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Abstract

Domain adaptation is widely adopted in text
retrieval scenarios where large labeled data is
unavailable. To improve model adaptability,
existing methods try to expand more source
datasets. However, we found from experiments
that indiscriminately using a large amount of
source data from various text tasks does not
guarantee improved adaptability, but may nega-
tively impact ranking model performance. To
tackle this issue, we propose Trait, a frame-
work that can effectively improve model adapt-
ability by selecting beneficial data without
evaluating all source data. Specifically, we
first divide multiple source datasets into data
chunks of the same size as the minimum se-
lection unit to form the whole selection space.
Then we devise an iterative process that in-
cludes Bayesian optimization-based selection
and transfer-aware chunk evaluation to incre-
mentally select beneficial chunks. To reduce
unnecessary evaluation costs, we also design
backtracking and pruning actions to adjust the
selection subspace. Extensive experimental re-
sults show that Trait not only achieves aver-
age state-of-the-art for few-shot on nine tar-
get datasets by evaluating only 4% of BERRI
source data, but is also highly competitive for
zero-shot compared with LLM-based rankers.

1 Introduction

In many realistic text retrieval tasks, acquiring large
labeled training data is challenging due to the high
cost of manual annotations (Xu et al., 2022; Yu
et al., 2022; Fang et al., 2024). To tackle this is-
sue, a technique called domain adaptation is widely
adopted (Wang et al., 2022; Xin et al., 2022), which
trains the model on large labeled source datasets
from related tasks (e.g., MS MARCO (Nguyen
et al., 2016) and NQ (Kwiatkowski et al., 2019)),
and then adapts it to the target dataset.

*Corresponding author

Recently, some efforts (Su et al., 2023; Lin et al.,
2023) attempt to facilitate domain adaptation by ex-
tending source datasets. For example, BERRI (Asai
et al., 2023), a set of 37 source datasets covering
various text tasks, is used to build adaptive retrieval
models. Driven by the expansion of source datasets,
a question arises: Can the source data be used in-
discriminately to promote model adaptability?

Indeed, recent studies (Yu et al., 2022; Fang et al.,
2024) found that significant distribution differences
between source and target data could diminish
adaptability, but the effects of source data from
various tasks remain to be investigated. As
shown in Figure 1, we finetune the monoT5-base
ranking model (Nogueira et al., 2020) on 640,000
BERRI examples, spanning 8,000 steps with 80
non-overlapping examples per step. During train-
ing, we periodically monitor its transfer perfor-
mance on the BEIR target datasets (Thakur et al.,
2021). In subplots (1)-(6) of Figure 1, the clear
downward trends of model performance indicate
that merely enriching source data does not ensure
promoted adaptation effectiveness. Consistent with
prior research (Yu et al., 2022), our findings con-
firm that some source data induce negative trans-
fer (Rosenstein et al., 2005) to the model, as evi-
denced by notable declines in nDCG@10 between
two adjacent monitored steps. Conversely, certain
source data can facilitate adaptation (e.g., subplots
(9)). Therefore, selecting source data that can effec-
tively improve adaptability is crucial in the domain
adaptation of text retrieval. In addition, we note
that there are data selection methods for adapta-
tion (Ruder and Plank, 2017; Liu et al., 2019; Qu
et al., 2019), which usually require repeated eval-
uation of each data sample. However, when faced
with source data containing millions of samples,
for example BERRI, these methods are impractical
due to excessive computational cost.

In this paper, we propose Trait, a Transfer-Aware
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Figure 1: Transfer performance of the monoT5 ranker at different training steps on BEIR datasets. We finetune
the ranker across 8,000 steps with 80 source examples per step. Periodly tested nDCG@ 10 values exhibit distinct
trends: clear downward trends in (1)-(6); uncertain trends with slight declines in (7)-(8); only an upward trend in (9).

Incremental Iterative data selection framework,
which can effectively improve model adaptability
by selecting beneficial data without evaluating all
source data. The core idea of Trait is to divide
source datasets into numerous chunks and select
beneficial chunks through an iterative selection-
evaluation process. Specifically, Trait features
three main modules: (1) Selection Space Structur-
ing. A notable limitation of existing methods is the
need to evaluate each sample, even for million-level
datasets. In this module, we will divide multiple
source datasets into data chunks of the same size
as the minimum selection unit to construct the se-
lection subspace and map this space into a vector
space. (2) Chunk Selection. This module further
formalizes the chunk selection as a black-box op-
timization problem. In each iteration, we will em-
ploy Bayesian optimization to select the most valu-
able chunk in the selection subspace based on the
existing evaluation records. (3) Transfer-Aware
Chunk Evaluation. The third module then eval-
uates the selected chunk to obtain a new evalua-
tion record that will also be added to the existing
evaluation records for the next iteration of chunk
selection. In addition, this module will also per-
form backtracking and pruning actions to adjust the
selection subspace and reduce unnecessary evalua-
tion costs. The whole selection-evaluation process
iterates until the candidate subspace is empty or a
maximum iteration limit is reached before scan-
ning all data. Ultimately, our framework outputs
the model, called Trait-ranker, that is finetuned on
selected source chunks to rerank the documents
from an initial BM25 retrieval.

To evaluate the effectiveness of Trait, we conducted

extensive domain adaptation experiments on nine
target datasets for both few-shot and zero-shot set-
tings. Trait-ranker achieves state-of-the-art average
performance for few-shot by evaluating only 4% of
BERRI source data. For zero-shot, our Trait-ranker
with only 737M parameters is still remarkably com-
petitive with or superior to powerful ranking mod-
els based on large language models. Overall, our
contributions are summarized as follows:

» We reveal the distinct effects of various source
data on model adaptability to target retrieval
tasks, and first propose the data selection prob-
lem for domain adaptation in text retrieval.

* We present Trait, a framework that can effec-
tively improve adaptability by selecting bene-
ficial data without evaluating all source data.

* We demonstrate the superiority of Trait for
the few-shot and zero-shot settings through
extensive experiments on the BEIR datasets.

2 Related Work

Domain Adaptation in Text Retrieval. There
are various domain adaptation techniques in text
retrieval that use source datasets as training data,
including retrieval-oriented pretraining (Xu et al.,
2022; Izacard et al., 2021), domain representation
learning (Yu et al., 2022; Xin et al., 2022), source
data expansion (Asai et al., 2023), model scale-
up (Ni et al., 2022; Rosa et al., 2022), and knowl-
edge distillation (Lin et al., 2023). Another direc-
tion is to generate numerous queries as pseudo-
relevant labels by feeding the target corpus to
LLMs (Bonifacio et al., 2022; Saad-Falcon et al.,
2023; Fang et al., 2024), which then serve as train-
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ing data. A recent trend is to use LLMs as zero-
shot rankers (Zhuang et al., 2024a,b; Sun et al.,
2023; Qin et al., 2024). These models take each
query with documents retrieved by the BM25 re-
triever as input and return the reranking results.
Although they require no further finetuning, the
online computation costs are notoriously high.

Data Selection for Domain Adaptation. Tradi-
tional approaches rank source data by domain eval-
uation metrics (Cross-entropy (Moore and Lewis,
2010), Jensen-Shannon divergence (Plank and
Van Noord, 2011; Remus, 2012; Ruder and Plank,
2017), Rényi divergence (Van Asch and Daele-
mans, 2010), sentiment graph-based metric (Wu
and Huang, 2016)) to select top-k samples. How-
ever, these works are limited to designing metrics
almost in isolation and focusing on a single task.

Recently, some studies (Liu et al., 2019; Qu et al.,
2019; Dong and Xing, 2019) focus on reinforce-
ment learning to select source data close to a given
target domain for adaptation. They adopt an agent
to make a selection decision for each example and
then update the agent with feedback from the model
trained with the selected examples. This procedure
requires several scans of the entire source dataset
for final selection. The rapid growth of source
datasets collected for domain adaptation in text
retrieval (now spanning millions of examples) ren-
ders conventional example-based evaluation meth-
ods prohibitively expensive for large-scale source
data selection. We solve this challenge by not com-
pletely evaluating all data while removing the re-
liance on those domain evaluation metrics.

3 Problem Statement

Let D = {di,...,dy} denote documents and
q € @ aquery. Text Retrieval requires a retrieval
model to learn a ranking function R : D x @ — R
that induces a ranked list of L € D, such that for
any d;,d; € L(i < j), there is:

where R (q, d;; ) parameterized by 6 assigns a rel-
evance score to document d for query q.

In many realistic retrieval scenarios, it is hardly
possible to obtain large labeled training data. To
solve it, traditional domain adaptation in text re-
trieval uses all available source datasets from re-
lated tasks for training (see Fig. 2 (a)): Given K
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Figure 2: In (b), we offer a new scheme that selects a
subset of examples helpful for model adaptation on the
target dataset 7', instead of using all source data in (a).

source datasets {57, S2,..., Sk} and a target re-
trieval dataset 7', each S, (1 < k < K) contains
query-document pairs (g, d) with relevance label
[, the goal of traditional domain adaptation is to
improve the adaptation of a model R(-,-;6(5)) to
T, which is trained on the aggregated source pool
S = Uszl Sk. However, as shown in Figure 1,
various source data can lead to different effects on
model adaptability. Therefore, identifying a sub-
set of source data beneficial to adaptability is the
research problem of this paper (i.e., Fig. 2 (b)),
named Data Selection for Domain Adaptation in
Text Retrieval, which is formulated as follows:

Problem 1 Given a set of source data S =
Ule Sk, a target retrieval dataset T, the goal of
Data Selection for Domain Adaptation in Text Re-

trieval is to identify a subset S C S with ‘5’ ‘ < |S],

such that the model R(-,-;0(S)) trained on S
achieves enhanced performance on T.

4 Methodology

We introduce Trait, a framework that efficiently
selects beneficial source data to enhance model
adaptation without computationally expensive eval-
uation of the entire source data. As depicted in
Figure 3, it begins by initializing the selection sub-
space (Section 4.1). Then, the chunk selection
module leverages Bayesian optimization to select
a high-value data chunk from the subspace (Sec-
tion 4.2.1). Thereafter, the transfer-aware mod-
ule evaluates the selected chunk, which gener-
ates a new evaluation record and adjusts the sub-
space dynamically (Section 4.2.2). These updates
are returned to facilitate the next selection. This
selection-evaluation process iterates until the stop-
ping conditions are met, outputting a Trait-ranker
trained on a subset of selected chunks.
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4.1 Selection Space Structuring

Data Chunks. As shown in Figure 4 (a), each
source dataset Sy, is randomly divided into Vi non-
overlapping data chunks, each uniformly sized at
¢, to form the whole selection space S. To avoid
repeated evaluation and reduce computational cost,
each data chunk, as the minimum selection unit,
can only be evaluated once. Experimental results
in Section 5.4 confirm that our method is robust to
variations in the random chunk division.

Selection Subspace. Driven by distribution charac-
teristics: chunks from the same source dataset ex-
hibit inherent distribution similarities, while cross-
source chunks may exhibit significant divergence.
This motivates us first to perform coarse-grained
source selection to focus on a chunk (see Sec-
tion 4.2.1) and then perform transfer-aware evalua-
tion on this chunk to decide whether to keep it (see
Section 4.2.2). To achieve coarse-grained source
selection, we construct a selection subspace S of
size K via dynamic expansion. As shown in Fig-
ure 4 (b), starting with an empty selection set, we

increase the current selected chunk collection by
introducing a chunk randomly sampled from the
candidate source S, with & € [1, K]. This sub-
space construction mechanism ensures progressive
refinement of chunk quality while maintaining dis-
tributional diversity during subsequent iterations.

Vector Representations. To distinguish each
candidate in S, we formulate a simplified rep-
resentation using a K dimensional vector s =
[n1,n2,...,nkl, where each dimension represents
the number of chunks from a certain source dataset
and each ny € [0, Ni|. Figure 4 (c) exemplifies
this vector representation. These vectors play a role
in the following chunk selection module, which has
been demonstrated to be effective in Section 5.3.

4.2 Iterative Selection-Evaluation

Each iteration involves two steps: (1) the chunk
selection module identifies a candidate s € S, fol-
lowed by (2) the transfer-aware module evaluates
the newly added chunk in s. We will formally de-
scribe these candidates as nodes during iterations.

4.2.1 Chunk Selection

To efficiently find beneficial chunks within limited
iterations, selecting the most valuable s € S is
significant but costly if it were traversed manually.
Therefore, we frame this chunk selection process
as a black-box function f that can be optimized.
The input of f is s and the output is the adapt-
ability score of the model finetuned on the chunks
represented by s, denoted by f(s).

Bayesian Optimization has emerged as an effi-
cient methodology to optimize black-box functions,
proven promising in automatic hyperparameter tun-
ing and neural architecture search (Kandasamy
et al., 2018; Falkner et al., 2018). Despite this,
we explore its application in chunk selection for
domain adaptation in text retrieval for the first time.
Formally, given our objective function f : & — R,
the goal is to find an input s € S’ that globally max-
imizes f. The optimization relies on two concepts:
a surrogate model f and an acquisition function
A:S — R We employ the Gaussian process
as f due to its computational convenience (Snoek
et al., 2012) and the Expected Improvement func-
tion as A due to its efficiency (Jones et al., 1998).

Selection Process. Since the surrogate model f
requires initial data observed from the objective f
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to approximate the prior distribution of f, we ob-
serve each node s in the initial selection subspace
before iterating. Specifically, we finetune a ranking
model R using a chunk randomly sampled from
the source S}, as described in Section 4.3. Then,
a test interface is applied to score the model with-
out updating it, outputting an adaptability score
P/ The interface requires only a small amount
of data, which can be either query-document pairs
generated by LLMs or a few examples from the
target domain. Both cases are effective in experi-
ments (see Section 5.1). The pair (s, P,imt) is then
added as an initial evaluation record in the set O,
thus initiating the optimization.

Firstly, the surrogate f analyzes all pairs in O to
construct a probabilistic representation of the ob-
jective function f by predicting its posterior distri-
bution. The predictions include both expected per-
formance and confidence intervals of f in a given
subspace S Subsequently, the acquisition func-

tion A (-; f) assess all nodes s € S’ by calculating

their utility values. These values aim to balance
exploration of uncertain nodes and exploitation of
promising nodes. The candidate node s; with the
highest utility is selected in the current ¢-th itera-
tion. The evaluation record of s; will be added to
O at the end of the i-th iteration, thus updating the
f in the next iteration. This data-driven selection
progressively helps to discover which sources may
be worthy of further exploitation, thereby reducing
the exploration of low-value ones.

4.2.2 Transfer-Aware Chunk Evaluation

New Evaluation Record. This module further
evaluates the selected s; through the feedback from
the ranking model. The father node of s;, de-
noted by s; (j < ), carries an evaluation record
(sj, P(R(-,-;6(s;)))), where R(-, -; 8(s;)) denotes
the model finetuned on the selected chunks in s;.
Given that s; extends s; by adding one chunk,
we further finetune R(-,-;6(s;)) exclusively on
the newly added chunk for E epoch to obtain a
new model R(-,-;60(s;)), thereby reducing compu-
tational overhead. Details of model finetuning are
presented in Section 4.3. Similar to initial evalua-
tion records, the adaptability score P(R(-, -; 0(s;)))
is obtained through the test interface to form a new
evaluation record o = (s;, P(R(-,-;0(s;)))) as a
signal for adjusting the selection subspace. Besides,
the new record o is added to the set O for the next
optimization in the chunk selection module.

Selection Subspace Adjustment. As depicted in
Figure 5, we design three actions to adjust the
selection subspace based on the new evaluation
record o. (1) Forward. If P(R(-,-;60(s;))) >
P(R(-,-;0(s;))), then we forward to s; as the
next expanded node for constructing selection sub-
space. (2) Backtrack. If P(R(-,6(s;))) <
P(R(-,;6(sj))), then we backtrack to s; as
the next expanded node, explicitly excluding s;
from the generated subspace. (3) Prune. If
P(R(-,-;0(si))) < P(R(-,-;6(s;))) and all the
child nodes of s; are evaluated, then we backtrack
to the father node of s;. The subspace expanded
from s; is viewed as a failed subspace since adding
a chunk to s; cannot finetune a new model with a
higher adaptability score. After identifying a failed
subspace, this action prunes the subspace generated
later. Specifically, nodes within this failed subspace
are ranked based on their adaptability scores in de-
scending order. Then, we mark the source datasets
corresponding to the nodes sorted in the bottom
« proportion and prune the nodes generated from
these marked source datasets when expanding a
new subspace later. When only 5 nodes remain in
the subspace, no more pruning will be performed.
The hyperparameter o controls the ratio of nodes to
be pruned in the current subspace, while /3 defines
the minimum ratio of nodes to be retained among
all nodes. This iteration process continues until the
stop conditions are met: either the maximum num-
ber of iterations M is reached or the new selection
subspace can no longer be expanded. Trait then
outputs the ranker with the best evaluation record.

4.3 Neural Retrieval Method

We adopt a multi-stage retrieval approach (Chen
et al., 2017; Nogueira and Cho, 2019), first using
efficient BM25 (Robertson et al., 1995) for docu-
ment retrieval, then ranking these documents by a
neural model. Following prior works (Bonifacio
et al., 2022; Ni et al., 2022), we initialize our rank
model with a monoT5 backbone (Nogueira et al.,
2020). The ranker R(q,d;0) takes a formatted
query-document pair as input and outputs its rele-
vance score. The cross-entropy loss is employed
during finetuning as follows:

L=— Zd+eD+ log (R(q, dr; 9))
- Zd_ED_ log (1 - R(q7 di? 9))7

where D and D~ denote the sets of relevant and
irrelevant documents, respectively.

2
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Figure 5: Transfer-aware chunk evaluation module is designed with three actions, including forward, backtrack, and
prune, to adjust the selection subspace based on the new evaluation record in each iteration.

5 Experiments

5.1 Experimental Setups

Datasets and Metrics. We employ the BERRI
collection (Asai et al., 2023) as source data and
nine public BEIR datasets (Thakur et al., 2021)
as target domains, reporting standard nDCG@ 10
scores (See Appendix A.1 for details). Following
the research (Dai et al., 2022), we handle each tar-
get dataset with customized source data selection.

Baselines. Trait supports both zero-shot and few-
shot adaptation through the data used in its test
interface: (1) synthetic in-domain query-document
pairs from InPars-v2 (Jeronymo et al., 2023) for
zero-shot; (2) a few target pairs following the re-
search (Dai et al., 2022) for few-shot. Trait-rankers
rerank the top 1000 documents retrieved by BM25
for evaluation. We compare with three groups of
baselines: (1) zero-shot LLM-based rankers di-
rectly rank documents retrieved by BM25 with-
out additional finetuning; (2) zero-shot finetuned
rankers are finetuned on source data without tar-
get examples; (3) few-shot rankers require a few
target examples. (see Appendix A.2 for details.)

Implementation Details. We finetune Trait-
ranker initialized from monoT5-Large (737M) by
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 5e-5. Main hyperparame-
ters comprise: data chunk size (¢ = 640), training
epochs (F = 4), maximum iterations (M = 150),
and pruning ratios (o« = 25%,8 = 25%). Ab-
lation studies of the two main modules in Trait
(Section 5.3) and analysis of hyperparameters (Sec-
tion 5.4) are conducted in the few-shot setting.

5.2 Results

Comparison with Baseline Methods. The main
results are shown in Table 1. The following obser-
vations can be made: (1) As shown in rows 9-11,
zero-shot Trait-ranker, learned from a selected sub-
set of BERRI (under 60k instances), outperforms
on average two larger TART-full rankers (1.5B)
trained on random BERRI 640k examples. This
highlights that selecting beneficial source data can
enhance model adaptation more effectively than
indiscriminately using source data. Details of se-
lected data are listed in Appendix A.3 (2) Zero-
shot Trait-ranker (737M) matches to or even ex-
ceeds existing LLM-based rankers (rows 1-4), de-
spite being at least 6.3x smaller in model size. For
instance, it outperforms SetwiseLLMRanker (11B)
on 4 out of 5 tasks (e.g., DBPedia and Sci-
fact), which relies on costly generation for doc-
ument ranking. It is worth noting that due to the
high computational cost, these LLM-based mod-
els only rerank the top 100 documents retrieved
by BM25, limiting their adaptability to other tar-
get tasks.  (3) Compared to rankers in rows 5-
8, Trait-ranker (zero) shows mixed performance
overall: outperforming RankT5-Enc and PROMP-
TAGATOR++ (zero), but lagging behind larger
rankers in rows 6-7. Although RankLLaMA (7B)
achieves the best average performance, it ranks
the top 200 documents retrieved by dense retriever
RepLLaMA (7B), which is costly for online infer-
ence. (4) Few-shot PROMPTAGATOR++ (rows
12) first generates and filters out a relevant query
for each document by FLAN-137B with a few tar-
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Table 1: nDCG@10 on nine target datasets. TRECC and CLI are short for TREC-COVID and Climate-FEVER.
AVG is the average performance. The “Source” column shows labeled data for finetuning: ‘n.a.” indicates no source
data; T indicates synthetic in-domain data. Optimal results are reported for baseline rankers from their original
papers. (zero) and (few) indicates zero-shot and few-shot. Results of LLM-based rankers not available are denoted
—. x indicates the data selection method of Plank et al. using the same source and selection size as Trait-Ranker.
For each target dataset, the best results are marked in bold while the second-best results are underlined.

TRECC NFCorpus FiQA ArguAna Touché DBPedia SCIDOCS CLI SciFact AVG Source
BM25 65.6 32.5 23.6 31.5 36.7 31.3 15.8 21.3 66.5 36.1 n.a.
Zero-shot LLM-based ranker
(1) RankGPTs35 76.7 35.6 - 36.2 44.5 - - 70.4 - n.a.
(2) RG-S(0,4) 80.5 39.0 - 27.6 41.9 - - 75.2 - n.a.
(3)  SetwiseLLMRanker 76.8 34.6 - 38.8 424 - - 75.4 - n.a.
(4) PRP-Sliding-10 79.5 - - 379 46.5 - - 73.3 - n.a.
Zero-shot finetuned ranker
(5) RankT5-Enc 80.7 38.1 44.5 33.0 44.0 44.2 18.1 21.5 75.0 443 MS MARCO
(6) RankLLaMA 85.2 30.3 46.5 56.0 40.1 483 17.8 28.0 73.2 47.3 MS MARCO
(7) InPars-v2 84.6 38.5 50.9 36.9 29.1 49.8 20.8 323 77.4 46.7 BEIR'
(8) PROMPTAGATOR++ (zero) 76.0 36.0 459 52.1 27.8 41.3 19.1 22.6 73.2 43.7 BEIR'
(9) TART-full (FLAN-T5) 72.8 334 41.8 51.5 24.9 46.8 18.7 354 717 44.8 BERRI
(10) TART-full (T@-3B) 71.7 34.0 42.3 49.8 31.2 45.1 17.5 30.0 75.8 44.1 BERRI
(11) Trait-Ranker (zero) 79.7 36.9 44.0 45.5 26.5 47.1 19.6 31.2 76.3 45.2 BERRI (< 60k)
Zero-shot data selection method
(*)  Plank et al. (Plank and Van Noord, 2011) 73.1 28.9 422 439 24.5 38.0 19.2 25.1 73.6 40.9 BERRI (< 60k)
Few-shot ranker
(12) PROMPTAGATOR-++ (few) 76.2 37.0 494 63.0 38.1 43.4 20.1 24.1 73.1 47.2 BEIRT
(13) Trait-Ranker (few) 84.9 37.5 46.6 59.5 33.5 47.8 20.3 374 78.4 49.5 BERRI (< 50k)
t 1 t lt . 1 11 TREC-COVID NFCorpus FiQA ArguAna
ge. e.xamp €s as prompts, resuling in 1 mithon 100 [84.980.7 7g.3] 40 [37.533 936.5] 50 [46.6 42 847 1 I EER
training data for each target task. Due to the learn- 50 2 2 3L
ing from numerous synthetic data and the powerful 0 o 0 0
. 1 Touché DBPedi SCIDOCS Climate-FEVER
reasoning ability of LLMs, PROMPTAGATOR++  _ x ra®—  pooifede 900G dimate
. o 54262 TR 435|20 |77 22189 7295283
performs well, especially on ArguAna. In contrast, & 2 . 2
. [a)
our few-shot Trait-ranker learns fewer than 50k < 0 0 0
. SciFact A
selected source examples without powerful LLMs. o0 525 5000 g 28— chunk selection module in Tai
. T w | S BO-based (Ours)
Trait-ranker surpasses PROMPTAGATOR++ on 6 50 N romee
of 9 tasks (e.g., TREC-COVID, DBPedia), and it 0 0 Polling-S

achieves the state-of-the-art average performance
across nine tasks in few-shot adaptation.

Comparison with Practical Selection Methods.
To further demonstrate Trait’s effectiveness in zero-
shot settings, we compare it side-by-side with the
domain metric-based data selection method by
Plank et al. (Plank and Van Noord, 2011). To this
end, we compute the Jensen-Shannon divergence
for each BERRI query-document pair to measure
source-target similarity. This domain similarity
metric is computationally feasible. Thus, we sub-
sequently select the top-f most similar source ex-
amples for training, where ¢ is set to match Trait’s
selection size. As shown in Table 1, Trait consis-
tently outperforms this traditional method across
nine BEIR tasks, underscoring its clear advantage.

5.3 Ablation Studies

Effectiveness of Chunk Selection Module. We
replace the chunk selection module based on
Bayesian optimization (BO) in Trait with two sim-
ple strategies: (1) Random-S randomly chooses a

Figure 6: Comparison of the BO-based chunk selection
module with two simple selection methods.

node from the selection subspace; (2) Polling-S
treats all nodes equally, employing a round-robin
approach to sequentially select nodes from the
subspace without prioritization. As illustrated in
Figure 6, the BO-based module outperforms both
strategies with a notable +4.0 gain in the average
nDCG @10, which highlights its critical role in im-
proving ranker adaptability. This BO-based module
employs existing evaluation records to choose the
most worthwhile node in each iteration, rather than
blindly exploring indefinitely.

Impact of Search Actions. We conduct ablative
analysis on the transfer-aware module’s three ac-
tions for adjusting the selection subspace by eval-
vating two Trait variants: (a) None: adjust the
subspace without actions until reaching the max-
imum iterations M; (b) W/O Pruning: subspace
adjustment excluding pruning until meeting a failed
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Table 2: Ablation results of three actions for adjusting the selection subspace: (1) Forward, (2) Backtrack, and (3)
Prune. Two variants of Trait are included: (a) None: no actions taken; (b) W/O Pruning: abandon the pruning action.

Action Iteration BEIR (nDCG@10)
Method (HE (2)B. (3)P. | numbers | TRECC NFCorpus FiQA ArguAna Touché DBPedia SCIDOCS CLI SciFact
(a) None - 150 84.0 373 454 49.8 32.6 47.5 19.7 362  76.7
(b) W/O Pruning v v <150 83.6 374 45.3 56.8 335 474 19.9 372 779
Trait v v v <150 84.9 375 46.6 59.5 335 47.8 20.3 374 784

Table 3: Experimental verification of Trait’s robustness
to source data imbalance.

Trait-ranker TRECC NFCorpus SCIDOCS SciFact

imbalanced source 79.7 36.9 19.6 76.3
original source 79.7 36.9 19.6 76.3

subspace or reaching M. As presented in Table 2,
the results reveal that no actions or only remov-
ing the pruning action leads to a decrease in the
performance of the final ranker. This is primarily
because, in each iteration, the backtracking dis-
cards the chunk that is considered to be unable to
improve model adaptability. In addition, when ad-
justing the selection subspace, the pruning neglects
sources that may cause significant negative transfer
to the model based on historical evaluation results.

Robustness to Source Data Imbalance.

To examine the impact of imbalanced source
data on Trait, we create an intentional imbalance
by replicating the CNN/DailyMail dataset (from
BERRI) 10 times, making it 52.36% of the total
source data. We then conduct zero-shot experi-
ments on four BEIR target datasets. As shown in
Table 3, Trait-rankers maintain performance com-
parable to the original setting. This robustness
stems from Trait’s selection mechanism (see Sec-
tion 4.2.1), which prioritizes sources that are pre-
dicted to improve adaptation performance based on
previous evaluation records, regardless of source
data proportions. Specifically, it employs Bayesian
optimization to select a promising source dataset,
then randomly chooses a fixed-size chunk from it.

5.4 Hyperparameters

Impact of Maximum Iterations. We test the max-
imum iteration number M € [150, 1000], which
affects Trait-ranker’s adaptability by determining
the upper limit of chunks we can select and eval-
uate. In this section, we keep the training epoch
F = 1 to save computational cost. As shown in
Table 4, further increasing M beyond 150 does not
lead to significant improvement in model adaptabil-

Table 4: Analysis of maximum iteration number. The
percentage in brackets refers to the ratio of the data
evaluated in iterations to the total source data.

‘ Maximum iterations M/

BEIR (nDCG@10) ‘ 150 (4%) 200 (5.3%) 400 (10.6%) 1000 (26.5%)

TREC-COVID 85.7 86.0 86.3 86.4
NFCorpus 37.3 37.3 37.3 37.1
FiQA 46.1 45.3 459 459
ArguAna 53.0 55.9 56.7 55.3
Touché 335 33.7 349 342
DBPedia 479 47.6 48.3 47.8
SCIDOCS 20.2 20.5 20.5 20.3
Climate-FEVER 35.7 36.2 38.7 39.5
SciFact 778 76.8 76.9 778
Average 485 48.8 49.5 49.4

ity, especially on the FiQA and NFCorpus target
datasets. Truly useful source data could be limited,
making selection gradually difficult. Besides, once
the model has acquired relevant knowledge from
some source data, further learning of similar data
yields little gains in adaptability.

Training Epoch. We analyze Trait-ranker’s adapt-
ability when varying the training epoch E. As
illustrated in Figure 7, as the epoch E increases,
the ranking performance in 9 target datasets ei-
ther declines or improves. For instance, when E/
increases from 1 to 3, the performance of Trait-
ranker improves significantly on datasets (4), (5),
(7), and (8). These observations suggest that proper
learning of source data can enhance domain adapt-
ability. As E increases from 4 to 5, the nDCG@10
values decrease on 6 out of 9 datasets, indicating
that excessive training on source data may impair
transfer performance. This decline is possibly due
to the ranker becoming overly aligned with the
source domain’s distribution, which differs to vary-
ing degrees from the distributions of the nine target
domains. Overall, the average performance grows
gradually and becomes stable when E = 4.

Data Chunk. To study the sensitivity of source
data chunk division, we perform 20 experi-
ments on the TREC-COVID task with differ-
ent random seeds (keeping E=1 and M=100).
Trait-rankers achieve stable nDCG@10 scores
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Figure 7: Effect of training epoch E. The last red line chart shows the average performance across these datasets.

Table 5: Comparison of experimental configurations of Ruder et al. and Trait.

Method Task Iterations  Evaluated Data/Iteration ~ Total Evaluated Data  Source Data  Evaluation Ratio Repetition
Ruder et al.  Sentiment Analysis I = 300 k =1,600 480,000 6,000 80x Includes repeated evaluations
Trait Text Ranking I, =150 c =640 96,000 2,395,950 4% No repeated evaluations

(mean=0.8447+0.0044, 95% CI1[0.8422,0.8474]),  tion each iteration. Their approach involves scor-
confirming its low sensitivity to random chunk ing all source examples by domain metrics, se-
division.  In addition, when testing differ- lecting the top-t examples, training a model, and
ent chunk sizes ¢ € {160,320,480,640,960}, testing it. Given 5 iterations, their total cost is
we observed comparable nDCG@10 scores of  Cryder = 12 X (Crain (t) + Chest + V'), where b/
{0.8417,0.8424,0.8417,0.8472,0.8425}, respec-  is the cost from updating similarity metric weights.
tively, which indicates that reducing the chunk size

did not improve adaptation effectiveness. Theoretical Comparison. A key difference is that

t > c: Ruder’s method selects ¢ examples per iter-
Pruning Ratio. During pruning, the hyperparam-  atjon, while Trait accumulates small chunks of size
eter « controls the pruning ratio each time, while ¢ incrementally. Thus, Trait avoids repeated evalu-
f3 sets the minimum ratio of nodes to be retained  ation of previously used data. Each iteration only
among all nodes. We find that further adjusting  processes new data, while Ruder’s method repeat-
these parameters minimally impacts Trait-ranker  edly processes the entire selected set. Besides, the
effectiveness (see Appendix A.4 for details). costs b and b’ are negligible compared to training.

Empirical Comparison. Based on the experimen-
tal configuration, we list Table 5 to concretely an-
alyze computational efficiency. Specifically, Trait
Our experiments used 8 NVIDIA A100 40GB  evaluates only 4% of the source data, compared to
GPUs with a batch size of 8 per GPU, consuming  8000% evaluated by Ruder’s method, substantially
37 GB of memory per GPU. Execution time var-  reducing redundant computation. It further shows
ied by test data volume: Touché (1,766 instances)  that methods like Ruder’s become prohibitively ex-
required about 14 hours, while ArguAna (20 in-  pensive to handle millions of source data in text
stances) took about 7 hours. The entire process  ranking. Traditional data selection methods are
across all nine target tasks took about 118 hours. computationally cheaper than Trait, but they are
significantly less effective (see Section 5.1).

5.5 Computational Cost Analysis

Such costs motivated a formal efficiency analy-
sis of Trait and previous selection methods. Trait ¢  Conclusion

performs incremental training on a selected chunk

of size ¢ and evaluates the ranker in each itera- We show that indiscriminately using various source
tion. Given [ iterations, its total cost is C'rq;t =  data may reduce model adaptability to the target
I X (Cirain (€) + Clest + ), where Cipqin (¢) is  retrieval task. We propose Trait, a data selection
the training cost on ¢ examples, Clg is the testing ~ framework that accumulates beneficial source data
cost, and b is the overhead of Bayesian optimiza- by selectively evaluating data chunks in limited
tion. This cost includes both data selection and iterations, thus effectively improving model adapt-
model training. In contrast, many existing data  ability. Extensive experiments demonstrate the ef-
selection methods, such as Ruder et al. (Ruder fectiveness of Trait for domain adaptation in both
and Plank, 2017), rely on full-dataset reevalua-  zero-shot and few-shot settings.
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Limitations
We list the limitations of this work as follows:

1. Our research focuses on ranking models based
on monoT5-Large, which is one of the best
and computationally inexpensive open-source
rankers. While we posit that our findings and
the proposed Trait framework can be gener-
alized to other types or sizes of ranking mod-
els (e.g., monoT5 or FLAN-T5 at diverse sizes),
without evaluation on currently used monoT5-
Large, our results may remain speculative.

2. In the zero-shot setting, we used the in-
domain query-document pairs synthesized by
GPT-J (6B) from the Inpars-V2 work to build
the test interface. We did not specifically use
more powerful large models, such as FLAN
137B used by PROMPTAGATOR++, to gener-
ate in-domain training data. Future work may
generate in-domain data with better quality
to build a test interface that enables zero-shot
Trait-rankers to outperform rankers with high
computational cost, such as zero-shot LLM-
based rankers, in terms of adaptability.
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A Appendix

A.1 Datasets

Source Datasets. BERRI, a collection of 37 text
datasets from diverse domains with distinct expert-
annotated instructions (Asai et al., 2023), contains
the TART-full set for ranking models and the TART-
dual set for retrieval models. We use the BERRI
TART-full set with 3 million query-document pairs
as the source data for selection. Since all instances
in BERRI are randomly mixed, we classify each
sample in its original dataset according to the in-
struction texts. As a result, 28 datasets are correctly
classified, of which the MS MARCO dataset is re-
moved because it was used in the pre-finetuning
of monoT5, the initialization of our ranker. The
remaining data are classified into an “unknown”
dataset because their instruction texts do not iden-
tify the dataset to which they belong, and we asked
the original authors but received no response. Fi-
nally, we conducted experiments on a total of 28
different source datasets, as shown in Table 6.

Target Datasets. For domain adaptation,
we choose nine publicly available BEIR
datasets (Thakur et al., 2021) as target domains.
Following previous work (Dai et al., 2022; Asai
et al., 2023), we exclude Natural Questions, MS
MARCO, HotpotQA, FEVER, and CQADupStack
from the evaluation for fair comparison since
they are included either in the LLMs’ pretraining
datasets (such as FLAN-T5 using NQ in pretrain-
ing (Chung et al., 2024)) or in the source data of
BERRI, leading to reduction in target datasets not
caused by our method.

A.2 Baselines

In the main results, we consider three groups
of strong ranking models as baselines, including
zero-shot LLM-based rankers, zero-shot finetuned
rankers, and few-shot rankers.

Zero-shot LLM-based rankers.

¢ RankGPTs 5 (Sun et al., 2023) directly uses
the gpt-3.5-turbo API for permutation gen-

eration to rank the top 100 documents from
BM?25.

* RG-S(0, 4) (Zhuang et al., 2024a) belongs
to pointwise zero-shot LLM rankers. It uses
FLAN PaLLM2S (Anil et al., 2023) to generate
fine-grained relevance labels for ranking the
top 100 documents from BM25.

* SetwiseLLMRanker (Zhuang et al., 2024b)
proposes a setwise prompt and utilizes the
Flan-t5-xx1 to generate ranking results of the
top 100 documents retrieved by BM25.

* PRP-Sliding-10 (Qin et al., 2024), based on
the Flan-UL2 (Tay et al., 2023) model with
20B parameters, ranks top 100 documents re-
trieved by BM25 in a pairwise manner.

Zero-shot finetuned rankers:

* This research (Zhuang et al., 2023) investi-
gates the use of T5-based architecture for text
ranking and has proposed RankT5-Enc, which
is initialized from the encoder-only T5-based
and finetuned on the MS MARCO dataset
with the Softmax loss.

* RankLLLaMA (Ma et al., 2024), a pointwise
ranker based on LLaMA-2-7B, learns from
MS MARCO with 500k training examples. It
ranks the top 200 documents retrieved by the
dense retriever RepLLaMA (7B).

* InPars-v2 (Jeronymo et al., 2023) uses the
open-source GPT-J with 6B parameters to gen-
erate synthetic queries for each target docu-
ment, and then applies monoT5-3B to filter
out more relevant query-document pairs for
finetung a ranking model.

* Promptagator++ (zero-shot) (Dai et al., 2022)
applies the prompt without in-domain exam-
ples to prompt FLAN (137B) to generate syn-
thetic relevant queries for each given target
document, which are used to finetune the zero-
shot Promptagator++ ranker.

* TART-full (T0-3B) (Asai et al., 2023) and
TART-full (FLAN-TS) (Asai et al., 2023) are
initialized from the T0-3B and FLAN-TS en-
coder, respectively. These models, finetuned
on about 640k BERRI instances, rank the top
100 documents retrieved by dense retriever
TART-dual, also learned from BERRI.

Few-shot rankers:

* Promptagator++ (few-shot) (Dai et al., 2022)
design prompts with a few query-document
pairs from the target task. Then, these dataset-
specific prompts are fed to FLAN (137B) to
generate synthetic relevant queries for each
given target document, which are used to fine-
tune the Promptagator++. Besides, the few-
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Table 6: BERRI source datasets statistics.

BERRI
Index Dataset Domain Task Number

1 AGNews news summarization 118,587
2 Altlex Wikipedia sentence paraphrase 110,318
3 CNN Daily Mail news summarization 237,310
4 Coco captions image captions caption generations 98,466
5 ELI5 web QA 121,713
6 FEVER Wikipedia fact verification 87,111
7 Gigaword web headline retrieval 21,498
8 HotpotQA Wikipedia QA 81,742
9 MedMCQA medical QA 22,661
10 medical simplification medical sentence simplification 6,431
11 NPR news summarization 118,602
12 NQ Wikipedia QA 22,568
13 OQA Wikipedia duplicated questions 164,741
14 PubMedQA medical&science QA 73,702
15 Qrecc Wikipedia conversational QA 26,067
16 Quora Duplicated Questions community forum duplicated questions 121,437
17 ReCoRD news QA 23,219
18 SciTLDR science summarization 2,853
19 SearchQA web QA 118,461
20 Sentence Compression misc. sentence compression 121,081
21 SQuAD Wikipedia QA 103,719
23 StackExchange (query—answer) community forum QA 121,158
22 StackExchange (title—title) community forum duplicated questions 128,020
24 TriviaQA Wikipedia QA 31,232
25 WikiHow community forum QA 118,367
26 WwWOw Wikipedia knowledge-grounded dialogue 94,737
27 XSUM news summarization 778
28 nan misc. misc. 99,371

17517



Table 7: Statistics of the selected BERRI source data for each target task in the few-shot setting.

| Target Task
BERRI ‘ TREC-COVID NFCorpus FiQA ArguAna Touché DBPedia SCIDOCS Climate-FEVER  SciFact
AGNews 0 0 1280 640 0 0 0 0 0
Altlex 0 0 0 0 0 0 0 0 0
CNN Daily Mail 640 640 0 0 0 0 640 0 640
Coco captions 640 0 0 0 0 0 640 0 640
ELI5 0 0 0 0 0 0 0 0 0
FEVER 640 640 0 0 0 0 0 0 0
Gigaword 0 0 0 0 0 1920 0 0 0
HotpotQA 0 0 0 1920 0 640 1280 0 0
MedMCQA 0 0 0 0 0 0 0 0 0
medical simplification 640 0 0 2560 0 0 0 0 0
NPR 0 1280 0 0 0 0 0 0 0
NQ 0 0 0 0 0 0 0 0 640
OQA 0 0 0 1920 0 0 0 0 640
PubMedQA 640 0 0 1280 0 640 0 0 0
Qrecc 0 0 0 0 0 0 640 0 640
Quora Duplicated Questions 0 0 0 640 0 1280 0 640 0
ReCoRD 0 0 0 0 0 0 0 0 640
SciTLDR 0 0 0 1280 0 0 0 0 0
SearchQA 0 0 0 640 0 0 0 0 0
Sentence Compression 0 0 0 0 0 0 0 1280 0
SQuAD 0 0 0 0 0 0 0 0 0
StackExchange (query—answer) 0 0 640 1280 1920 0 0 0 640
StackExchange (title—title) 0 1280 640 0 0 640 0 0 640
TriviaQA 640 0 0 0 0 0 0 640 640
WikiHow 640 0 0 0 0 0 0 0 0
wWOow 0 0 0 2560 0 0 0 1280 0
XSUM 0 0 0 0 0 0 1280 0 640
nan 1280 0 0 0 0 0 0 0 0
Total ‘ 5760 3840 2560 14720 1920 5120 4480 3840 6400

shot Promptagator++ ranks the top 200 docu-
ments retrieved by the Promptagator retriever
that is developed in the same few-shot setting.

A.3 Selected BERRI training examples

As shown in Table 8, we show the number of in-
stances of each BERRI dataset selected for adapta-
tion to each target task in the few-shot setting.

First, we find that the selection of source datasets
varies widely. For example, the CNN Daily Mail
source dataset contributes 640 instances to the
TREC-COVID, NFCorpus, SCIDOCS, and SciFact
target tasks, while being unused in other tasks. In
contrast, 4 of the 28 source datasets (e.g., Altex
and EL15) have zero utilization across all target
tasks, suggesting that they are inherently incompat-
ible with the target domain. Secondly, we observe
that the distribution of the amount of data selected
for target tasks is highly variable and concentrated
on individual target tasks. For example, 61.8% of
the instances were selected for only three tasks:
ArguAna (14,720), SciFact (6,400), and DBPe-
dia (5,120). This skewed distribution suggests that
specific tasks, such as argument analysis containing
miscellaneous domains, require more cross-domain
knowledge transfer than other tasks. Overall, our

results empirically validate our finding that prior-
itizing beneficial source data over piling up large
amounts of source data can improve the effective-
ness of domain adaptation.

A.4 Analysis of the pruning action

We perform experiments on the TREC-COVID tar-
get task with different settings of o and 3 (keeping
FE = 1and M = 150). As shown in Table 8, the
basis configuration with a = 25% (the pruning
ratio) and 8 = 25% (the minimum retention ra-
tio) achieves the highest nDCG @10 score of 85.74.
However, further adjusting these hyperparameters
has no beneficial effect on the performance. In
row 2, increasing 3 to 50%, which means keep-
ing more nodes in the selection subspace, lowers
the score to 84.53. In row 3, raising a to 50% to
prune more nodes each time results in the same de-
graded score (84.53). Simultaneously setting both
a = 50% and B = 50% yields 84.98 (in row 4),
still underperforming the basis setting in row 1.
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Table 8: Analysis of the pruning action with varying o
and 5 on TREC-COVID target task.

Pruning ratio « Minimum retention ratio ‘ nDCG@10

(¢))
(@)
3
)

25%
25%
50%
50%

25%
50%
25%
50%

85.74
84.53
84.53
84.98
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