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Abstract
We critically assess the efficacy of the current
SOTA in hallucination detection and find that
its performance on the RAGTruth dataset is
largely driven by a spurious correlation with
data. Controlling for this effect, state-of-the-
art performs no better than supervised linear
probes, while requiring extensive hyperparam-
eter tuning across datasets. Out-of-distribution
generalization is currently out of reach, with
all of the analyzed methods performing close
to random. We propose a set of guidelines for
hallucination detection and its evaluation.

1 Introduction

While LLMs (Grattafiori et al., 2024; Jiang et al.,
2023; Bai et al., 2023; Biderman et al., 2023) have
made significant progress in various scenarios, they
still display undesirable behavior, known as hal-
lucinations, which undermines their reliability in
both critical and everyday tasks. Hallucinations
have been extensively studied, with a wide range
of detection methodologies proposed depending
on the level of access to model internals. Black-
box methods operate on model input-output be-
havior. These include frameworks verifying gen-
erated responses against context (Es et al., 2024;
Saad-Falcon et al., 2024; Hu et al., 2024a), eval-
uating self-consistency across multiple response
variants (Manakul et al., 2023) or multiple verifi-
cation steps (Friel and Sanyal, 2023), querying the
model to evaluate the truthfulness of it’s own re-
sponse (Kadavath et al., 2022) or training classifiers
to flag inconsistencies (Ádám Kovács and Recski,
2025). Grey-box methods center on uncertainty
quantification through metrics like token-level log
probabilities (Hu et al., 2024b) or entropy of to-
ken distribution (Farquhar et al., 2024). Recent
white-box methodologies (Du et al., 2024; Sri-
ramanan et al., 2024) have focused on detecting
hallucinations by leveraging internal representa-
tions, moving beyond text-based detection. A line

of work learns to predict the hallucination by train-
ing linear probes on the hidden states of LLMs
directly (Azaria and Mitchell, 2023; Li et al., 2023)
or to approximate derived metrics like semantic en-
tropy (Kossen et al., 2024) or semantic consistency
(Chen et al., 2024). Among white-box methods,
many recent approaches rely on analyzing the atten-
tion mechanisms of Transformer models, which has
garnered significant research interest. Working un-
der the assumption that retrieval heads (Wu et al.,
2024) are an important mechanism for informa-
tion propagation within LLMs, Gema et al. (2024)
show that masking the retrieval heads leads to in-
creased hallucination incidence and that contrasting
the next-token predictions of the base model with
those of the masked one can act as a mitigation
mechanism. Sun et al. (2025) further explores this
attention-based methodology, which we analyze in
depth in Section 2. Treating all types of halluci-
nations as a single category is challenging, result-
ing in methods that perform well in some scenar-
ios (e.g., hallucination detection in summarization
tasks) but poorly in others. Retrieval-Augmented
Generation (RAG) has gained traction as a method
to potentially decrease hallucinations. Neverthe-
less, even with RAG, models can still fail to cor-
rectly attend to the context or overwrite it with
parametric knowledge. Due to the limited availabil-
ity of human-labeled RAG hallucination datasets,
studying hallucinations related to contextual errors
is difficult, with only a few attempts so far (Sun
et al., 2025; Ravi et al., 2024; Ádám Kovács and
Recski, 2025). We focus on the current SOTA ap-
proaches for detecting hallucinations using internal
representations, with the goal of defining a clearer
future trajectory for hallucination detection. Our
contributions are as follows. (A) We verify hal-
lucination detectors based on model internals via
linear probes, a random forest classifier and sparse-
autoencoder (SAE) probes. (B) Assess SOTA and
find that most of its performance is due to spurious
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correlation rather than genuine hallucinatory sig-
nal. (C) Analyze detection out-of-distribution and
find that generalization remains a challenge. (D)
Find that SAE features do not provide consistent
benefits for hallucination detection.

2 State of the art

ReDeEP (Sun et al., 2025) employs internal model
mechanisms to identify hallucinations, specifically
those cases where external context serves as the
ground truth but may be compromised by the
model’s parametric knowledge. It relies on copy-
ing heads (Elhage et al., 2021) and assumes that
attention scores are an appropriate proxy for what
information the model integrates from the con-
text. Moreover, the parametric interventions of
the model, measured by the Jensen-Shannon di-
vergence between pre- and post-MLP representa-
tions, serve as an important hallucination indicator.
They hypothesize that increased attention scores
correlate with a decrease in the hallucination in-
cidence, while elevated parametric interventions
correspond to increased occurrence of hallucina-
tions. ReDeEP comes in two flavors: token- and
chunk-based, where the attention and parametric
scores are measured on individual tokens or token
chunks, respectively. ReDeEP achieves SOTA hallu-
cination detection results on two publicly available
RAG hallucinations datasets: RAGTruth and Dolly
(AC).

Azaria and Mitchell (2023) introduce SAPLMA,
another representation-based hallucination detec-
tion method. They investigate whether the LLM
possesses some notion of truthfulness of generated
statements in its hidden state. The authors postulate
that if it does, this information can be used to detect
and mitigate hallucinations. Based on experimen-
tal results, they hypothesize that the hidden states
indeed encode signals of truth or falsehood, lead-
ing to the hypothesis that the model may "know"
when it hallucinates. SAPLMA performs on-par with
ReDeEP in hallucination detection on RAGTruth.

3 Spurious correlation explains SOTA
performance

ReDeEP’s evaluation focuses exclusively on the per-
formance across all three subtasks in the RAGTruth
dataset. This prompts us to investigate its perfor-
mance on individual tasks. Table 1 reveals signif-
icant variability in performance across individual
tasks, with overall performance generally lower

than that on the entire dataset. To understand the
disparity in performance between tasks, we exam-
ine the composition of the RAGTruth dataset (de-
tails in Appendix B).

MODEL TASK TYPE AUC PCC PRECISION RECALL F1

LLaMA-2 7B Chat D2T 0.3951 -0.1246 0.7931 0.748 0.7699
QA 0.6360 0.2122 0.4528 0.4615 0.4571
Summary 0.5767 0.1121 0.4839 0.2941 0.3659
Overall 0.7324 0.3978 0.7217 0.6770 0.6986

LLaMA-2 13B Chat D2T 0.6679 0.1545 0.9357 0.9493 0.9424
QA 0.6503 0.2259 0.3103 0.7500 0.4390
Summary 0.5342 0.0424 0.2500 0.7879 0.3796
Overall 0.8177 0.5484 0.5875 0.8599 0.6980

LLaMA-3 8B Instruct D2T 0.5084 -0.0072 0.8707 0.7652 0.8145
QA 0.5974 0.1573 0.5514 0.7564 0.6378
Summary 0.5593 0.1102 0.2475 0.8065 0.3788
Overall 0.7534 0.4512 0.6465 0.8000 0.7151

Table 1: ReDeEP (token) performance on RAGTruth
per task type. Best task results (excluding Overall) are
bolded.

MODEL TASK TYPE HALLUCINATION RATE

LLaMA-2 7B
D2T 0.8596
QA 0.5157

Summary 0.4602

LLaMA-3 8B Instruct
D2T 0.8800
QA 0.5200

Summary 0.2200

Table 2: Hallucination rates per task type on LLaMA-2
7B and LLaMA-3 8B. See Appendix E, Table 10 for
other models.

The fraction of model responses which human
annotators labeled as hallucinations (hallucination
rate) is notably higher for the D2T task (Table 2 and
Table 10). This means that a random sample from
the D2T task is far more likely to be hallucinatory
than for other tasks, leading to a strong correla-
tion between task type and the hallucination label,
which may be exploited by ReDeEP.

We construct a naïve classifier which follows a
heuristic: it predicts 1 (i.e., hallucinated sample) if
the input’s task type is D2T, and 0 for all other tasks.
In Table 3, we compare the results of the naïve
classifier with those reported in the ReDeEP paper
for the RAGTruth test set. The AUC metrics are
very similar, and the naïve classifier even outper-
forms ReDeEP in terms of the Pearson correlation
between the true hallucination label and the model
score. This suggests that the high scores on the
overall RAGTruth benchmark are mostly due to the
imbalance in the hallucination incidence between
the tasks. Additionally, our naïve classifier can
outperform SEP (Kossen et al., 2024) and SAPLMA
(Azaria and Mitchell, 2023) - supervised methods.

The D2T task is highly specific as it relies on
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CLASSIFIER AUC PCC

naïve 0.7119 0.4494
SEP 0.7143 0.3355
SAPLMA 0.7037 0.3188
ReDeEP (token) 0.7325 0.3979
ReDeEP (chunk) 0.7458 0.4203

Table 3: Model performance metrics on RAGTruth using
LLaMA-2 7B.

EVAL DATASET HYPER-PARAMS AUC PCC RECALL F1

RAGTruth RAGTruth 0.7541 0.4522 0.8008 0.7148
Dolly 0.7230 0.4413 0.6390 0.6844

Dolly Dolly 0.6223 0.2129 0.8684 0.5841
RAGTruth 0.5005 -0.0188 0.8684 0.5410

The EVAL DATASET column specifies the dataset on which the method is
evaluated, whereas the HYPER-PARAMS column indicates the dataset used to
fine-tune the hyperparameters of the method.

Table 4: Cross-dataset evaluation results of ReDeEP –
LLaMA-3 8B.

prompts in the JSON format (Appendix B, Table 8).
Therefore, detectors trained and tested on the en-
tire RAGTruth dataset may in reality respond to the
presence of JSON in the prompt. To verify that de-
tecting the type of the task from model activations
is possible, we collect model activations from the
last token and the last layer of the Llama2-7B-Chat
model and we use them to train a logistic regression
to predict the JSON task. The trained linear probe
achieves perfect prediction on the test set, with an
AUC of 1.0.

The evaluation problems are not an issue with
the RAGTruth dataset itself. In fact, the results in
the dataset paper (Niu et al., 2024) are reported
per task. This distinction also exists in methods
proposed in (Song et al., 2024; Belyi et al., 2025;
Ádám Kovács and Recski, 2025). However, ag-
gregated metrics have also been reported in (Ravi
et al., 2024; Sriramanan et al., 2024).

4 Hallucination detection with model
internals

The fundamental question we should address first
is this: Is it possible to classify a response from
an LLM as hallucinatory based on its internal
states? If this is possible, then it would be a natural
benchmark against other methods based on model
internals. To provide an answer, we extract the
activations of the LLM in the prompt processing
and answer generation phases and then use those
activations as input to a classifier. Extraction is
performed from the residual stream: pre-attention
(resid_pre) and pre-MLP (resid_mid). We con-
sider linear and non-linear probes (raw activations,

details in Appendix D), and SAE probes (SAE fea-
tures, details in Appendix D.1).

4.1 Experimental results
We assess ReDeEP’s generalization capabilities in
a cross-dataset scenario. As shown in Table 4,
ReDeEP requires specific hyperparameter tuning
to perform effectively on different datasets. Al-
though this issue is only slightly noticeable when
evaluating on RAGTruth with hyperparameters op-
timized for Dolly, it becomes glaringly apparent
when evaluating on Dolly using hyperparameters
optimized for RAGTruth, where the AUC is equiv-
alent to that of a random classifier and the corre-
lation with the hallucination label is close to zero.
The high recall on Dolly can be attributed to the
low classification threshold employed by ReDeEP
(approximately 0.15).

The evaluation results of our probes on LLaMA
models and RAGTruth dataset are presented in Ta-
bles 5 and 14. For completeness, we include results
from additional model architectures in Appendix E
(Tables 15 and 16). The performance on the SQuAD
dataset is summarized in Tables 18 and 19, while
the Dolly evaluation results are presented in Tables
20 and 21.

Given our experimental results, we find that per-
formance across hallucination methods is highly
fragmented: different classifiers perform best de-
pending on the dataset, model, or task, with no con-
sistent winner across settings. In particular, there is
no clear advantage of SoTA detection methods over
simple linear probes. In many cases, linear clas-
sifiers trained on model activations match or even
outperform more complex methods like ReDeEP,
SAPLMA or SAE-based classifiers. This suggests
that current approaches may be overfitting to task-
specific artifacts rather than capturing generalizable
signals of hallucination.

To further evaluate robustness, we have assessed
all methods in a cross-task setting on RAGTruth
(cf. Table 7 and 17), as well as in the RAGTruth→
SQuAD (cf. Table 6 and 22) and SQuAD→ RAGTruth
cross-dataset settings (cf. Table 24 and 25) specif-
ically aimed at evaluating generalization capabili-
ties. Across the board, performance dropped sub-
stantially, with no method demonstrating consistent
transferability. Both SoTA and linear probes ex-
hibit near-random performance when applied out-
side their training distribution. This supports our
hypothesis that hallucination detectors are latch-
ing onto task- or dataset-specific cues. The failure
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QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

Method AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

ReDeEPa 0.6360 0.4528 0.4615 0.4571 0.3951 0.7931 0.7480 0.7699 0.5767 0.4839 0.2941 0.3659 0.7324 0.7217 0.677 0.6986
Logistic Regressionb 0.6900±0.02 0.6912±0.01 0.6900±0.03 0.6901±0.01 0.6555±0.00 0.6555±0.00 0.7611±0.00 0.6777±0.00 0.6376±0.01 0.6380±0.02 0.6376±0.04 0.6378±0.01 0.7951±0.01 0.7951±0.01 0.7930±0.01 0.7934±0.01

Random Forestc 0.6821±0.01 0.6864±0.01 0.6821±0.01 0.6817±0.01 0.5227±0.00 0.5227±0.00 0.9318±0.00 0.5068±0.00 0.6410±0.02 0.6598±0.02 0.6410±0.01 0.6376±0.02 0.6994±0.03 0.6994±0.02 0.7191±0.03 0.7050±0.03

SAE Classifierd 0.7106±0.00 0.5325±0.00 0.7885±0.00 0.6804±0.00 0.6391±0.00 0.8750±0.00 0.7967±0.00 0.6170±0.00 0.6182±0.00 0.4821±0.00 0.5294±0.00 0.6150±0.00 0.7105±0.00 0.6655±0.00 0.8540±0.00 0.7048±0.00

SAPLMAe 0.5699±0.02 0.3905±0.02 0.500±0.18 0.5178±0.02 0.5476±0.01 0.8200±0.00 1.0000±0.00 0.4505±0.00 0.5959±0.03 0.3976±0.03 0.5294±0.03 0.5427±0.03 0.7486±0.00 0.6300±0.03 0.7788±0.05 0.6479±0.03

a ReDeEP is a deterministic method. Results do not vary between runs.
b Best result - based on layer 15’s activations.
c Best result - based on layer 5’s activations.
d QA: layer 15, max activation. D2T: layer 12, last token of response, contrastive. Summary: layer 13, last token of response, contrastive. Overall: layer 13, max activation.
e Best result - based on layer 16’s activations.

Table 5: RAGTruth evaluation results - LLaMA-2 7B.

QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

Method AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

ReDeEP - - - - - - - - - - - - 0.5163 0.4878 0.7092 0.578
Logistic Regression 0.5086 0.5000 0.5100 0.3100 0.5072 0.5000 0.5100 0.2300 0.5424 0.5100 0.5300 0.2800 0.5139 0.5100 0.5100 0.3300
Random Forest 0.5077 0.5000 0.5100 0.4800 0.5178 0.5100 0.5200 0.4300 0.5049 0.5000 0.5000 0.3400 0.5033 0.5000 0.5000 0.4500
SAE classifier 0.4889 0.4915 0.8112 0.4291 0.5273 0.5148 0.8531 0.4705 0.4856 0.4901 0.8671 0.3974 0.4845 0.4841 0.5315 0.4833
SAPLMA 0.5000 0.0833 0.0051 0.4256 0.4388 0.2603 1.000 0.2084 0.5583 0.3671 0.5686 0.5113 0.5520 0.2610 1.000 0.2124

Results presented for layer / hyperparameter combinations performing best on RAGTRUTH on the OVERALL task (Table 5), except for the SAE classifier for which the activation on the
last token of the response has been used instead of the max activation.

Table 6: Evaluation results | train: RAGTruth | eval: SQuAD - LLaMA-2 7B.

to generalize even across similarly structured QA
tasks underscores the limitations of using internal
activations as a reliable signal for hallucination
detection.

4.2 Are we really measuring the right thing?

The problem of measuring general hallucinations
based on model internals remains open. Spuri-
ous correlation is part of a larger issue. There
has been some doubt about hallucination detec-
tors. (Levinstein and Herrmann, 2024) demon-
strate how SAPLMA (Azaria and Mitchell, 2023)
does not predict truth but rather another spurious
phenomenon, such as Sentence is true and contains
no negation. Even minor changes to the test dataset,
like negating sentences, make SAPLMA’s accuracy
random. Contrast-Consistent Search (CCS) (Burns
et al., 2024) finds a direction in the activation space
that satisfies logical consistency properties, such
as having opposite truth values for a statement and
its negation. However, these axioms are insuffi-
cient, and the CCS probe identifies sentences with
negations (Levinstein and Herrmann, 2024; Far-
quhar et al., 2023). Another line uses uncertainty
quantification metrics, such as perplexity, length-
normalized entropy (Sun et al., 2025), semantic
entropy (Kossen et al., 2024), and P(true) (Kada-
vath et al., 2022). However, uncertainty metrics
correlate with sequence length, skewing evalua-
tions (Santilli et al., 2024). The overall goal in
hallucination detection is reminiscent of the contro-
versial status of polygraphs (Lykken, 1998). There
is no consensus on whether hallucination behavior
in a general context can be detected using current
MI methods. While simpler behaviors like refusal

(Arditi et al., 2024) or sentiment (Tigges et al.,
2023) have been explained by a single linear direc-
tion, the hallucination phenomenon is less clearly
defined.

4.3 Evaluation guidelines

We propose a number of best practices for future
work in mechanistic interpretability of hallucina-
tions. First, consider a rigorous mathematical def-
inition of a hallucination. In the absence of one,
it is challenging to design a detector. Then con-
sider what follows. (I) Check against naïve clas-
sifiers based on training set features (see Section
3) and (II) against simple linear probes. (III) A
detector method should be trained or tuned on a
specific dataset and evaluated on a different one.
This also applies to unsupervised methods, like
ReDeEP, which depend on dataset-specific hyperpa-
rameters for optimal performance (see Appendix I
in ReDeEP (Sun et al., 2025)). An example of that
would be training / tuning on SQuAD and evaluating
on RAGTruth. (IV) Verify if the suspected truth
circuit satisfies logical requirements like negation
and de Morgan rules. (V) Attempt to highlight
the incorrect part of the answer. This can be done
using external BERT models, as seen in (Ádám
Kovács and Recski, 2025). The RAGTruth dataset
has span-level labels that allow testing this. To
our knowledge, there is no purely activation-based
detection method evaluated in this manner.

Also worth considering is that LLMs are alike
imagination engines - hallucination enables the ex-
ploration of ideas and options. In this light, detect-
ing hallucinations could be related to notions of
orthogonality between the generated answer and
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QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION

Method Eval task AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

Logistic Regression
QA 0.5720 0.5700 0.5700 0.5700 0.5596 0.5500 0.5600 0.5500 0.5280 0.5300 0.5300 0.5200
D2T 0.5140 0.5600 0.5100 0.4000 0.5564 0.6400 0.5600 0.5600 0.5113 0.5200 0.5100 0.4400

SUMM. 0.5332 0.5400 0.5200 0.4800 0.4464 0.4700 0.4500 0.3900 0.6006 0.6000 0.6000 0.6000

Random Forest
QA 0.5886 0.5900 0.5800 0.5900 0.5402 0.5200 0.5400 0.5000 0.5006 0.5000 0.5000 0.5000
D2T 0.4910 0.4800 0.4900 0.4300 0.5000 0.4000 0.5000 0.4400 0.5080 0.5200 0.5100 0.4100

SUMM. 0.5115 0.5100 0.5100 0.4900 0.5055 0.5000 0.5100 0.3700 0.5177 0.5300 0.5200 0.4900

SAE Classifier
QA 0.7055 0.5256 0.7885 0.6742 0.5000 0.3467 1.000 0.2574 0.5051 0.3490 1.000 0.2688
D2T 0.5000 0.8200 1.000 0.4505 0.5000 0.8200 1.000 0.4505 0.5000 0.8200 1.000 0.4505

SUMM. 0.5000 0.3400 1.000 0.2537 0.5000 0.3400 1.000 0.2537 0.5642 0.4231 0.4314 0.5638

SAPLMA
QA 0.5836 0.4058 0.5385 0.5498 0.4584 0.3467 1.000 0.2574 0.4790 0.4667 0.1346 0.4907
D2T 0.5929 0.8200 1.000 0.4505 0.5330 0.8200 1.000 0.4505 0.6534 0.8704 0.7642 0.5953

SUMM. 0.5670 0.3651 0.9020 0.4144 0.5592 0.3400 1.000 0.2537 0.5661 0.3421 0.5098 0.4880

Results presented for layer / hyperparameter combinations performing best on the OVERALL task (Table 5).

Table 7: RAGTruth cross-task evaluation results - LLaMA-2 7B.

the context provided to the model.
We find the hurdles in hallucination detection to

be similar to the challenges in evaluating adversar-
ial defenses (Carlini et al., 2019). (Carlini, 2020)
suggest that instead of trying to find a method for
all cases, it is better to restrict the scope. For hallu-
cination detection, we should shift the attention to
finding specific, clearly defined sub-hallucinations.
(1) A method to verify if a given entity is known
to the model (Ferrando et al., 2024). (2) A mech-
anism by which LLMs switch between contextual
and parametric knowledge (Zhao et al., 2024; Min-
der et al., 2025).

5 Conclusion

We have assessed general hallucination detec-
tors and found that SOTA performance on the
RAGTruth dataset may be overstated due to eval-
uation problems. On top of that, even in more
rigorous settings, SOTA is often outperformed in-
distribution by linear probes. Furthermore, each
of the considered methods performs no better than
random out-of-distribution. This underscores the
challenge in general hallucination detection, where
current methods based on model internals are un-
likely to generalize to unseen data. In light of this
challenge, we propose a set of guidelines for future
hallucination detection methods, in particular: re-
stricting the scope of the hallucination and focusing
on specific hallucination spans rather than general
labels - potentially promising angles of attack.

Limitations

This work is limited in that out-of-distribution gen-
eralization is currently not achieved by any method
we are aware of but the introduction of new detec-

tion methods might change this state of affairs, so
it is not a definite statement on the impossibility of
such methods. Additionally, while we have striven
to provide a comprehensive assessment of cross-
dataset performance, it may be possible to show
that there are approaches which work significantly
better than chance on specific dataset combinations,
or for narrowed down specifications of what a hal-
lucination is, e.g. only untruthful answers, like is
done in the Truthful QA dataset (Lin et al., 2022).
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A Hallucination types

Hallucinations are a byproduct of all stages of the
capability acquisition process in LLMs. They origi-
nate from artifacts in pre-training data, the training
and alignment procedures, the decoding strategies
(Huang et al., 2025). In-context learning (Brown
et al., 2020) was introduced as a strategy to mitigate
hallucinations in LLMs by grounding generation in
externally provided information at inference time.
Yet, hallucinations occur even in the presence of
adequate context. Recent analyses (Huang et al.,
2025) suggest these failures stem not only from
missing or irrelevant information, but from how the
models internally manage and integrate contextual
input with their parametric knowledge. These hal-
lucinations may reflect breakdowns in contextual
awareness - where the relevant context is avail-
able but poorly attended to, lost in long inputs or
overriden by conflicting parametric knowledge -
and contextual alignment - where information is
misattributed or incorrectly decoded. Our work ex-
amines whether such failures can be detected from
the model’s internal activations.

B RAGTruth

Given the ambiguity of the hallucination concept
and the potential multitude of hallucination types,
the characteristics of specific datasets used for train-
ing or hyperparameter tuning of detection methods
become crucial. To the best of our knowledge,

the RAGTruth dataset (Niu et al., 2024) is the only
publicly-available manually-annotated RAG-based
hallucination dataset. It comprises 2 965 prompts
and 17 790 responses to those prompts from 6
LLMs: GPT-3.5-Turbo-0613, GPT-4-0613,
LLaMA-2-7B-Chat, LLaMA-2-13B-Chat,
LLaMA-2-70B-Chat and Mistral-7B-Instruct.
The data is broken down into 3 tasks:

• Question Answering (QA): answer questions
related to daily life, pre-selected from the MS
MARCO dataset (Bajaj et al., 2016).

• Data-to-text Writing (D2T): provide an objec-
tive description of a randomly sampled busi-
ness from the Yelp Open Dataset where part
of the prompt contains JSON-formatted data.

• Summarization (Summary): summarize a
piece of news from either the CNN/Daily
Mail dataset (Hermann et al., 2015; Nallapati
et al., 2016) or an undisclosed news platform.

An example of a prompt and response for the
LlaMA-2-7B-Chat model with the hallucinated
part of the response marked is visible in Table 8.
The responses from the models are generated for
non-zero temperature and so, are not consistently
reproducible. The evaluation of hallucination detec-
tion and mitigation methods on RAGTruth focuses
on the specific rollout present in the dataset and im-
plicitly ignores the possibility that the model may
not generate hallucinatory responses for a specific
prompt for the majority of sampled rollouts not
present in the dataset.

In general, the distinct characteristics of the tasks
(QA, D2T and Summary) provide a hint that each
of them may contain data artifacts not present in
the other ones. Additionally, hallucination inci-
dence varies significantly between the tasks, being
markedly higher for D2T. Those two factors com-
bined suggest that the artifacts may correlate with
the hallucination label. Consequently, the evalu-
ation of hallucination detection methods should
take this into account. At the very least, it should
provide performance metrics per task rather than
aggregated for the whole dataset.

C SQuAD

Stanford Question Answering Dataset (SQuAD) (Ra-
jpurkar et al., 2018) is a reading comprehension
benchmark comprising of context passages based
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PROMPT ANSWER

Instruction:
Write an objective overview (...) based only on
the provided structured data in the JSON format.
(...)
Structured data:
{

’name’: ’Apna Indian Kitchen’,
’address’: ’718 State St’,
’city’: ’Santa Barbara’,
’state’: ’CA’,
(...),
’attributes’: {

(...),
’OutdoorSeating’: True,
’WiFi’: ’no’,
(...)

},
’business_stars’: 4.5,
’review_info’: [(. . .)]

}
Overview:

Apna Indian Kitchen is a highly rated restaurant
located in Santa Barbara, California, serving
a variety of gluten-free, gastropub, vegan, and
Indian cuisine. According to customer reviews,
the restaurant offers tasty and authentic Indian
food with great service. Customers have praised
the menu options, including mixed veg spicy
and butter chicken medium spicy dishes, roti,
and naan. The restaurant has a cozy atmosphere
with outdoor seating and free WiFi. While the
restrooms could use some attention, the serv-
ing sizes are perfect, and the staff is friendly.
Customers have given the restaurant a 4.5-star
rating, with many leaving positive reviews high-
lighting the quality of the food and service.

Table 8: RAGTruth D2T example.

on a set of Wikipedia articles and questions cre-
ated by crowdworkers (see Appendix C, Table 9
for an example). SQuAD’s consistent format - an-
swering questions directly from context - helps
minimize the chance of spurious task-related cor-
relations. It resembles the QA task in RAGTruth,
where the model answers questions based on short
context excerpts but, contrary to RAGTruth, SQuAD
only contains human-generated reference answers
and not model generated answers reviewed by hu-
mans. In our evaluation procedure, we prompted
each model to answer questions based on context.
We subsequently evaluated the generated answers
as hallucinatory or non-hallucinatory by compar-
ing them to reference answers using LLaMA-3 70B
(Grattafiori et al., 2024) as a judge.

D Activation probes

Linear probes have gained traction in the MI com-
munity as, under the linear representation hypothe-
sis, they are sufficient to detect features in a model’s
representations (Bereska and Gavves, 2024). We
train a separate Logistic Regression classifier for
each layer’s pre-attention and pre-MLP activations,
using the last token’s features to predict hallucina-

tions across the model.
Given the high class imbalance (the hallucina-

tion rate in responses is approximately 10-20% de-
pending on model and dataset) and a line of work
in MI hinting at existence of non-linear features in
LLMs (Engels et al., 2025), we decided to train a
non-linear probe, a Random Forest classifier, on
model activations alongside the linear probe.

D.1 SAE probes
SAEs have garnered considerable attention in the
MI community thanks to their ability to find at
least some human-interpretable features (Temple-
ton et al., 2024; Gao et al., 2024). It has been shown
that SAE features may also store some meta infor-
mation on the activity of the base model. For in-
stance, they can, to an extent, regulate the strength
of attending to the context vs. relying on parametric
knowledge in LLMs (Zhao et al., 2024). Similarly,
SAE activations carry information about the uncer-
tainty of the LLM about an entity it is asked about
(Ferrando et al., 2024). We extract SAE activations
using the SAEs provided by (Zhao et al., 2024)
for layers 12, 13, 14 and 15 of the LLaMA-2 7B
model. All activations are rescaled per feature to
the [0; 1] range. Two extraction methods are used:
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CONTEXT QUESTION ANSWER

In many societies, beer is the most popular alco-
holic drink. Various social traditions and activities
are associated with beer drinking, such as playing
cards, darts, or other pub games; attending beer fes-
tivals; engaging in zythology (the study of beer);
visiting a series of pubs in one evening; visiting brew-
eries; beer-oriented tourism; or rating beer. Drinking
games, such as beer pong, are also popular. A rela-
tively new profession is that of the beer sommelier,
who informs restaurant patrons about beers and food
pairings.

What is a popular drinking
game where beer is often
considered?

Beer pong

Table 9: SQuAD dataset example.

activations at the last token of the response and the
maximum activations over the prompt and the re-
sponse. Additionally, the activations are provided
to the classifiers in two flavors. In the first approach,
they are directly treated as input. In the second one,
a contrastive representation is calculated:

â = aH − aC (1)

where â ∈ Rd, aH are the SAE activations for hal-
lucinatory samples and aC are the corresponding
activations for non-hallucinatory samples. The di-
mensionality of SAE dictionary elements is d. We
choose the top k elements from â with the high-
est magnitude on the train set. In our experiments,
we set k = 4096 to match the dimensionality of
the raw representation from the LLM in order to
make the results more comparable with classifica-
tion based on raw activations.

E Additional experimental results

We present additional experimental results in Ta-
bles 10-25.
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MODEL TASK TYPE HALLUCINATION RATE

GPT-3.5 Turbo (0613) D2T 0.2633
QA 0.0758

Summary 0.0573
GPT-4 (0613) D2T 0.2807

QA 0.0425
Summary 0.0785

LLaMA-2 13B Chat D2T 0.9516
QA 0.4034

Summary 0.3128
LLaMA-2 70B Chat D2T 0.8354

QA 0.3236
Summary 0.2248

LLaMA-2 7B Chat D2T 0.8596
QA 0.5157

Summary 0.4602
LLaMA-3 8B Instruct D2T 0.8800

QA 0.5200
Summary 0.2200

Mistral 7B Instruct D2T 0.9274
QA 0.3822

Summary 0.6543

Table 10: Hallucination rates on RAGTruth per model and task type.

MODEL AUC PCC

GPT-4 (0613) 0.7757 0.3403
GPT-3.5 Turbo (0613) 0.7623 0.3372
Mistral 7B Instruct 0.7267 0.4777
LLaMA-2 7B Chat 0.7119 0.4494
LLaMA-2 13B Chat 0.8086 0.6526
LLaMA-2 70B Chat 0.7594 0.5342
LLaMA-3 8B Instruct 0.7084 0.4437

Table 11: The AUC and PCC scores on naïve classifier across models on RAGTruth.

CLASSIFIER AUC PCC

naïve 0.8086 0.6526
SEP 0.8089 0.5276
SAPLMA 0.8029 0.3956
ReDeEP (token) 0.8181 0.5478
ReDeEP (chunk) 0.8244 0.5566

Table 12: Model performance metrics on RAGTruth using LLaMA-2 13B.

CLASSIFIER AUC PCC

naïve 0.7281 0.4824
SEP 0.7004 0.3713
SAPLMA 0.7092 0.4054
ReDeEP (token) 0.7522 0.4493
ReDeEP (chunk) 0.7285 0.3964

Table 13: Model performance metrics on RAGTruth using LLaMA-3 8B.

QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

Method AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

ReDeEP 0.5974 0.5514 0.7564 0.6378 0.5084 0.8707 0.7652 0.8145 0.5593 0.2475 0.8065 0.3788 0.7534 0.6465 0.8000 0.7151
Logistic Regressiona 0.8750 0.8928 0.8750 0.8685 0.5000 0.4347 0.5000 0.4651 0.5166 0.5197 0.5166 0.5165 0.7001 0.7045 0.7000 0.6984
Random Forestb 0.8257 0.8257 0.8257 0.8257 0.5000 0.4347 0.5000 0.4651 0.6410 0.6598 0.6410 0.6376 0.8221 0.8221 0.8221 0.8221

a Best result - based on layer 14’s activations.
b Best result - based on layer 8’s activations.

Table 14: RAGTruth evaluation results - LLaMA-3 8B.

QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

Method AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

SAPLMA 0.7161 0.5405 0.5000 0.6768 0.5277 0.2778 0.2632 0.5157 0.8103 0.6000 0.3750 0.7187 0.7303 0.4231 0.3837 0.6346
Logistic Regressiona 0.6863 0.7544 0.6920 0.7011 0.5546 0.5571 0.5571 0.5571 0.6428 0.7829 0.6448 0.7136 0.6483 0.6789 0.6401 0.6513
Random Forest b 0.5000 0.5000 0.5000 0.4100 0.5111 0.8642 0.5125 0.5441 0.5714 0.7428 0.5717 0.6108 0.5097 0.8861 0.5092 0.4543

a Best result - based on layer 18’s activations.
b Best result - based on layer 22’s activations.

Table 15: RAGTruth evaluation results - Phi3.5 Mini.
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QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

Method AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

SAPLMA 0.8905 0.6897 0.6452 0.7917 0.5823 0.8933 1.0000 0.4718 0.6957 0.6356 0.8721 0.5864 0.8746 0.7710 0.9124 0.7904
Logistic Regressiona 0.6451 0.6400 0.6300 0.6400 0.6120 0.6120 0.6940 0.7010 0.6291 0.6292 0.6291 0.6292 0.7818 0.8060 0.7817 0.7862
Random Forestb 0.6224 0.6200 0.6200 0.6100 0.5439 0.5439 0.8917 0.5207 0.6371 0.6371 0.6498 0.6245 0.7429 0.8064 0.7429 0.7451

a Best result - based on layer 17’s activations.
b Best result - based on layer 24’s activations.

Table 16: RAGTruth evaluation results - Mistral 7B.

QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION

Method Eval task AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

Logistic Regression
QA 0.6477 0.6500 0.6500 0.6500 0.5117 0.5300 0.5300 0.4500 0.5104 0.5400 0.5100 0.2300
D2T 0.5479 0.7000 0.5500 0.5600 0.5000 0.4300 0.5000 0.4700 0.5878 0.5600 0.5900 0.5000

SUMM. 0.5104 0.5400 0.5100 0.2300 0.5113 0.5600 0.5100 0.1300 0.4666 0.3200 0.4700 0.3600

Random Forest
QA 0.7386 0.7400 0.7400 0.7400 0.6338 0.5600 0.6300 0.5500 0.6146 0.5800 0.6100 0.5800
D2T 0.4903 0.4900 0.4900 0.4500 0.5000 0.4300 0.5000 0.4700 0.5392 0.5300 0.5400 0.5100

SUMM. 0.5331 0.5600 0.5300 0.4700 0.4861 0.4800 0.4900 0.1800 0.5000 0.3300 0.5000 0.3900

Results presented for layer / hyperparameter combinations performing best on the OVERALL task (Table 14).

Table 17: RAGTruth cross-task evaluation results - LLaMA-3 8B.

METHOD AUC PRECISION RECALL F1

ReDeEP 0.5163 0.4946 0.9716 0.6555
Logistic Regression 0.6862 0.6872 0.6859 0.6862
Random Forest 0.6581 0.6656 0.6581 0.6541
SAE Classifier 0.6684 0.7609 0.4895 0.6578

Table 18: SQuAD evaluation results – LLaMA-2 7B.

METHOD AUC PRECISION RECALL F1

ReDeEP 0.5851 0.5330 0.8821 0.6645
Logistic Regression 0.7000 0.7045 0.7000 0.6984
Random Forest 0.6687 0.6687 0.6687 0.6687

Table 19: SQuAD evaluation results – LLaMA-3 8B.

METHOD AUC PRECISION RECALL F1

ReDeEP 0.5741 0.5714 0.8889 0.6957
Logistic Regression 0.8055 0.7946 0.8055 0.7963
Random Forest 0.8055 0.7946 0.8055 0.7963

The results presented are based on a train/test split of the Dolly
dataset, which is different that in (Sun et al., 2025) where the
whole dataset is used as the test set.

Table 20: Dolly evaluation results – LLaMA-2 7B.

METHOD AUC PRECISION RECALL F1

ReDeEP 0.6852 0.5000 1.0000 0.6667
Logistic Regression 0.6900 0.7386 0.6944 0.7000
Random Forest 0.7500 0.8750 0.7500 0.7619

Table 21: Dolly evaluation results – LLaMA-3 8B.

QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

Method AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

ReDeEP - - - - - - - - - - - - 0.5851 0.5385 0.7642 0.6318
Logistic Regression 0.5116 0.5000 0.3200 0.3900 0.5026 0.5000 0.4300 0.4600 0.4959 0.5000 0.0 0.0 0.5038 0.5000 0.2600 0.3400
Random Forest 0.4969 0.5000 0.1500 0.2300 0.5246 0.5000 0.2500 0.3300 0.5009 0.5000 0.1900 0.2700 0.4978 0.5000 0.2500 0.3300

Table 22: Evaluation results | train: RAGTruth | eval: SQuAD - LLaMA-3 8B.
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QUESTION ANSWERING DATA-TO-TEXT WRITING SUMMARIZATION OVERALL

Method AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1

Logistic Regression 0.5011 0.5000 0.4600 0.4900 0.5126 0.5000 0.4200 0.4600 0.4994 0.5000 0.5100 0.3900 0.5097 0.5100 0.5097 0.5098
Random Forest 0.4820 0.5000 0.2200 0.4100 0.5294 0.5000 0.4200 0.4400 0.5022 0.5000 0.2600 0.3500 0.5120 0.5091 0.5120 0.5063

Table 23: Evaluation results | train: RAGTruth | eval: SQuAD - Phi3.5 Mini.

Method Eval task AUC Precision Recall F1

Logistic Regression

QA 0.5061 0.5100 0.5100 0.5000
D2T 0.5410 0.5600 0.5100 0.1600

SUMM. 0.4916 0.4900 0.4900 0.4800
OVERALL 0.4475 0.4300 0.4500 0.3700

Random Forest

QA 0.5138 0.5200 0.5100 0.4900
D2T 0.5027 0.5300 0.5000 0.1400

SUMM. 0.4990 0.4800 0.5000 0.3600
OVERALL 0.4838 0.5200 0.5300 0.4800

SAE Classifier

QA 0.5000 0.3467 1.0000 0.2574
D2T 0.5000 0.8200 1.0000 0.4505

SUMM. 0.5000 0.3400 1.0000 0.2537
OVERALL 0.5000 0.3467 1.0000 0.2574

Results presented for layer / hyperparameter combinations performing best
on SQUAD. For SAEs, only activations for the last token of the response
were considered.

Table 24: Evaluation results | train: SQuAD | eval: RAGTruth - LLaMA-2 7B.

Method Eval task AUC Precision Recall F1

Logistic Regression

QA 0.5053 0.5100 0.5100 0.4400
D2T 0.5000 0.4400 0.5000 0.4700

SUMM. 0.5589 0.6200 0.5600 0.3000
OVERALL 0.5373 0.6300 0.5400 0.4500

Random Forest

QA 0.4887 0.4400 0.4900 0.3700
D2T 0.4924 0.4400 0.4900 0.4600

SUMM. 0.5128 0.6100 0.5100 0.2100
OVERALL 0.5254 0.5700 0.5300 0.4500

Table 25: Evaluation results | train: SQuAD | eval: RAGTruth - LLaMA-3 8B.

17575


