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Abstract

Vision-language models like CLIP demonstrate
exceptional generalization capabilities but face
significant adaptation challenges due to param-
eter scale, prompt sensitivity, and cross-modal
alignment difficulties. Existing approaches pri-
marily focus on single-modality adjustments,
leading to suboptimal alignment and limited
generalization. We introduce MAFMO, a plug-
and-play framework comprising: (1) a Har-
monic Cross-Modal Adapter enabling efficient
cross-modal knowledge transfer; (2) a Meta-
Template Optimization module dynamically
generating input-dependent templates; and (3)
a Cross-Modal Knowledge Synthesis mech-
anism preserving critical structural relation-
ships during adaptation. Extensive experiments
across multiple fine-grained visual recognition
benchmarks demonstrate MAFMO consistently
improves existing methods’ performance on
both novel classes and harmonic mean, while
maintaining robustness under various challeng-
ing conditions with minimal computational
overhead.

1 Introduction

Vision-language models (VLMs) have emerged
as a pivotal advancement in artificial intelligence
research, demonstrating unprecedented capabili-
ties in bridging the semantic gap between visual
and textual information (Radford et al., 2021; Gan
et al., 2022). These models leverage contrastive
learning on vast corpora of image-text pairs har-
vested from the web to create aligned represen-
tations across modalities (Jia et al., 2021; Yuan
etal., 2021; Li et al., 2022; Liu et al., 2023; Zhang
et al., 2021a), enabling remarkable zero-shot gen-
eralization where models can classify images into
categories they have never explicitly been trained
to recognize (Xu et al., 2022; Alayrac et al., 2022;
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Gao et al., 2022). This paradigm shift has revolu-
tionized the field, with models like CLIP (Radford
etal.,2021), ALIGN (Jia et al., 2021), and Florence
(Yuan et al., 2021) demonstrating robust transfer
capabilities across diverse downstream tasks with-
out requiring task-specific labeled data. The core
innovation underlying these VLMs is their ability
to learn generalizable visual concepts from natu-
ral language supervision at scale (Dai et al., 2022),
leveraging the rich, compositional nature of lan-
guage to learn nuanced and transferable visual rep-
resentations that function as open-vocabulary clas-
sifiers (Rao et al., 2022; Hu et al., 2022; Zhai et al.,
2022; Gu et al., 2021).

Despite their impressive capabilities, effectively
adapting pre-trained VLMs to specific downstream
tasks presents several significant challenges (Ge
et al., 2020). The massive parameter scale of
these models—often comprising hundreds of mil-
lions to billions of parameters—makes full fine-
tuning computationally prohibitive and potentially
vulnerable to overfitting, especially when labeled
data is scarce (Zhou et al., 2022b; Chen et al.,
2022; Jia et al., 2022). Additionally, VLMs ex-
hibit a notable sensitivity to prompt engineering,
where the specific phrasing used to describe vi-
sual concepts can significantly impact performance
(Radford et al., 2021; Zhou et al., 2022b,a). Fur-
thermore, naive adaptation techniques may dis-
rupt the delicate cross-modal alignment established
during pre-training, potentially compromising the
model’s generalization capabilities (Sung et al.,
2022; Khattak et al., 2023; Ding et al., 2022).
These challenges have spurred extensive research
on parameter-efficient transfer learning approaches,
with Context Optimization (CoOp) (Zhou et al.,
2022b) pioneering the concept of learning contin-
uous prompt vectors optimized for specific tasks
while updating only 0.01% of the model param-
eters. Building on this foundation, Conditional
CoOp (Co-CoOp) (Zhou et al., 2022a) introduced
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image-conditional prompts that adapt based on the
visual input, substantially improving generalization
to novel classes.

Concurrent research has explored various other
parameter-efficient adaptation strategies, includ-
ing Prompt Learning (ProDA) (Lu et al., 2022),
Visual Prompt Tuning (VPT) (Jia et al., 2022),
Multi-modal Prompt Learning (MaPLe) (Khattak
et al., 2023), and Tip-Adapter (Zhang et al., 2021b).
However, existing approaches continue to face crit-
ical limitations. Most prominently, the majority
of these methods focus on adapting each modality
independently or with limited cross-modal inter-
action (Joung et al., 2021). For instance, CoOp
and VPT focus exclusively on the textual or vi-
sual branch, respectively, without considering their
interdependence. Even methods that adapt both
modalities, such as MaPLe, often do so in par-
allel without enabling deep interactions between
modalities during adaptation. Additionally, most
approaches utilize fixed template structures that
remain constant across all inputs once trained, con-
straining the model’s ability to adapt to the diverse
semantic requirements of different visual inputs
(Visconti, 2022; Zhou et al., 2022b,a; Lu et al.,
2022; Bossard et al., 2014).

To address these persistent challenges, we pro-
pose Multi-modal Adaptive Fusion with Meta-
template Optimization (MAFMO), a compre-
hensive plug-and-play enhancement framework
for vision-language models.Unlike previous ap-
proaches that treat adaptation as a primarily
modality-specific process, MAFMO adopts a holis-
tic perspective that emphasizes harmonized cross-
modal interactions while maintaining parameter
efficiency and computational tractability. Through
comprehensive experiments on six diverse fine-
grained visual recognition datasets, we demon-
strate MAFMO’s effectiveness as a plug-and-play
enhancement for various vision-language models,
showing particular strength in novel class general-
ization, few-shot learning, and cross-domain trans-
fer scenarios.

Our key contributions include:

* We introduce harmonic resonance mechanism
that selectively enhances aligned cross-modal
relationships, creating adaptive fusion that pre-
serves semantic coherence during task-specific
adaptation.

* We propose input-adaptive template generation
approach that dynamically optimizes prompts

J> Harmonic Cross-Modal Adapter \ \ E Meta-Template Optimization J

Input Base Model
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@?@@

Figure 1: Model framework diagram.

based on visual content, overcoming fixed tem-
plate limitations for diverse recognition scenar-
10s.

* We introduce knowledge preservation framework
maintaining structural relationships within and
across modalities, preserving the generalization
capabilities of pre-trained vision-language mod-
els.

* State-of-the-art performance across all evalu-
ated datasets, consistently outperforming existing
methods while maintaining computational effi-
ciency and robust adaptation capabilities.

2 Methodology

Recent research in vision-language adaptation has
highlighted the importance of simultaneous tuning
across modalities for optimal cross-modal align-
ment. However, existing approaches often adapt
each modality independently or with limited cross-
modal interaction, leading to suboptimal alignment
and constrained generalization capabilities.

To address these limitations, we propose
Multi-modal Adaptive Fusion with Meta-template
Optimization (MAFMO), a novel plug-and-play
framework designed to enhance vision-language
models through harmonized cross-modal adapta-
tion. MAFMO consists of three synergistic compo-
nents that work together to improve performance
while maintaining parameter efficiency, as illus-
trated in Figure 1.

2.1 Harmonic Cross-Modal Adapter (HCMA)

The Harmonic Cross-Modal Adapter (HCMA) in-
troduces a sophisticated adaptation mechanism that
efficiently modifies representations in both visual
and textual branches while enabling meaningful
cross-modal parameter sharing.
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2.1.1 Architecture Formulation

For a layer [ in a vision-language model with visual
and textual hidden states h!, € R% and h! € R%
respectively, the HCMA applies:

HCMA,,,(h.,) = R,

1
+ afn . Uplm(qﬁ(Sharedl(Downfn(hfn)))) W

Al = LayerNorm(HCMA,,(hL))  (2)

where m € {v,t} denotes the modality,
Down/,, : R9m — R" is a modality-specific down-
projection matrix that reduces dimensionality to
bottleneck dimension r, Shared’ : R” — R is a
shared transformation that facilitates cross-modal
interactions, Upl, : R” — R%m is a modality-
specific up-projection matrix that restores the origi-
nal dimensionality, ¢ is the GELU activation func-
tion, and afn is a learnable scaling factor.

2.1.2 Harmonic Resonance Mechanism

The key innovation in HCMA lies in its shared
transformation layer, which implements a harmonic
resonance mechanism inspired by the physics prin-
ciple where systems with similar natural frequen-
cies interact more strongly:

Shared' (z) = Wl z4X- (W oW} 24 p- (Wl -20W, - 2)
(3
where W!, W! W} € R"™" are learnable matrices,
©® denotes the Hadamard product, and A, y are hy-
perparameters controlling the strength of harmonic
interactions (typically set to 0.3 and 0.2).

2.1.3 Dynamic Cross-Modal Calibration

To adaptively adjust the adapter’s influence based
on cross-modal congruence, we implement a dy-
namic calibration mechanism:

ol =o(B +~'- CM-Coherence(h!, hl)) (4)

m =

1
CM-Coherence(h, hl) = i(cos(gv(hf]),gt(hi))—l—l)

4)
where o is the sigmoid function, 8!, is a learnable
modality-specific bias, 7' is a learnable scaling
factor, and g,, g; are projection functions that map
the hidden states to a common dimensional space
for comparison.

This calibration ensures that the adapter’s modi-
fications are proportional to the semantic alignment
between modalities. When visual and textual rep-
resentations are well-aligned (high coherence), the
adapter makes minimal modifications to preserve

this alignment. Conversely, when alignment is poor,
the adapter applies more substantial changes to im-
prove cross-modal correspondence. This adaptive
behavior prevents excessive adjustments to well-
aligned representations while allowing necessary
corrections when alignment is suboptimal.

2.2 Meta-Template Optimization (MTQO)

The Meta-Template Optimization (MTO) compo-
nent addresses the limitations of fixed prompt tem-
plates by dynamically generating and combining
diverse prompt structures based on visual content.

2.2.1 Template Space Construction

MTO maintains a set of M diverse templates 7 =
{T;},, where each template 7T} is formulated as:
T; = [Pi1, P2, ..., P s, [CLASS, P, 41, ..., Py
(6)
where P;; € R% are learnable prompt tokens,
[CLASS] is a placeholder for the class token, and
n is the template length (typically 4-8 tokens).
These templates are initialized using a meta-
initialization strategy that ensures diversity:

Py j = Emb(t; ;) + € ™)

where Emb(-) maps seed text ¢; ; (e.g., "a photo of",
"an image showing") to the embedding space, and
€ij ~ N(0,02I) is a small random perturbation
that ensures initial template diversity.

The templates {7;} are designed to capture
different aspects of visual-semantic relationships.
Through training, each template specializes in rec-
ognizing particular visual attributes or semantic
concepts, creating a diverse ensemble that can han-
dle various recognition scenarios.

2.2.2 Input-Adaptive Template Selection

For each input image x,,, MTO computes a distri-
bution over templates based on visual features:

i) — R

> exp(s;(20)/7)

si(zv) = fi(g(zv)) ©)

where g(z,) = Wy - AvgPool(F,(zy)) + by ex-
tracts relevant features from the visual input, f; is
a template-specific scoring function implemented
as a small MLP, and 7 is a temperature parameter
(typically 0.5) that controls the sharpness of the
distribution.
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2.2.3 Multi-Template Fusion

Rather than selecting a single template, MTO per-
forms a weighted combination of all templates:

~ M
T(zy,c) =Y wi(zy) - Ti(c) (10)
=1

Ti(c) = [P;1, P2, ..., Pig, Emb(c), P i1, .. .,
1D
where c is the class name and Emb(c¢) is its embed-
ding.
This fusion is further refined through an
attention-based co-adaptation mechanism:

N

T(zy,¢) = T(xy,¢) + 6 - MHA(Q, K, V) (12)
Q =T (xy,c)- Wo (13)

K = [Ti(c), To(c), ..., Tar(e)]F - Wi (14)
V = [Ti(c), Ta(c), ... Tar(c)]T - Wy (15)

where MHA denotes multi-head attention,
Wq, Wi, Wy are learnable projection matrices,
and ¢ is a learnable scaling factor.

2.2.4 Diversity Regularization

To ensure effective utilization of the template space,
we incorporate a diversity regularization term:

Laiy = Dy (w||U)

(1= cos(T;, 7))

(16)
where w0 = + Zszl w(xb) is the average template
weight across a batch, U is the uniform distribution,
Dy is the Kullback-Leibler divergence, and the
second term encourages template diversity through
cosine dissimilarity.

2.3 Cross-Modal Knowledge Synthesis
(CMKS)

While adaptation is essential for task-specific per-
formance, preserving the valuable knowledge en-
coded in pre-trained vision-language models is
equally important. The Cross-Modal Knowledge
Synthesis component ensures that adaptations pre-
serve and enhance the original model’s capabilities.

2.3.1 Feature Space Alignment

For original embeddings {eor‘g Ong} from the
base model and adapted embeddings {eadapt, e;‘d“p‘}

from MAFMO, we enforce alignment through:

Z Qm - DJS

me{v,t}

(em™)llp(enn®))

(17)

dhgn =

P; ] where Djs is the Jensen-Shannon divergence, p(+)

represents the softmax-normalized distribution, and
a,y, are hyperparameters (typically set to 0.2).

This alignment loss ensures that the distribu-
tions of adapted embeddings remain similar to the
original embeddings, preventing dramatic shifts in
the feature space that might disrupt the pre-trained
knowledge. Importantly, it constrains the overall
statistical properties of the embeddings rather than
forcing point-wise similarity, allowing flexibility
for task-specific adaptations while maintaining the
general structure of the embedding space.

2.3.2 Structure-Preserving Regularization

To maintain the relational structure within each
modality, we employ:

ﬂtl’l.]Ct - Z 6

me{v,t}

[IG(ep®™) — Glen®)IIE

(18)
where G(e) = e - ¢! computes the Gram matrix,
|| - || F is the Frobenius norm, and /3,,, are hyperpa-
rameters (typically set to 0.3).

The Gram matrix captures pairwise relationships
between features, encoding the structural patterns
within each modality. By preserving these patterns,
the regularization ensures that the adapted model
maintains the relative relationships between differ-
ent examples and features that give the pre-trained
model its generalization capabilities. This is par-
ticularly important for preserving the rich visual
and linguistic knowledge encoded in the model’s
internal representations.

2.3.3 Cross-Modal Consistency

To ensure consistent cross-modal relationships, we
enforce:
IS (e, 1) — S(egr, &™) |7
(19)
where S(e,, e;) = softmax(e, - e /v/d) computes
the scaled dot-product similarity between visual
and textual embeddings, and -y is a hyperparameter
(typically set to 0.5).

Ecross =7
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3 Experiments

We conduct comprehensive experiments to evaluate
our proposed MAFMO framework as a plug-and-
play enhancement for vision-language models. Our
experiments are designed to answer the following
research questions:

* RQ1: How effectively does MAFMO enhance
different vision-language models across diverse
datasets?

¢ RQ2: What is the contribution of each MAFMO
component and their synergistic effects?

* RQ3: How does MAFMO perform under limited
data scenarios and domain shifts?

* RQ4: Does MAFMO provide robustness against
adversarial perturbations?

* RQ5: How does template diversity affect
MAFMO’s performance?

3.1 Experimental Setup

We evaluate MAFMO on six fine-grained visual
recognition datasets: OxfordPets (Parkhi et al.,
2012), StanfordCars (Joung et al., 2021), Food101
(Bossard et al., 2014), FGVCAircraft (Maji et al.,
2013), SUN397 (Xiao et al., 2010), and Ima-
geNetV2 (Recht et al., 2019). Following (Zhou
etal., 2022b), we split classes into 80% base classes
for training and 20% novel classes to evaluate cross-
category generalization. As baseline models, we
use CLIP (ViT-B/16) (Radford et al., 2021), CoOp
(Zhou et al., 2022b), Co-CoOp (Zhou et al., 2022a),
and MaPLe (Khattak et al., 2023). Models are
trained for 5 epochs using AdamW optimizer with
a learning rate of 0.0035, weight decay of 0.01, and
batch size of 4.

3.2 RQ1: MAFMO as a Plug-and-Play
Enhancement

Table 1 presents the results of integrating MAFMO
with different baseline models across all datasets.
MAFMO consistently improves performance
across all models and datasets, enhancing both
base and novel class accuracy. The improve-
ments are particularly pronounced for models
with limited cross-modal interaction capabilities:
CoOp+MAFMO shows dramatic improvements
of 4.54% and 7.53% in novel class accuracy on
StanfordCars and FGV CAircraft respectively; Co-
CoOp+MAFMO achieves a 9.48% improvement

vement (%)

Harmonic Mean Impro

cup coop Co-CoOp MaPLe

Figure 2: Harmonic mean improvement (%) from dif-
ferent MAFMO component combinations across base
models, averaged over all datasets.

on FGVCAircraft and 2.59% on Food101. On aver-
age, MAFMO enhances CLIP by 1.34%, CoOp by
2.55%, Co-CoOp by 2.09%, and MaPLe by 0.93%
in harmonic mean accuracy.

Cross-dataset analysis reveals that MAFMO’s
benefits are most significant on challenging
datasets with fine-grained distinctions. On FGV-
CAircraft, both CoOp and Co-CoOp experience
substantial novel class accuracy gains of 7.53% and
9.48% respectively, suggesting MAFMO’s cross-
modal adaptation mechanisms are especially valu-
able for specialized domains potentially underrepre-
sented in CLIP’s pre-training. Even on OxfordPets,
where baseline models already achieve high per-
formance, MAFMO provides consistent improve-
ments. The sustained gains on ImageNetV2 demon-
strate MAFMO’s robustness to distribution shifts,
critical for real-world applications.

3.3 RQ2: Component Contribution Analysis

Figure 2 and Table 2 analyze the individual and
combined contributions of MAFMO components.
Three key insights emerge: First, HCMA consis-
tently provides the largest individual performance
boost across all baseline models (0.94% and 1.29%
for CLIP and CoOp), confirming the critical im-
portance of cross-modal adaptation. Second, while
MTO and CMKS provide more modest individ-
ual improvements, they effectively complement
HCMA. Third, the negative synergy values indi-
cate functional overlap between components, yet
the complete MAFMO framework consistently out-
performs any partial combination, demonstrating
that each component contributes unique benefits.
This pattern holds across all baseline models, vali-
dating our integrated approach.
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Table 1: Comprehensive evaluation of MAFMO as a plug-and-play enhancement across datasets and base models.
Results report accuracy in percentages (%) for Base classes, Novel classes, and their Harmonic Mean (HM).
Improvements from adding MAFMO are shown in green.

Dataset ‘ Method ‘ CLIP ‘ CoOp ‘ Co-CoOp ‘ MaPLe
‘ Base Novel HM ‘ Base Novel HM ‘ Base Novel HM ‘ Base Novel HM
Original 91.17 97.26 94.12|93.67 95.29 94.47|95.20 97.69 96.43 9543 97.76 96.58
OxfordPets + MAFMO |92.35 97.84 95.01|94.28 96.47 95.36|95.62 98.15 96.87|95.71 98.32 96.99
Improvement | +1.18 +0.58 +0.89 | +0.61 +1.18 +0.89 | +0.42 +0.46 +0.44 | +0.28 +0.56 +0.41
Original 63.37 74.89 68.65|78.12 60.40 68.13|70.49 73.59 72.01|72.94 74.00 73.47
StanfordCars |+ MAFMO |65.68 76.42 70.63|78.86 64.94 71.21|71.27 75.08 73.12|73.16 74.42 73.79
Improvement | +2.31 +1.53 +1.98 | +0.74 +4.54 +3.08 | +0.78 +1.49 +1.11 | +0.22 +0.42 +0.32
Original 90.10 91.22 90.66|88.33 82.26 85.19(90.70 91.29 90.99|90.71 92.05 91.38
Food101 + MAFMO |91.59 92.53 92.06|89.74 84.21 86.88|92.03 93.88 92.94|91.67 92.78 92.22
Improvement | +1.49 +1.31 +1.40 | +1.41 +1.95 +1.69 | +1.33 +2.59 +1.95 | +0.96 +0.73 +0.84
Original 27.19 36.29 31.09|40.44 2230 28.75(33.41 23.71 27.74|37.44 35.61 36.50
FGVCAircraft | + MAFMO |28.73 38.05 32.84|41.92 29.83 34.92|34.98 33.19 34.06|38.49 37.63 38.06
Improvement | +1.54 +1.76 +1.75 | +1.48 +7.53 +6.17 | +1.57 +9.48 +6.32 | +1.05 +2.02 +1.56
Original 69.36 7535 72.23|80.60 65.89 72.51|79.74 76.86 78.27|80.82 78.70 79.75
SUN397 + MAFMO |70.84 76.89 73.75|81.42 68.64 74.47|80.53 78.47 79.49|81.45 79.83 80.63
Improvement | +1.48 +1.54 +1.52 | +0.82 +2.75 +1.96 | +0.79 +1.61 +1.22 | +0.63 +1.13  +0.88
Original 65.89 60.83 63.26|71.51 64.20 67.67|71.02 64.07 67.37|70.72 64.07 67.24
ImageNetV2 + MAFMO |67.28 62.41 64.76|72.19 66.34 69.14|71.83 66.26 68.92|71.58 66.19 68.78
Improvement | +1.39 +1.58 +1.50 | +0.68 +2.14 +1.47 | +0.81 +2.19 +1.55 | +0.86 +2.12 +1.54
Original 67.85 72.64 70.17|75.45 65.06 69.45|73.43 71.20 72.14|74.68 73.70 74.15
Average + MAFMO |69.41 74.02 71.51|76.40 68.41 72.00|74.38 74.17 74.23|75.34 74.86 75.08
Improvement | +1.56 +1.38 +1.34 | +0.95 +3.35 +2.55 | +0.95 +2.97 +2.09 | +0.66 +1.16 +0.93

Table 2: Analysis of component synergy effects. Syn-
ergy is calculated as the difference between the actual
improvement from the combination and the sum of indi-
vidual component improvements.

Component Combination ‘ CLIP CoOp Co-CoOp MaPLe
HCMA +0.94  +1.29 +0.73 +0.43
MTO +0.63  +1.03 +0.58 +0.27
CMKS +0.78 +1.12 +0.65 +0.35
HCMA + MTO +1.19  +1.58 +0.95 +0.47
Synergy -0.38  -0.74 -0.36 -0.23
HCMA + CMKS +1.30 +1.73 +1.03 +0.50
Synergy -0.42  -0.68 -0.35 -0.28
MTO + CMKS +1.06 +1.42 +0.86 +0.44
Synergy -0.35  -0.73 -0.37 -0.18
HCMA + MTO + CMKS +1.46  +1.98 +1.16 +0.53
Synergy -0.89  -1.46 -0.80 -0.52

3.4 RQ3: Robustness to Data Limitations and
Domain Shifts

Table 3 shows that MAFMO significantly enhances
few-shot learning capabilities, with the most dra-
matic improvements in extreme low-shot regimes.
With just one example per class, MAFMO im-
proves CoOp’s novel class accuracy by 5.17%.

The cross-dataset experiments in Table 4 demon-

Table 3: Few-shot learning performance on novel
classes. Results show accuracy (%) averaged across
all datasets.

Method | 1-shot 4-shot 8-shot 16-shot
CLIP 85.63 85.63 85.63 85.63
+ MAFMO | 86.29 86.51 86.74 86.92
CoOp 55.16 6631 7242 77.31
+ MAFMO | 59.87 70.25 75.69 80.05
Co-CoOp 77.84 8152 83.18 84.52
+ MAFMO | 80.13 83.36 8496 86.18
MaPLe 80.39 82.71 83.92 85.04
+ MAFMO | 81.58 83.56 84.72 85.73

strate that MAFMO consistently improves cross-
dataset generalization across all model-dataset
combinations. CoOp, which struggles with do-
main shifts in its original form, sees a 4.47% ac-
curacy improvement on the challenging Oxford-
Pets— StanfordCars transfer, substantially narrow-
ing the gap with zero-shot CLIP. These results high-
light MAFMO’s ability to enhance transferability
of learned representations across visual domains.
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Table 4: Cross-dataset generalization performance. Models are trained on source dataset and evaluated on target
dataset. Results show accuracy (%) on the target dataset’s novel classes.

Method ‘ OxfordPets — StanfordCars StanfordCars — Food101 Food101 — OxfordPets ImageNetV2 — Aircraft ImageNetV2 — SUN397
CLIP 74.89 91.22 97.26 36.29 75.35

+ MAFMO 75.36 (+0.47) 92.01 (+0.79) 97.63 (+0.37) 37.82 (+1.53) 76.63 (+1.28)
CoOp 58.72 80.18 93.05 22.30 65.89

+ MAFMO 63.19 (+4.47) 83.67 (+3.49) 95.24 (+2.19) 27.46 (+5.16) 68.47 (+2.58)
Co-CoOp 7291 90.11 96.84 23.71 76.86

+ MAFMO 74.43 (+1.52) 91.47 (+1.36) 97.38 (+0.54) 30.53 (+6.82) 78.29 (+1.43)
MaPLe 73.62 90.68 97.05 35.61 78.70

+ MAFMO 74.53 (+0.91) 91.34 (+0.66) 97.62 (+0.57) 37.32 (+1.71) 79.65 (+0.95)

Table 5: Inference speed analysis. Throughput is mea-
sured in images per second using a batch size of 64 on a
single NVIDIA V100 GPU. Latency is the average time
in milliseconds per image.

Method ‘ Throughput (img/s) Latency (ms) ‘ Ratio
CLIP 742.3 1.35 1.00x
CLIP + MAFMO 693.8 1.44 1.07x
CoOp 731.6 1.37 1.01x
CoOp + MAFMO 678.2 1.47 1.09x
Co-CoOp 704.8 1.42 1.05x
Co-CoOp + MAFMO 656.3 1.52 1.13x
MaPLe 686.5 1.46 1.08x
MaPLe + MAFMO 641.2 1.56 1.16x

3.5 RQ4: Adversarial Robustness

Table 6 examines MAFMO’s robustness against
FGSM attacks. The robustness gain (difference
between relative accuracy drops of original and
MAFMO-enhanced models) increases with per-
turbation magnitude, indicating that MAFMO’s
cross-modal adaptation mechanisms help maintain
semantic alignment under strong adversarial per-
turbations. CoOp, inherently vulnerable to adver-
sarial attacks due to its fixed prompt approach,
experiences the most significant robustness im-
provements with MAFMO. This highlights an un-
expected benefit: enhanced resilience against ad-
versarial perturbations, crucial for security-critical
applications.

3.6 RQS: Template Diversity Analysis

Table 7 analyzes how template count affects
MAFMO’s performance. Increasing from 4 to 8
templates yields substantial improvements across
three datasets, most significantly on StanfordCars
(+1.51%). Further increasing to 12 or 16 templates
provides only marginal improvements (<0.1% on
average) while considerably increasing computa-
tional overhead.

Figure 3 provides a comprehensive analysis of

the 8-template configuration. The top row shows
template activation patterns across datasets, reveal-
ing how different visual categories preferentially
activate specific template combinations. The t-SNE
visualization (bottom left) displays semantic rela-
tionships between templates, forming a meaningful
semantic space where some templates specialize
in shape features while others focus on texture and
color patterns. The template usage distribution (bot-
tom middle) confirms all eight templates are effec-
tively utilized, with none falling below 9% usage
frequency. The cross-dataset performance compari-
son (bottom right) demonstrates that each template
contributes across different visual domains, with
varying effectiveness on different datasets.

Additional experiments with MaPLe show that
increasing templates from 8 to 16 improves perfor-
mance minimally (OxfordPets +0.06%, Stanford-
Cars +0.08%, Food101 +0.07%) while doubling
template-specific parameters and increasing train-
ing time by 30%. These diminishing returns justify
our 8-template configuration as optimal.

The analysis demonstrates that MAFMO’s 8-
template design provides sufficient expressive
power to capture diverse visual-semantic relation-
ships while maintaining computational efficiency.
Each template develops a specific role in the visual-
semantic space, enhancing MAFMO'’s generaliza-
tion capabilities across datasets with different vi-
sual characteristics and recognition challenges.

4 Conclusion

We introduced MAFMO, a plug-and-play frame-
work enhancing vision-language models through
harmonic cross-modal adaptation, meta-template
optimization, and knowledge synthesis. Compre-
hensive experiments across multiple fine-grained
recognition datasets demonstrate MAFMO’s con-
sistent performance improvements, with particu-
larly strong enhancements for models with limited
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Table 6: Adversarial robustness under FGSM attack. Results show harmonic mean accuracy (%) on StanfordCars
and FGVCAircraft datasets under different perturbation magnitudes (¢).

Method | StanfordCars | FGVCAircraft
| Clean €¢=0.01 €=0.03 e=0.05| Clean ¢=0.01 €¢=0.03 c=0.05

CLIP 68.65 61.32 48.76 34.29 31.09 27.83 2142 15.28
CLIP + MAFMO 70.63 64.85 53.42 39.68 32.84 30.21 24.94 18.75
Robustness gain - +3.53 +4.66 +5.39 - +2.38 +3.52 +3.47
CoOp 68.13 59.87 4231 28.64 28.75 24.63 17.29 11.42
CoOp + MAFMO 71.21 64.27 48.95 35.82 34.92 31.53 24.35 17.93
Robustness gain - +4.40 +6.64 +7.18 - +6.90 +7.06 +6.51
Co-CoOp 72.01 65.48 53.26 40.17 27.74 24.79 19.85 14.33
Co-CoOp + MAFMO | 73.12 67.93 56.84 44.52 34.06 31.63 27.14 21.28
Robustness gain - +2.45 +3.58 +4.35 - +6.84 +7.29 +6.95
MaPLe 73.47 67.26 56.39 43.84 36.50 33.61 28.47 22.19
MaPLe + MAFMO 73.79 68.54 58.27 46.31 38.06 35.93 31.37 25.64
Robustness gain - +1.28 +1.88 +2.47 - +2.32 +2.90 +3.45
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Figure 3: Analysis of the 8-template configuration in MAFMO. Top row: Template activation patterns across
different categories in each dataset, showing how templates are differentially activated based on visual content.
Bottom left: Semantic relationships between templates visualized via t-SNE, with connections indicating similarity.
Bottom middle: Template usage frequency distribution, showing balanced utilization. Bottom right: Template
performance across datasets, demonstrating cross-dataset generalizability.

Table 7: Impact of the number of templates on the re-

sults.
Template | OxfordPets StanfordCars Food101 Average
Count (HM) (HM) (HM)  (HM)
4 96.52 72.28 91.57 86.12
8 96.99 73.79 92.22 86.46
12 97.03 73.85 92.26 86.51
16 97.05 73.87 92.29 86.52

cross-modal interaction capabilities. Our frame-
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work exhibits remarkable robustness under chal-
lenging conditions including few-shot learning sce-
narios, cross-dataset generalization, and adversar-
ial attacks, while maintaining high parameter effi-
ciency and minimal inference overhead. Extended
evaluations on diverse datasets confirm MAFMO’s
effectiveness across various visual domains and
its robustness to distribution shifts, highlighting
its potential as an effective and practical approach
for adapting vision-language models across diverse



visual recognition tasks.

5 Limitations

Despite MAFMO'’s effectiveness, limitations ex-
ist: it introduces modest computational overhead
during training, performance gains vary across dif-
ferent base architectures, and its applicability to
specialized domains beyond our evaluation datasets
remains unexplored. Future work should focus on
improving computational efficiency, broader archi-
tectural compatibility, and extending evaluations to
more diverse vision-language tasks.
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