not only strengthens
deductive reasoning but also enhances common-
sense inference, further underscoring the role of
context quality in in-context learning.

Human evaluation Table 5 presents the results
of a human evaluation comparing the reasoning
quality of phi-4-mm across different shot settings.
For both the vision and language modalities, 50
samples were randomly selected, and human anno-
tators were asked to compare the model’s responses,
generated under zero-shot, random 5-shot, and re-
trieved 5-shot settings, against human-assisted ex-
planations. For each sample, the annotators se-
lected the response they judged to be more coher-
ent and convincing. The reported values represent
the winning ratio, i.e., the proportion of cases in
which the model’s output was preferred over the
human-assisted explanation. While some variance
exists due to limited sample size, the overall trend,
particularly in human evaluation, suggests that in-
creasing the number of in-context examples, espe-
cially through retrieval, generally leads to improved
reasoning performance.

6 Conclusion

We introduce the Multimodal UNcommonsense
(MUN) dataset to evaluate how vision-language
models handle atypical scenarios that challenge
commonsense reasoning. Extensive experiments
show that retrieved in-context learning (ICL) exam-
ples, rather than randomly chosen ones, enhance
model performance. By bridging unexpected vi-
sual cues with logical explanations, we successfully
guide models to produce more coherent, contex-
tually aligned reasoning. This approach enables
more adaptive and reliable multimodal AI systems
that are better equipped to understand uncommon
events, cultural nuances, and low-frequency phe-
nomena in real-world settings.
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8 Limitation

While MUN provides a valuable benchmark for
evaluating multimodal uncommonsense reasoning,
it is not without shortcomings. First, while the
dataset benefits from meticulous human curation
that enhances per-sample quality, this comes at the
cost of scale, potentially limiting its representa-
tion of the broader variability found in real-world
scenarios and may not capture the full breadth of
cultural, environmental, or domain-specific com-
plexities.

Second, our retrieval-based in-context learning
approach, while effective, relies on the quality and
diversity of available exemplars; overly domain-
specific or homogeneous retrieval sets could limit
the generalizability of results.

Additionally, the current approach relies on post
hoc evaluations with language models to assess
explanation quality, which may introduce biases or
yield incomplete metrics for reasoning capabilities.
Subsequent efforts might also integrate multi-turn
interactive reasoning processes, allowing models
to clarify ambiguities before producing their final
explanations. Advances in automated evaluation
metrics could provide more objective assessments
of abductive reasoning quality.

Moreover, combining retrieval-based techniques
with model fine-tuning or parameter-efficient adap-
tation strategies may yield more robust and domain-
transferable reasoning systems. Ultimately, pur-
suing these directions can further strengthen the
utility, fairness, and resilience of multimodal AI
models in handling complex and atypical scenarios.

9 Ethical Considerations

Dataset Construction. The dataset was con-
structed using images sourced from the web and

carefully filtered to minimize inappropriate, sensi-
tive content. All images were reviewed by anno-
tators following a strict set of guidelines to ensure
that the dataset does not propagate bias, stereotypes,
or harmful cultural depictions.
Cultural and Contextual Reasoning. The reason-
ing tasks presented in MUN encourage models to
produce abductive explanations grounded in cul-
tural and contextual knowledge. This raises the
possibility that models might inadvertently gener-
ate content that reflects implicit biases or culturally
insensitive narratives. We emphasize the impor-
tance of using diverse sets of evaluators and re-
trieval corpora to mitigate these risks and improve
fairness and inclusivity. Researchers, developers,
and users are encouraged to apply adversarial test-
ing and ongoing monitoring to identify and address
any unintended harm.

Responsible Applications and Safeguards.
Lastly, while the improved reasoning capabilities
we pursue may have beneficial real-world applica-
tions, from more accurate image analysis in health-
care to a better understanding of global cultural
phenomena, they also open the door to more sophis-
ticated image and text manipulation. It is crucial
that developers implement robust guardrails, trans-
parency measures, and user consent mechanisms
to ensure that these advanced reasoning techniques
serve the public interest responsibly, respecting
privacy, cultural values, and intellectual property
rights.
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A Experiment Details and Hyperparameter

Table 6 shows the hyperparameters of the models we used in the experiments and the exact model
checkpoints used in the experiments are reported in Table 7. All experiments, except those involving
GPT-4o, were conducted using two NVIDIA A6000 GPUs.

Hyperparameter Configuration

Text emb. model BAAI/bge-large-en
Image emb. model clip-vit-base-patch16
Image resolution 512×512
Ensemble ratio α 0.4
Retrieval lib. langchain (https://python.langchain.com/docs/introduction/)
Vector DB lib. FAISS (Douze et al., 2024)
VLLM lib. VLLM (Kwon et al., 2023)

Table 6: Hyperparameter configurations for the main experiment.

Open-source Models

Gemma 3 google/gemma-3-4b-it
InternVL 2.5 OpenGVLab/InternVL2_5-8B
LLaVA-OneVision llava-hf/llava-onevision-qwen2-7b-ov-hf
Phi 3.5-Vision microsoft/Phi-3.5-vision-instruct
Phi 4-Multimodal microsoft/Phi-4-multimodal-instruct
Qwen 2.5-VL Qwen/Qwen2.5-VL-7B-Instruct
Qwen 2-VL Qwen/Qwen2-VL-7B-Instruct

Closed-source Models

GPT-4o gpt-4o-2024-11-20 (via OpenAI API)

Table 7: Model checkpoints used in our experiments. Open-source models were accessed via Hugging Face, and the
closed-source model (GPT-4o) was accessed via the OpenAI API.

B Bi-Encoder Retrieval Mechanism

To retrieve relevant in-context examples for uncommonsense reasoning, we use a bi-encoder retrieval
strategy that computes and fuses modality-specific similarity scores. First, we embed the (image, text)
pairs stored in the dataset D(i,t) using a CLIP-style image encoder EI and a BERT-based text encoder ET ,
respectively. Given a user query q = (qi, qt), we compute cosine similarities between the query vectors
(vqi , vqt) and stored vectors (vi, vt). The final similarity score is obtained by weighting the image and text
similarities using a tunable coefficient α that controls the relative contribution of each modality.
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Algorithm 1 Ensemble Retrieval Method (Bi-encoder). This computes cosine similarities in visual and
textual embedding spaces, fuses them by α, and returns the top k matches.

1: Input: q = (qi, qt); number of retrievals k, weight ratio α
2: Output: list of top k retrieved (di, dt) pairs
3: Vector database D(i,t) containing (image, text) pairs
4: Image encoder Ei and text encoder Et

5: Convert query to vectors: vq = (vqi , vqt) = (Ei(qi), Et(qt))
6: Initialize Results← [], Indices← []
7: for each (vi, vt) with index j in D(i,t) do
8: Compute similarity:
9: s = α · cos_sim(vqi , vi) + (1− α) · cos_sim(vqt , vt)

10: Append s to Results
11: Append j to Indices
12: end for
13: Combine Results and Indices into pairs and sort by similarity in descending order
14: Select top k indices as TopKIndices
15: Initialize TopK← []
16: for each j in TopKIndices do
17: Append (dij , dtj ) to TopK
18: end for
19: return TopK

C Qualitative results

Residents had to evacuate quickly when smoke began filling the room, 
causing concern about the safety of their home.

Residents had to evacuate quickly when smoke began filling the room, 
causing concern about the safety of their home.

Query Retrieved Knowledge Generated Explanation

An extension cord providing extra outlets.

Result: 
Person used the olive oil for cooking after 
allowing it to return to room temperature.

Olive oil can become cloudy and 
solidify when stored in the 
refrigerator. 
This is due to the fats in the oil 
solidifying at colder temperatures. 
It will return to its clear liquid state 
at room temperature without any 
loss of quality.

white particles in orange juice

Result: 
Person drank the orange juice and 
enjoyed a refreshing beverage.

Result : 
Person used the garlic in their recipe, 
and the dish was enjoyed by everyone.

Result: 
Person used the parsley in cooking, 
resulting in a mildly flavored dish.

curly leaf parsley turning yellow.

Garlic cloves can sometimes 
turn purple or blue when 
exposed to acidic conditions or 
certain temperatures during 
cooking. 
This is a natural reaction and 
the garlic is still safe to eat.

Explanation:
Curly leaf parsley can sometimes turn 
yellow, which might be mistaken as a 
sign of spoilage. This is usually due to 
natural aging or insufficient water intake 
and does not necessarily mean the 
parsley is unsafe to use, though it may 
have reduced flavor.

Explanation:
White particles can sometimes be seen 
floating in natural orange juice. These 
are pulp or pectin that have settled out 
of the juice and do not indicate 
spoilage. The juice is still fresh and safe 
to drink.

Context: Context:

Context: Context:

purple or blue discoloration in garlic.

Figure 6: MUN-vis qualitative results.

Figure 6 illustrates the model’s capacity to retrieve contextual knowledge and produce precise, explana-
tory answers in MUN-vis. For the first row, when queried about the haze that develops in refrigerated
olive oil, the model draws an analogy to the white flecks that appear in orange juice. In both cases,
low temperatures cause constituents to congeal and aggregate: fats solidify in olive oil, while pulp- and
pectin-rich particles clump together in orange juice. Once the liquids return to room temperature, they
clarify, showing that neither product’s quality is compromised. This example demonstrates how the system
enhances its explanatory power by juxtaposing uncommon yet analogous phenomena across different
contexts.

Figure 7 highlights the model’s ability to retrieve contextual knowledge and generate precise, explana-
tory responses in MUN-lang. For the first row, while the power strip appears normal at first glance, the
outcome of ‘smoke and emergency evacuation’ necessitates the model to abductively infer an ‘inherent
risk of overheating’ within the power strip. To facilitate this inference, the retrieved few-shot examples
include scenarios such as ‘residents evacuating due to smoke from a cozy fireplace’. Despite depicting
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Residents had to evacuate quickly when smoke began filling the room, 
causing concern about the safety of their home.

Residents had to evacuate quickly when smoke began filling the room, 
causing concern about the safety of their home.

Query Retrieved Knowledge Generated Explanation

An extension cord providing extra outlets.

Result: 
The room filled with smoke one evening, 
leading to an emergency evacuation.

The cord looks convenient at first, 
but it's overloaded with devices, 
posing a fire risk due to potential 
overheating.

A cozy fireplace with a roaring 
fire, perfect for a winter evening.

Result: 
Residents had to evacuate quickly 
when smoke began filling the room, 
causing concern about the safety of 
their home.

Result: 
A shopper experienced food poisoning 
after consuming vegetables purchased 
from the store.

Result: 
A visitor inadvertently came across 
personal information while browsing 
through the books, leading to a privacy 
concern for the homeowner.

A neatly arranged stack of books 
on a living room bookshelf.

Fresh produce neatly stacked
 in the refrigerated section.

The produce looks fresh, but the 
refrigeration system is faulty, and 
the temperature has not been 
properly maintained. This could 
lead to the food spoiling faster and 
posing a health risk.

Explanation:
Though it looks like an organized 
collection of reading material, many of 
the books in the stack contain highly 
sensitive personal information that 
should be securely stored, not left out in 
a common area exposed to visitors.

Explanation:
 The fireplace is problematic because 
the chimney hasn't been cleaned in 
years, increasing the risk of a dangerous 
chimney fire.

Context: Context:

Context: Context:

Figure 7: MUN-lang qualitative results.

different visual subjects, it induces a common causal pattern: ‘an ostensibly normal object contains a
hidden fire hazard’. This connects to everyday experience-based abductive reasoning that ‘appliances
generating heat pose a fire hazard’, helping the model to infer potential dangers beyond what is visually
apparent.

As the qualitative examples make clear, MUN-vis and MUN-lang probe two orthogonal yet complemen-
tary facets of uncommonsense reasoning. In MUN-vis, an uncommon visual cue must be normalized via
specific commonsense knowledge (e.g., “cloudy refrigerated olive oil” ↔ “white flecks in chilled orange
juice” ), whereas MUN-lang inverts the challenge: a common visual scene masks an anomalous outcome,
demanding abductive reconstruction of hidden risks (e.g., “benign-looking power strip” → “concealed
fire hazard” → “evacuation”). Together, these tracks enforce a balanced assessment of a model’s ability
to anchor striking images to everyday facts and infer unseen causal mechanisms behind unexpected
events. By integrating both dimensions into a single benchmark and leveraging MER’s targeted retrieval of
concrete analogues or abstract causal templates, MUN provides a comprehensive framework for evaluating
models, spanning from concrete commonsense grounding to abstract causal inference.

D Comparison of Human Agreement on Explanations

We conduct a human evaluation comparing human-written explanations against those generated by two
types of models: LLM (directly generated by the model) and HLLM (either model-generated or model-
augmented based on human-written content). As summarized in Table 12, there is no significant decline
in the perceived quality of responses generated by the LLM. Specifically, 70.8% of LLM-generated
explanations achieved higher than moderate agreement with human-written explanations, while 71.6% of
HLLM explanations reached this level of agreement. These results indicate that model-generated and
model-augmented explanations can closely match human-written ones in terms of response quality.

E Evaluation of GPT4o on MUN dataset

We have conducted GPT-4o’s performance on our dataset with a similar setup as the sec 5, which shows
strong performance across both mun-vis and mun-lang, with generally similar performance improvement
trends with open-source models. However, we excluded GPT-4o from our initial experiments due to the
well-documented "self-preference bias" where LLMs tend to favor their own generated answers and attach
our results in the appendix.
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Dataset 1-shot 3-shot 5-shot

Rand. R-ICL Rand. R-ICL Rand. R-ICL

MUN vis 0.572 0.597 0.604 0.610 0.673 0.704
MUN lang 0.678 0.636 0.671 0.664 0.650 0.692

Table 8: Evaluation of GPT4o on different shot settings, measured by winning ratio against human-assisted
explanations(higher is better). "Random" indicates randomly chosen examples, and "R-ICL" indicates retrieved
examples for in-context learning. Model outputs were compared with Human+LLM explanations, judged using
LLM.

α 0.3 0.4 0.5 0.6 0.7

Winrate 0.572 0.618 0.611 0.611 0.603

Table 9: Ablation study on hyperparameter alpha on MUN vis with Phi4-mm model.

Dataset Model 0-shot 1-shot 3-shot 5-shot

Rand. R-ICL Rand. R-ICL Rand. R-ICL

MUN
lang

Gemma3 0.259 0.364 0.399 0.294 0.301 0.259 0.287
Phi3.5v 0.273 0.329 0.336 0.287 0.329 0.315 0.287
Phi4mm 0.371 0.497 0.448 0.455 0.427 0.448 0.497
Qwen2.5VL 0.364 0.322 0.357 0.287 0.378 0.273 0.322

MUN
vis

Gemma3 0.333 0.233 0.289 0.226 0.365 0.233 0.314
Phi3.5v 0.075 0.126 0.176 0.113 0.201 0.170 0.157
Phi4mm 0.195 0.239 0.214 0.132 0.277 0.101 0.170
Qwen2.5VL 0.170 0.164 0.358 0.176 0.327 0.208 0.302

Table 10: Comparison of models in different shot settings, measured by winning ratio against human-assisted
explanations, judged by opensource LLM. "Random" indicates randomly chosen examples, and "R-ICL" indicates
retrieved examples for in-context learning. Model outputs were compared with Human+LLM explanations, judged
using opensource LLM(Llama-4-Scout).

F Evaluation of haperparameter alpha

Table 9 shows the effects of different hyperparameter α on performance on the MER on a MUN-vis subset
with Phi4-mm model. Based on findings in Table 9, we have used an α value of 0.4 during the main
experiments.

G Evaluation with an Open-Source Judge

To verify that the performance benefits of our R-ICL method are robust and not dependent on a single
proprietary evaluator, we have evaluated with the state-of-the-art open-source Llama-4-Scout model as a
judge model for comparison between model outputs and Human+LLM explanations. As tab 10 confirms
that the central trend observed in the main experiments holds. While absolute win rates differ due to the
new evaluator’s distinct preferences, our Retrieval-Augmented In-Context Learning (R-ICL) consistently
outperforms or remains highly competitive with zero-shot and random few-shot baselines across most
models and settings (achievements highlighted in bold).

H Evaluation of MER on other opensource benchmarks

To provide empirical evidence for the generalizability of our MER framework, we conducted a preliminary
experiment on the A-OKVQA benchmark (Schwenk et al., 2022). We tested the accuracy of Qwen-2.5-VL
on 500 randomly selected multiple-choice questions from the validation set with 5000 samples from
the training set acting as ICL context. Table 11 demonstrates that R-ICL improves accuracy over both
zero-shot and random-shot baselines. The performance gain on A-OKVQA, a task requiring both visual
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Sampleing Mode Accuracy

Zero shot 0.818
Random 1 shot 0.832
R-ICL 1 shot 0.842

Table 11: Ablation study on MER method on A-OKVQA datasets with Qwen-2.5-VL.

understanding and external knowledge, strongly suggests that MER’s ability to retrieve relevant context is
a generalizable principle.

Level LLM HLLM
Cnt % Cnt %

1 136 13.6 123 12.3
2 162 16.2 161 16.1
3 194 19.4 204 20.4
4 221 22.1 255 25.5
5 287 28.7 257 25.7

Avg. 3.36 3.36

Table 12: Distribution of human agreement levels (out of 1000 samples each) for LLM vs. Human and HLLM vs.
Human responses. The average score is computed assuming Level 1 to 5 correspond to scores from 1 to 5.

I Dataset Categories

Categories MUN-vis MUN-lang

Household Items and Furniture 100 300
Beverages 82 22
Fruits and Vegetables 80 8
Tools, Equipment 57 143
Dairy Products and Eggs 54 0
Health and Personal Care 44 15
Canned, Packaged, and Processed
Goods

36 5

Meat and Seafood 22 2
Condiments and Sauces 21 0
Grains, Bread, and Baked Goods 19 5

Total 515 500

Table 13: Comparison of object category counts across textual description of visual context. Total counts for each
dataset are provided in the last row.

We selected the top 30 most frequent categories based on the textual context of MUN-vis and MUN-lang.
As shown in Table 13, MUN-vis focuses more on food-related elements, while MUN-lang emphasizes
household and furniture items. However, the subsets still feature diverse subcategories and context-rich
scenes at the example level, as illustrated in Figures 8.
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Figure 8: Textual context distribution in (top) MUN-vis and (bottom) MUN-lang.
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J Prompt used during Experiments

Figure 12 through 17 illustrate the various prompts used during dataset generation and evaluation.

K Human Annotation Details

K.1 Human Dataset Construction
To construct the human-written dataset, we recruited 26 graduate students to generate contextualized
explanations that logically bridge two provided segments. Annotators were instructed to follow a
standardized interface that guided the construction of fluent and coherent connecting sentences. Each
explanation was written with reference to the surrounding context to ensure narrative consistency. The
interface used for collecting human explanations is illustrated in Figure 9.

K.2 Human Evaluation Protocol
We conducted two human evaluation studies via the Prolific platform5, recruiting participants whose first
language is English.

(1) Human Agreement Evaluation. To assess alignment between human and model-generated outputs,
we asked annotators to compare two anonymized responses for each of 500 randomly selected samples,
across two comparisons: (a) LLM vs. Human and (b) HLLM vs. Human. Each sample was evaluated by
two independent annotators, resulting in a total of 2,000 judgments. A total of 141 unique participants
were recruited for this task, and workers were compensated at a rate of C7.50 per hour. The interface used
for collecting human agreement on explanations is illustrated in Figure 10.

(2) Win Rate Comparison. We further evaluated relative response quality across few-shot prompting
variants (zero-shot, random 5-shot, retrieved 5-shot) using a win-rate setup. For each of 50 representative
samples, we constructed 3 pairwise comparisons (e.g., retrieved vs. zero-shot), resulting in 150 compar-
isons per modality. This evaluation was conducted separately for MUN-LANG and MUN-VIS, yielding a
total of 300 pairwise comparisons. Each comparison was rated by a single annotator. A total of 20 unique
participants were recruited for this task, and they were compensated at a rate of C7.71 per hour. The
interface used for collecting win-rate judgments is shown in Figure 11.

Figure 9: The user interface used for human annotation tasks, designed to facilitate the creation of detailed and
contextually relevant explanations in MUN-vis and MUN-lang.

5https://www.prolific.com
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Common Instruction (applies to all questions): Evaluate how
closely the explanations below align with typical human
reasoning (logic and quality). Explanation A and Explanation B
are randomly assigned between Machine-generated and Human
+ LLM explanations (human-written, enhanced by AI). Their exact
sources are masked. Rate how similar each explanation (A and
B) is to human reasoning.

Description of the image: A pantry stocked with various food
items and snacks.

Outcome of the image: An individual experienced food
poisoning symptoms after consuming items from the pantry.

Human Explanation: The air condition was bad there, too wet
and hot inside. The foods inside there got worse only in few days.
A: The pantry's poor air condition, characterized by excessive
humidity and heat, caused the food items stored inside to spoil
quickly, leading to the individual experiencing food poisoning
symptoms after consuming them.
B: The pantry seems well-supplied, but it is problematic because
many of the food items are past their expiration dates, posing
health risks if consumed.

Below are possible explanations for the image and its outcome.
Please rate how much you agree that each explanation is
similar to the human explanation in terms of logic and
quality.

    

1 Very Low
Agreement

2 Low
Agreement

3 Moderate
Agreement

4 High
Agreement

5 Very High
Agreement

A

B

Share PreviewRestart Block
  

Tools
 



https://qualtricsxmd9jlhjv5x.au1.qualtrics.com/jfe/preview/previewId/77ce1c33-7f8c-49f5-9649-b89dc48f362c/SV_6R6d4hqCCcvmIHs/BL_00Rmwd8OcroyM… 1/1

Figure 10: Interface used for human agreement evaluation. Annotators were presented with two anonymized
responses, one written by a human, and the other either directly generated by an LLM or revised by an LLM based
on the human version, and asked to select the more appropriate one.
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We are conducting a survey to evaluate the performance of
different large-language models. You will be presented with the
instructions given to the models and the responses from two
different models. Your task is to determine which model's
response you believe would be preferred by most people.

Here is the instruction given to the models:

You are tasked with rationalizing an unexpected outcome where
each entry consists of the following components:

Image: A single image that contains a scene.

Unlikely Outcome: Unexpected outcome based on the scene of
the image.

Rationale: A plausible reasoning explaining why the situation
might happen from the image.

Guidelines for Output: The Rationale must provide a plausible
reason why the outcome happened from the scene. Use clear
and concise language.

Now your task:

Based on the provided Image and Unlikely Outcome, generate
the corresponding Rationale following the structure and format
above.

Image: slightly wrinkled skin on peppers

Unlikely Outcome: Person used the peppers in a stir-fry and
enjoyed a flavorful meal.

Rationale:

Please choose the better explanation between A and B based on
the quality of their responses.

Explanation A: The slightly wrinkled skin on peppers is a natural
phenomenon that occurs as moisture evaporates over time. This
reduction in freshness makes the peppers less suitable for raw
consumption but perfect for stir-frying, which enhances their flavor. As a
result, the person used the peppers in a stir-fry, transforming their texture
and achieving a delicious and flavorful meal.

Explanation B: The white spots on the olive oil are likely due to the
solidification of fats when stored in cool temperatures, which can be
resolved by warming the oil.

Share PreviewRestart Block
  

Tools
 



https://qualtricsxmd9jlhjv5x.au1.qualtrics.com/jfe/preview/previewId/588977f8-ed67-42d7-b9be-1044e692cd6d/SV_0JtpHuxLLblvVGK/BL_2irozbGlpZOyj8a… 1/1

Figure 11: Interface presented to human annotators for evaluating pairwise win rates between model responses (e.g.,
zero-shot vs. retrieved 5-shot). Annotators were shown two anonymized outputs and asked to select the better one
based on quality.
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You are tasked with generating a dataset where each entry consists of the
following components:

Caption: A short description of an object or scene in an image.
Rationale: A plausible reasoning explaining why the object or scene might lead

to an issue.
Situation: A potential outcome based on the caption and rationale , without

explicitly mentioning the cause.

Guidelines for Output:
- The Situation must describe the outcome without directly linking it to the

rationale.
- Use clear and concise language.
- Format the output for each entry as follows , enclosed in curly brackets {} to

make it easy to parse:

{Caption: "<caption text >"} {Rationale: "<rationale text >"} {Situation: "<
situation text >"}

Examples:

Example 1:
{Caption: "red liquid in steak packaging "} {Rationale: "The red liquid found in

steak packaging is often mistaken for blood. It is actually a mixture of
water and a protein called myoglobin that naturally occurs in muscle tissue.
This liquid is perfectly normal and does not indicate that the meat is

unsafe ."} {Situation: "Person cooked and enjoyed the steak without health
issues ."}

Example 2:
{Caption: "settling of liquid in yogurt "} {Rationale: "When you open a container

of yogurt , you might observe a layer of clear liquid on top , which some may
believe signifies spoilage. This liquid is simply whey separating from the

yogurt solids , a natural process that doesn 't affect the yogurt 's quality.
Stirring the whey back into the yogurt will restore its creamy texture ."} {
Situation: "Person enjoyed the yogurt as part of their breakfast ."}

Example 3:
{Caption: "green patina on copper cookware "} {Rationale: "Copper cookware may

develop a greenish layer called patina. Some people mistake this for harmful
corrosion , but patina is natural and can actually protect the copper from

further oxidation. The cookware is still usable after proper cleaning ."} {
Situation: "Person used copper cookware to prepare a delicious meal ."}

Example 4:
{Caption: "yellowing leaves on indoor plants "} {Rationale: "Indoor plant leaves

may start to turn yellow as a natural part of their growth cycle or due to
minor stress factors like overwatering. A few yellow leaves do not
necessarily indicate that the plant is dying ."} {Situation: "Person
continued to care for the plant , and it grew healthy new leaves over time ."}

Example 5:
{Caption: "skin peeling after a sunburn "} {Rationale: "After a sunburn , the skin

may start to peel. This peeling is part of the natural healing process
where the body sheds damaged skin cells. While it might look alarming , it is
a normal response to skin damage from ultraviolet light exposure and not a

cause for concern ."} {Situation: "Person applied moisturizer and supported
the skin 's healing process comfortably ."}

Now your task:
Based on the provided Caption and Rationale , generate the corresponding

Situation following the structure and format above.

{Caption: "{INPUT CAPTION HERE }"}{ Rationale: "{INPUT RATIONALE HERE }"}

Figure 12: Prompt Template for Generating Scenarios for MUN-vis
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You are tasked with generating a dataset where each entry consists of the
following components:

Caption: A short description of an object or scene in an image.
Rationale: A plausible reasoning explaining why the object or scene might lead

to an issue.
Situation: A potential outcome based on the caption and rationale , without

explicitly mentioning the cause.

Guidelines for Output:
- The Situation must describe the outcome without directly linking it to the

rationale.
- Use clear and concise language.
- Format the output for each entry as follows , enclosed in curly brackets {}

to make it easy to parse:

{Caption: "<caption text >"} {Rationale: "<rationale text >"} {Situation: "<
situation text >"}

Examples:

Example 1:
{Caption: "A coffee maker ready to brew the perfect cup."} {Rationale: "While

the coffee maker looks functional , its internals are corroded , leading to
potential contamination of the brewed coffee ."} {Situation: "A customer
experienced stomach discomfort after drinking coffee brewed from the
machine ."}

Example 2:
{Caption: "A sleek sports car parked in the driveway ."} {Rationale: "The

sports car is problematic because it has an undiagnosed mechanical issue ,
making it dangerous to drive ."} {Situation: "The driver encountered a
sudden loss of control while driving , leading to a minor collision ."}

Example 3:
{Caption: "A colorful toy ready for playtime ."} {Rationale: "This is

problematic because the toy is a recall item due to safety hazards that
could pose a choking risk ."} {Situation: "A child briefly choked while
playing with the toy , requiring quick intervention ."}

Example 4:
{Caption: "A desktop computer ready for work ."} {Rationale: "The computer

appears functional but is severely infected with malware that could
compromise sensitive information ."} {Situation: "The user faced
unauthorized access to their private accounts after using the computer for
online transactions ."}

Now your task:
Based on the provided Caption and Rationale , generate the corresponding

Situation following the structure and format above:

{Caption: "{INPUT CAPTION HERE }"}{ Rationale: "{INPUT RATIONALE HERE }"}

Figure 13: Prompt Template for Generating Scenarios for MUN-lang

Can you improve this explanation so that it becomes more specific to the
context and makes the outcome more likely to happen?

Context: {INPUT CONTEXT HERE}
Outcome: {INPUT OUTCOME HERE}
Explanation for the outcome: {INPUT EXPLANATION HERE}

Figure 14: Prompt Template for improving the human explanation
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System Prompt
You are a helpful assistant , that ranks models by the quality of their answers

.

Prompt
I want you to create a leaderboard of different large -language models. To do

so , I will give you the instructions (prompts) given to the models , and the
responses of two models. Please rank the models based on which responses

would be preferred by humans. All inputs and outputs should be Python
dictionaries.

Here is the prompt:
{

"instruction ": """{ instruction }"""
}

Here are the outputs of the models:
[

{
"model": "model_1",
"answer ": """{ output_1 }"""

},
{

"model": "model_2",
"answer ": """{ output_2 }"""

}
]

Now please rank the models by the quality of their answers , so that the model
with rank 1 has the best output. Then return a list of the model names and
ranks , i.e., produce the following output:

[
{"model": "model_1", "rank": 1},
{"model": "model_2", "rank": 2}

]

Your response must be a valid Python dictionary and should contain nothing
else because we will directly execute it in Python. Please provide the
ranking that the majority of humans would give.

Figure 15: Prompt Template for Assessing Win Rate

You are tasked with evaluating the specificity of a given text on a scale of 1
to 5.

1 (Very Low Specificity): Extremely vague and general.
2 (Low Specificity): Limited details , mostly general.
3 (Moderate Specificity): Includes some details but still general in parts.
4 (High Specificity): Contains clear and detailed information.
5 (Very High Specificity): Extremely detailed and precise , leaving no room for

ambiguity.

Only output the score as a single number.

Input Text:
[Insert the generated text here]

Output Format:
[Score (1-5)]

Figure 16: Prompt Template for Assessing Specificity
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You are tasked with evaluating the specificity of a given text on a scale of 1
to 5.

1 (Very Low Specificity): Extremely vague and general.
2 (Low Specificity): Limited details , mostly general.
3 (Moderate Specificity): Includes some details but still general in parts.
4 (High Specificity): Contains clear and detailed information.
5 (Very High Specificity): Extremely detailed and precise , leaving no room for

ambiguity.

Only output the score as a single number.

Input Text:
[Insert the generated text here]

Output Format:
[Score (1-5)]

Figure 17: Prompt Template for Assessing Specificity
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