
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 17404–17419
November 4-9, 2025 ©2025 Association for Computational Linguistics

KurTail : Kurtosis-based LLM Quantization

Sadegh Akhondzadeh* 1 Aleksandar Bojchevski1 Evangelos Eleftheriou2 Martino Dazzi2
1 University of Cologne, 2 Axelera AI

[akhondzadeh, bojchevski]@cs.uni-koeln.de
[evangelos.eleftheriou, martino.dazzi]@axelera.ai

Abstract

One challenge of quantizing a large language
model (LLM) is the presence of outliers.
Outliers often make uniform quantization
schemes less effective, particularly in extreme
cases such as 4-bit quantization. We introduce
KurTail, a new post-training quantization
(PTQ) scheme that leverages Kurtosis-based
rotation to mitigate outliers in the activations
of LLMs. Our method optimizes Kurtosis as
a measure of tailedness. This approach enables
the quantization of weights, activations, and
the KV cache in 4 bits. We utilize layer-wise
optimization, ensuring memory efficiency.
KurTail outperforms existing quantization
methods, offering a 13.3% boost in MMLU
accuracy and a 15.5% boost in Wiki perplexity
compared to QuaRot (Ashkboos et al., 2024b).
It also outperforms SpinQuant (Liu et al.,
2024) with a 2.6% MMLU gain and reduces
perplexity by 2.9%, all while reducing the
training cost. For comparison, learning the
rotation using SpinQuant for Llama3-70B
requires at least four NVIDIA H100 80GB
GPUs, whereas our method requires only a
single GPU, making it more accessible.

1 Introduction

Large language models (LLMs) have advanced
significantly in recent years, showcasing remark-
able performance and capabilities. As these models
grow in size and complexity, the computational
cost required for their deployment and inference
has increased dramatically. Furthermore, with new
inference time methods (OpenAI, 2024; Guo et al.,
2025), enhancing inference speed (tokens per sec-
ond) is increasingly important. This has shifted
the focus toward accelerating model performance
while reducing memory and computational require-
ments. An effective method to achieve this is post-
training quantization (PTQ), which involves repre-
senting model weights and/or activations in lower

*Work done during an internship at Axelera AI

numerical precisions. PTQ can significantly reduce
the memory footprint and computational overhead
and subsequently decrease latency and energy con-
sumption, which are especially beneficial for infer-
ence on resource-constrained edge devices.

Serving a model involves two stages of prefill-
ing and generation. During prefilling, the model
processes the input prompt and stores the internal
state, known as key-value (KV) caching. During
generation, tokens are produced auto-regressively.
Quantizing each stage offers distinct advantages
for improving inference efficiency. KV-cache quan-
tization reduces memory requirements and accel-
erates data movement, which enhances the gen-
eration stage, particularly in scenarios involving
long-context inference. Weight quantization, on
the other hand, reduces the memory footprint in-
dependently, and when it is combined with acti-
vation quantization, it also reduces the computa-
tional demands. However, activation quantization
presents challenges due to large outliers in certain
channels (Dettmers et al., 2022; Xiao et al., 2023),
which limits the effectiveness of uniform integer
quantization as it destroys the dynamic range of
the activations. While channel-wise quantization
can effectively address this issue, the lack of hard-
ware support makes it computationally expensive
in practice. Several methods have been proposed
to address this challenge. Dettmers et al. (2022)
and Ashkboos et al. (2023) advocate for mixed-
precision computation in which they store some
of the channels in higher precision and less sensi-
tive channels in lower precision to balance accu-
racy and efficiency. Xiao et al. (2023) introduces
channel-wise scaling into the layer normalization
and the weights of linear layers. Ashkboos et al.
(2024b) proposed random rotation which takes the
advantage of the computational invariance frame-
work (Ashkboos et al., 2024a) to mitigate the out-
liers problem. We introduce KurTail – a novel
approach to mitigating activation outliers by apply-

17404

ing learnable rotations1 to the activations similar
to SpinQuant (Liu et al., 2024). KurTail focuses on
reducing the tail density of activations, captured by
the Kurtosis. Unlike SpinQuant which requires ex-
pensive end-to-end training of the model’s loss, we
prove that layer-wise optimization of our Kurtosis
loss is equivalent to end-to-end training. We per-
form layer-wise inference to cache activations, and
then optimize the rotations based on the cache inde-
pendently. As a result, KurTail can be implemented
in a significantly more memory-efficient manner.
For instance, while SpinQuant requires at least four
NVIDIA H100 80GB GPUs to compute rotations
for Llama3-70B, KurTail achieves the same with
just a single GPU. Despite its lower computational
requirements, KurTail outperforms existing meth-
ods in terms of perplexity and zero-shot reasoning
tasks. KurTail outperforms existing quantization
methods with a 13.3% increase in MMLU accu-
racy and a 15.5% decrease in Wiki perplexity com-
pared to QuaRot(Ashkboos et al., 2024b). It also
performs better than SpinQuant(Liu et al., 2024),
achieving a 2.6% increase in MMLU accuracy and
a 2.9% decrease in perplexity, all while reducing
the cost of training the rotation. We also theoreti-
cally shed light on why rotations are preferable to
arbitrary linear transformations.

2 Background

Post Training Quantization. Previous work on
post-training quantization fits into two main groups:
weight-only quantization (Frantar et al., 2022; Lin
et al., 2024b; Egiazarian et al., 2024; Tseng et al.,
2024) and weight-activation quantization (Xiao
et al., 2023; Dettmers et al., 2022; Ashkboos et al.,
2024b; Liu et al., 2024). In weight only quantiza-
tion, the weight are projected into a lower preci-
sion, such as 4 bits, 3 bits, or even less, and then
de-quantized to higher precision before the actual
computation, with all calculations still being done
in high precision. Several studies (Xiao et al., 2023;
Ashkboos et al., 2024b; Liu et al., 2024) attempted
to introduce quantization methods for both weight
and activation. They showed that uniform quantiz-
ing is impractical for large language models since
they suffer from large outliers. To address this is-
sue, Dettmers et al. (2022); Ashkboos et al. (2023);
Saxena et al. (2024) proposed a mixed-precision
approach for handling outliers at higher precision.
Others (Xiao et al., 2023; Lin et al., 2024b) pro-

1We use rotation to refer to any orthogonal transformation.

posed trading outliers between weights and activa-
tions by introducing a re-scaling paradigm. Tseng
et al. (2024) introduced an incoherence processing
method using random rotation matrices and apply-
ing vector quantization on the weights for com-
pression, adding overhead to inference. QuaRot
(Ashkboos et al., 2024b) was inspired by Tseng
et al. (2024) and took advantage of the invariance
framework proposed by Ashkboos et al. (2024a)
introducing a rotation-based approach to compress
and remove outliers from the activation space us-
ing a random Hadamard rotation. In a concurrent
work, (Lin et al., 2024a) also introduced dequant
which also combined a combination of permutaion
and rotation to mitigate the outliers. Later, Spin-
Quant (Liu et al., 2024) and OstQuant (Hu et al.,
2025) improves the results of QuaRot (Ashkboos
et al., 2024b) by optimizing some of these rota-
tions to minimize the model loss through end-to-
end training. While SpinQuant improves the results
compared to QuaRot it suffers from a high compu-
tational cost for learning the rotations. We address
this issue by introducing a novel loss for learning
the rotations.

Uniform Quantization for k-bit Precision. For
a given vector x, uniform integer quantization re-
duces its continuous range of values to a finite set
of discrete levels, enabling representation in lower
precision. In k-bit quantization, the value range
[xmin,xmax] is divided into 2k equal intervals. Each
element xi in x is mapped to its closest quantiza-
tion level by Q(xi) = round

(
xi−b
s

)
·s+b. Here s

is the scale factor or step size and b is the shift. The
values of s and b depend on the specific quantiza-
tion scheme. In symmetric quantization, the range
is assumed to be symmetric around zero. There-
fore, b = 0, and s = max(|xmax|,|xmin|)

2k−1−1
. In asymmet-

ric quantization, the range is not assumed to be
centered at zero and therefore, b = min(x), s =
xmax−xmin

2k−1
. Given x sampled from some distribution

the expected mean-squared error (MSE) between
the quantized and the original values is:

MSE(x, Q) = E
[
(x−Q(x))2

]
(1)

Definition 2.1. Quantization Sensitivity (Chmiel
et al., 2020) For a given distribution and sample
vector x, let s̃ denote the optimal quantization step
size where s̃ minimizes the quantization error, and
let Qs̃(x) represent the optimal quantizer. Quanti-
zation sensitivity Γ(x, ϵ) is defined as the increase

17405

in the mean squared error (MSE) caused by a small
perturbation ϵ > 0 in the quantization step size s
around s̃, such that |s − s̃| = ϵ. Specifically, the
sensitivity is given by:

Γ(x, ϵ) = |MSE(x, s)− MSE(x, s̃)| (2)

Theorem 2.2. (Chmiel et al., 2020) Considering
xU and xN be continuous random variables with
uniform and normal distributions. Then, for any
given ε > 0, the quantization sensitivity Γ(x, ε)
satisfies Γ(xU , ε) < Γ(xN , ε).

This theorem indicates that, compared to the typ-
ical normal distribution, the uniform distribution
is more robust to changes in the quantization step
size s. Therefore, it becomes apparent that there
is great benefit in adjusting the distribution of the
activations and weight to get closer to uniform dis-
tribution. This implies that the uniform distribution
is a perfect fit for uniform quantization. It can also
be shown that the optimal scaling s̃ for the uniform
distribution is equal to s̃ = xmax−xmin

2k−1
. Chmiel et al.

(2020) also show that the optimal step size for a
uniform distribution closely approximates the most
robust quantization (least sensitive step size).

Kurtosis. Kurtosis is a statistical measure that
describes the degree of tailedness in the distribution
of a dataset. It helps determine whether the data
have heavy or light tails compared to a normal
distribution. Mathematically, Kurtosis is defined
as the standardized fourth moment of a population
around its mean, and it is calculated using

κ =
E[(x− µ)4]

(E[(x− µ)2])2
=

µ4

σ4
(3)

where µ is the mean, µ4 is the fourth moment about
the mean, and σ is the standard deviation. The Kur-
tosis of a normal distribution is 3. κ > 3 is charac-
terized by heavy tails and a sharp peak, indicating
greater tail density than a normal distribution (e.g.
the Laplacian distribution). We have a shift of mass
from the shoulders to both the tails and the cen-
ter. On the contrary, κ < 3 is a sign of light tails
and a flatter distribution (e.g. uniform or beta dis-
tribution) caused by mass moving from the tails
and center to the shoulders. Banner et al. (2019)
demonstrate that deep neural network weights and
activations typically follow Gaussian or Laplace
distributions. Furthermore, Dettmers et al. (2022)
identifies the presence of extreme outliers in LLM
parameters, which are critical for maintaining per-
formance. Our key insight is that distributions with

outliers exhibit high kurtosis, which measures the
presence of extreme values. Therefore, by optimis-
ing the rotation to minimize the kurtosis we can
bring the distribution closer to uniform. Uniform
distribution is the desired distribution of the activa-
tions and weights for uniform quantization (§ 2),
so we aim to move the distribution closer to uni-
form. Kurtosis serves two purposes: to encourage
the distribution to resemble a uniform distribution,
and to reduce the outliers. Our loss function is:

Lκ =
1

L

L∑

i=1

|κ(
⊕N

j=1
aij)− κu| (4)

where
⊕

denotes the concatenation of the activa-
tion of all tokens at that layer and κu is the Kurtosis
of the uniform distribution.

2.1 Optimality of orthogonal transformations

There are two main reasons for using orthogonal
transformations. First, when fusing the initial rota-
tion R1, an orthogonal transformation is required
to maintain invariance with respect to RMSNorm
(see § 3), as shown by (Ashkboos et al., 2024b). In
principle some of the transformation (i.e R2) can
be any full rank matrix. We show that the quantiza-
tion error is upper bounded by its condition number
which is minimized for orthogonal transformations.

Lemma 2.3. The k-bit quantization error of X ∈
RN×M after a full rank transformation T is

∥∥X −Q(XT)T−1
∥∥
F
≤ ∥X∥F

2k−1 − 1

√
NM ·cn(T)

where cn(T) is the condition number of T .

Corollary 2.4. The upper bound on the quantiza-
tion error is minimized when cn(T) = 1 and T is
(a scalar multiple of) an orthogonal matrix.

Intuitively, the quantization error of the trans-
formed activation is inversely related to the small-
est singular value of T . To avoid amplifying the
quantization error, it must not be smaller than one.
An orthogonal transformation, where all singular
values are equal to one, is well behaved.

End-to-End training. KurTail can be run layer-
wise instead of end-to-end resulting in a computa-
tional benefit. We prove that end-to-end training
and our layer-wise optimization converge to the
same solution for certain families of models which
include our current setting.

17406

Proposition 2.5. Let H1,O1 = f(X,W1,R1),
and H2,O2 = g(O1;W2;R2) where f, g are pa-
rameterized by W1,R1 and W2,R2. Given func-
tional invariance of f and g, i.e. O1 = O′

1 for any
O′

1,H
′
1 = f(X,W1,R

′
1) and any orthogonal R′

1

(and similarly for g), and given that the total loss is
L(R1,R2) = L1(H1)+L2(H2), the independent
minimization of each loss results in the same op-
timum as end-to-end: argminR1,R2 L(R1,R2) =
(argminR1 L1(R1), argminR2 L2(f ;R2)), even
though H2 implicitly depends on O1.

Proposition 2.5 indicates that optimizing R1 and
R2 end-to-end is equivalent to optimizing each
separately since our loss and the model architecture
satisfy the assumptions. Inductively, this holds for
all layers. However,

for the output of the MHSA and the FFN blocks
we jointly optimize R1 using the activations from
all layers by summing them since R1 shared across
layers/losses (Fig. 3).

Quantization Sensitivity. We evaluate our
method by measuring activation sensitivity both
before and after applying rotations optimized with
Kurtosis. We expect that after applying these ro-
tations, the activation distribution will be closer
to uniform, resulting in better quantization robust-
ness. We empirically measure the sensitivity of the
activation distribution before and after applying
the rotation. We utilize the Llama3.1 8-B model
and apply two rotation techniques: one using a ran-
dom Hadamard transformation and another using a
Kurtosis-optimized rotation. First, we compute the
optimal scaling (Chmiel et al., 2020) for activation
quantization and then calculate the quantization
sensitivity based on Definition 2.1.

0.75 1.00 1.25
α

0.00

0.02

0.04

Se
ns

iti
vi

ty

Layer 1

0.75 1.00 1.25
α

0.0

0.1

0.2
Layer 15

vanila hadamard kurtosis

Figure 1: Empirical sensitivity of the MHSA input distri-
bution across different rotations. α indicates the fraction
of the optimal step size, i.e. sensitivity with step α · s.

In Fig. 1, α indicates the fraction of the optimal
step size used to analyze quantization sensitivity.
The results show that the random Hadamard trans-

Figure 2: Input distributions of MHSA blocks in
LLaMA3-8B before and after KurTail . Rotation reduces
outliers and improves token-wise quantization.

formation reduces quantization sensitivity. Our
Kurtosis-based method exhibits a bigger reduction
in sensitivity, suggesting that it more effectively
aligns the distribution with uniformity. Interest-
ingly, we also observed that the sensitivity drop
is strongest in the first layer compared to other lay-
ers for both methods. In Fig. 1 we compare layer 1
to layer 15, but this trend holds for deeper layers.

Evaluation of KurTail on Channel Outliers. To
demonstrate that the learned rotation by KurTail
reduces the degree of tailedness in the distribu-
tion, we further visualize the inputs of multi-head
self-attention (MHSA) and feed-forward network
(FFN) blocks of layer 15 in Llama3-8B. In Fig. 2,
we compare the input distribution once without
rotation and once with KurTail learned rotation.
Additionally, we highlight the maximum value for
each token with a gray surface above each token.
As shown, KurTail effectively mitigates outliers in
activation quantization.

Layer Kurtosis. We measure the kurtosis of
LLaMA-3 8B representations in layers 1, 2, 15, 16,
31, and 32 before and after applying different rota-
tions (Fig. 4). Since high kurtosis indicates heavy-
tailed activations that are harder to quantize, lower
values provide a good proxy for improved quanti-
zation. We find that Hadamard rotations (Quarot)
reduce kurtosis across layers, SpinQuant, though
not explicitly targeting kurtosis achieves further
reductions, and our optimization process yields the
strongest improvements, particularly in the first
layer, while also giving consistent gains in later
layers. These patterns align with our overall im-
provements over prior methods.

3 KurTail

Placement of the Rotations. Following the com-
putational invariance theorem, as introduced by El-

17407

XR1 RMSN R−1
1 Wk

R−1
1 Wq

R−1
1 WvR2

RoPE

RoPE

R3

R3

⊗ σ

+

⊗ R4 R−1
4 R−1

2 WoR1 Y R1 RMSN
R−1

1 Wup

R−1
1 Wgate Swish

⊙ R5 R−1
5 WdR1 X2R1

+

R1, R2: Fusible Rotations R3, R4, R5: Online Rotations 3 : Quantization

Figure 3: Diagram of a single-layer decoder network after applying rotations. Each block represents a computation
unit. Blocks containing both blue and black indicate that the rotation is fused into the network without adding extra
computation. In contrast, blocks with only the rotation signify additional computations during inference.

1 2 15 16 31 32
Layer

101

102

103

104

105

K
ur

to
si

s
V

al
ue

1 2 15 16 31 32

3

4

5

No Rotation Quarot SpinQuant KurTail

Figure 4: Kurtosis of LLaMA-3 8B layer representations.
Lower values mean better quantization. The top-right
panel zooms in to highlight kurtosis differences across
rotation-based methods.

hage et al. (2023); Ashkboos et al. (2024a) and later
utilized by QuaRot and SpinQuant, we adopted a
similar framework to transform the activation func-
tions at each layer. The placement of rotations is
illustrated in Fig. 3. This figure depicts a single
layer of a transformer model, where each square
represents a computation block. The rotations are
categorized into fusible rotations (R1 and R2) and
online rotations (R3, R4, and R5). Fusible rota-
tions do not add additional computational costs
during inference since they can be merged with the
model’s original parameters. Specifically, we apply
R1 to the left side of the token embedding, Wo,
and Wd within the MHSA and FFN blocks, respec-
tively. The inverse of R1 is applied to the right
side of Wq, Wk, Wv in the attention block, and
Wup, Wgate in the FFN block. Due to the residual
connection, the exact same rotation must also be ap-
plied across subsequent layers (e.g., XR1 + Y R1

in one layer and Y R1 +X2R1 in the next). The
second fusible rotation, R2, is applied to the right
side of Wv, with its inverse applied to the left side
of Wo. This transformation improves the distribu-

tion of KV-caches and can vary across layers. The
second group of rotations, R3, R4, and R5, are
online which minimally increase the computational
costs compared to the original model but they im-
prove the performance. To mitigate this, we utilize
random Hadamard matrices, which are computa-
tionally efficient, resulting in minimal overhead.
For R3, the transformation is applied after each
rotational positional encoding for queries and keys.
Since the transpose of any orthogonal matrix equals
its inverse, there is no need to add the inverse ma-
trix explicitly. During the computation of attention
scores, the term QTK simplifies to QTRT

3 R3K,
effectively nullifying the impact of the rotation. For
R4, we introduce the transformation after applying
the softmax scores to the values and add the in-
verse in the subsequent linear layer. Similarly, R5

is implemented in the FFN block using the same
approach.

Learning the Rotations. To discover the optimal
rotations, we first run the vanilla model and store
the inputs from both the MHSA and FFN blocks.
Next, we create a small network consisting of
a linear layer and an RMSNorm, designed to
simulate the inputs of the MHSA and FFN blocks
before quantization (Fig. 3). For optimization, we
shuffle the stored input data from all transformer
layers and both blocks and then train the rotation
using Kurtosis loss. Since the optimization requires
the rotations to remain within the orthogonal
space, we use the Caley Adam (Li et al., 2020)
optimizer to enforce this constraint. We train this
small network for 100 iterations using 500 samples
from the WikiText (Merity et al., 2016a) training
set. In Table 9, we also did an ablation study on
the different calibration size and datasets. After
training, the resulting rotation is fused into the
original network. For the R2, we apply a similar
approach, but we removed the RMSNorm and just

17408

optimize the linear layer with the Kurtosis loss.

Optimization in the Orthogonal Space. As dis-
cussed in § 3, the transformation needs to be op-
timized in the orthogonal space to be consistent
with a computational invariance framework. There-
fore, we optimize all of the transformation matri-
ces within the Stiefel Manifold (Li et al., 2020)
i.e., the space of orthonormal matrices, using Caley
Stochastic Gradient Descent (SGD) or Caley Adam
(Li et al., 2020). For more detailed see (Li et al.,
2020).

Training Cost. While quantization make the
inference of large models feasible on consumer
GPUs, finding the optimal rotation still requires
substantial computational power. We address this
by avoiding end-to-end fine-tuning. Since each
multi-head attention and FFN is affected by R1,
end-to-end approaches like SpinQuant cannot op-
timize the rotation layer by layer, and directly op-
timizing R1 via gradient descent requires loading
the entire model, which is memory-intensive. Al-
though SpinQuant reduces training costs by elimi-
nating the need to store weight gradients and states,
it still requires loading the full model into GPU
memory. Our approach uses layer-wise inference,
which eliminates the need to load all the network
weight on the GPU at once. Then we store the acti-
vations for each layer. The we optimize the rotation
with a Kurtosis loss. This significantly lowers GPU
requirements—at most, a single NVIDIA H100 (or
A100) is needed for LLaMA 70B.

4 Setup

We developed KurTail using the Hugging Face
library (Wolf et al., 2019) integrated with the
PyTorch framework (Paszke et al., 2019) and
for evaluation we used EleutherAI evaluation
framework (Gao et al., 2024b). For learning the
transformation, we used 512 calibration samples
for all models, except Mixteral and LLAMA 70B
for which we use 256 calibration sample from
the WikiText (Merity et al., 2016a) training set,
each with a sequence length of 2048. For large
models, we used less samples since they have
more layers for which we can store the activations.
For storing the activations we used layer-wise
inference to reduce the GPU memory requirement.
For optimizing the rotation, we use Caley Adam
(Li et al., 2020) optimizer to find the rotation.

For quantizing the activation, we used per-token

dynamic symmetric quantization, where a single
scale was applied to each row, and all values were
clipped using a quantile of 0.98 in all experiments.
For the KV-caches, we employed asymmetric quan-
tization. For the Weight quantization, we use round-
to-nearest (RTN), and GPTQ (Frantar et al., 2022),
using per-column (or per-channel) symmetric quan-
tization. For GPTQ quantization, we uses 128 cal-
ibration samples from the WikiText, each with a
sequence length of 2048. Learning the transforma-
tion and Transforming LLAMA3-70B with KurTail
on an NVIDIA H100 GPU took around one hour
which compare the SpinQuant it uses significantly
less memory (4 A100 GPU and 2 hours).

Models. We evaluate KurTail on the LLAMA-2
(Touvron et al., 2023), LLAMA-3 (Dubey et al.,
2024), Phi-model (Abdin et al., 2024) and Qwen
2.5 (Yang et al., 2024; Team, 2024) family on both
language generation and zero-shot tasks. We fur-
ther also target the mixture of experts model Mix-
tral (Jiang et al., 2024).

Inference Speed-up. KurTail’s contribution fo-
cuses on a novel approach to learning the rotation
and given the architectural similarity with Spin-
Quant and Quarot, we did not re-implement the
low-level kernel for 4-bit matrix multiplication, as
similar speedup results are expected. All results
are based on simulated quantization; however, the
real quantization will yield the same downstream
performance.

Evaluation Setting. To compare the perfor-
mance of the model after quantization, we report
the perplexity (PPL) score on the WikiText (Mer-
ity et al., 2016b) test set. While perplexity is a
standard measure of language modeling perfor-
mance, it may not be sufficient for evaluating the
model’s effectiveness after quantization. Therefore,
we report the result for zero-shot reasoning as well.
We assess performance using the lm-evaluation-
harness (Gao et al., 2024a), testing the models on
eight tasks: BoolQ (Clark et al., 2019), HellaSwag
(Zellers et al., 2019), OpenBookQA(OBQA) (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2020), SIQA
(Sap et al., 2019), WinoGrande (Sakaguchi et al.,
2021), ARC-Easy, and ARC-Challenge (Boratko
et al., 2018) reporting the average performance
across all eight tasks (0-shot), we also provide the
performance on each task in § C. Additionally,
to assess the model on more complex tasks, we
benchmark its language comprehension and gen-

17409

Table 1: Comparison of different quantization methods across various models. All the results are for 4 bit quantization
for Weight/Activation/KV-cache. Weights are quantized using GPTQ.

Method Llama-2-7b Llama-2-13b Llama-3-8b
Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 5.5 64.1 42.1 4.9 66.5 52.7 6.1 67.2 63.2

GPTQ 9600.0s 38.9 23.8 3120.0 33.8 24.8 166.3 39.8 23.3
QuaRot 6.2 60.6 32.3 5.4 64.7 46.83 8.50 60.1 47.4

SpinQuant 6.0 61.0 34.8 5.2 64.8 47.8 7.4 63.8 56.2
Kurtail 5.9 61.3 32.9 5.2 65.2 49.1 7.2 64.6 57.3

Method Llama-3-70b Llama-3.2-1b Llama-3.2-3b
Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑) Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 2.8 73.1 76.3 9.75 54.9 37.9 7.8 62.7 54.8

GPTQ 452.7 45.5 23.2 108.9 38.0 24.9 178.3 40.3 24.8
QuaRot 6.19 65.1 62.9 17.4 49.0 23.8 10.1 56.1 42.0

SpinQuant 6.2 65.7 59.4 13.6 48.8 25.6 9.2 57.9 44.2
Kurtail 4.2 70.7 73.1 12.9 50.1 27.2 9.0 59.0 47.8

Table 2: Performance comparison of various models with 4 bits W/A/KV-cache quantization in common sense
reasoning tasks. All the weight are quantized using GPTQ.

Model Method ARC-C ARC-E BoolQ HellaSwag OBQA PIQA SIQA WinoGrande AVG

Llama-2-7B

Vanilla 46.2 74.5 77.8 76.0 44.2 79.1 46.1 69.1 64.1
Quarot 41.6 70.6 73.2 72.1 41.2 76.9 44.0 65.2 60.6

SpinQuant 43.6 71.3 73.8 73.2 40.4 76.0 44.1 65.4 61.0
Kurtail 43.1 72.0 72.0 73.2 41.2 76.6 45.6 66.8 61.3

Llama-3-8B

Vanilla 53.4 77.8 81.4 79.2 45.0 80.8 47.2 72.6 67.2
Quarot 42.1 69.0 72.1 71.5 41.2 74.9 44.3 65.5 60.1

SpinQuant 48.0 75.4 75.8 75.4 43.8 77.5 45.0 69.2 63.8
Kurtail 48.2 75.4 79.2 76.4 43.6 78.4 45.8 70.0 64.6

Llama-3-70B

Vanilla 65.0 86.6 85.4 85.0 48.2 84.3 50.5 79.9 73.1
Quarot 53.0 74.8 81.2 77.7 42.0 78.2 45.7 68.4 65.1

SpinQuant 52.0 77.3 81.7 75.6 43.8 78.8 43.4 72.8 65.7
Kurtail 59.2 82.7 83.9 83.3 46.6 83.5 49.7 76.6 70.7

eral understanding using the MMLU benchmark
(Hendrycks et al., 2021) and for mathematical rea-
soning we utilize MathQA (Amini et al., 2019). We
report the average performance in Table 1.

Table 3: Performance on Phi-3-mini-4k-instruct.

Method Wiki(↓) 0-shot(↑) MMLU(↑)

16 bit 6.01 0.69 70.75

Quarot 8.46 0.61 56.01
KurTail 7.13 0.66 63.61

5 Results

To evaluate KurTail we focus on 4-bit quantization
for weights, activations and KV-cache, which is a
challenging bit-width for LLM quantization. Ta-
ble 1 shows a summary where "0-shot" means the
average performance over 8 tasks of common sense

reasoning. For weight quantization we used GPTQ
(Frantar et al., 2022). We also provide each task
performance in Table 2 and and for all model in § C.
We report the detailed performance of each tasks
in § C. To demonstrate that our method outper-
forms previous works independently of the weight
quantization technique, we alos provide results for
round-to-nearest (RTN) in § C. Additionally, to
show that our method is effective on LLM families
beyond the LLaMA family, we present results on
the Phi-3 model in Table 3 and Qwen 2.5 series of
model in Table 5.

For all of the result we have better perplexity
in all of the models compared to previous meth-
ods. At the same time, our method is significantly
better that SpinQuant and QuaRot in downstream
tasks. We also provide results for math reasoning
in Table 7.

Comparison with Related Approaches. In Ta-
ble 1, we compare KurTail with Quarot and Spin-

17410

Table 4: Performance of different quantization methods on LLaMA-2 models across multiple benchmarks. WikiText
reports perplexity (lower is better, ↓). Other benchmarks report accuracy (higher is better, ↑). The Avg. column is
the mean of all accuracies except WikiText.

LLaMA-2 13B Wiki(↓) ARC-C ARC-E BoolQ HellaSwag PIQA WinoGrande Avg. ↑
Vanilla 4.9 49.2 77.5 80.6 79.4 80.5 72.1 73.2

Quarot 5.4 47.3 73.9 77.8 76.6 78.7 69.8 70.7
SpinQuant 5.2 49.0 76.3 78.2 77.1 79.3 69.5 71.6
DuQuant 5.3 42.1 56.2 65.7 73.9 77.2 65.4 63.4
OSTQuant 5.3 47.1 75.2 77.5 76.7 78.7 68.0 70.5
QUIK 6.8 43.7 68.0 71.3 73.3 75.7 64.6 66.1
KurTail 5.2 48.1 75.4 79.7 77.4 79.0 71.2 71.8

Table 5: Performance on Qwen2.5-14B.

Method Wiki(↓) 0-shot(↑) MMLU(↑)

16-bit 5.3 70.6 78.6

RTN 2715.0 37.3 24.9
GPTQ 5100.3 36.9 24.8
SmoothQuant 1375.7 35.1 23.7
QUIK 10.5 57.7 56.6
QuaRot 6.8 67.1 70.9
KurTail 6.6 67.2 71.9

Table 6: Performance comparison of different quantiza-
tion methods for Mixtral-8x7B. All results correspond
to 4-bit quantization for weights, activations, and KV-
cache. RTN is used for weight quantization.

Method Mixtral-8x7B

Wiki (↓) 0-shot (↑) MMLU (↑)

16-bit 3.8 71.2 68.8

RTN 909.0 35.4 23.0
QuaRot 8.7 55.7 36.8
Kurtail 6.5 59.4 44.8

Quant across different LLaMA-series models. We
also include additional results on LLaMA-2 13B in
Table 4 and LLaMA-2 7B in Table 15 to evaluate
our method against further previous approaches. As
shown in Table 4, KurTail consistently outperforms
or matches the performance of other methods.

Experiment on Mixture of Experts. Given the
growing popularity of the Mixture of Experts
(MoE) models, we also explore the idea of applying
rotation within the mixture of experts. For this pur-
pose, we utilize Mixtral (Jiang et al., 2024), which

employs the exact same attention block. However,
for the mixture of experts component, we apply
rotation across all the experts. Table 6 presents
the results for 4-bit quantization, where we used
rounding to the nearest value. In principle, other
quantization methods, such as GPTQ, HQQ (Badri
and Shaji, 2023), and similar approaches, can also
be employed to further enhance performance.

Table 7: Comparison of different quantization meth-
ods across various models on MathQA. All results are
reported for 4-bit quantization of W/A/KV-cache. For
weight quantization, we use GPTQ.

Model MathQA Acc (%)

16-bit QuaRot KurTail

LLaMA-2-7B 28.24 26.70 26.77
LLaMA-2-13B 31.76 28.81 30.35
LLaMA-2-70B 38.39 33.97 35.68

LLaMA-3-8B 40.30 31.36 34.71
LLaMA-3-70B 51.79 35.54 45.76

LLaMA-3.2-1B 28.94 25.29 26.00
LLaMA-3.2-3B 34.67 30.75 30.52

Phi-3-mini 39.93 31.89 34.81

Evaluating Mathematical Reasoning. To ex-
plore more complex reasoning tasks, we further
evaluate the performance of the quantized model
on tasks involving mathematical reasoning in Ta-
ble 7 by reporting results on the MathQA (Amini
et al., 2019) dataset. MathQA is a benchmark de-
signed to test problem-solving and quantitative
reasoning abilities. The dataset consists of real-
world mathematical problems covering topics such
as arithmetic, algebra, probability, and geometry.

17411

Each problem is accompanied by a natural lan-
guage description, multiple-choice answers, and an
annotated solution program that outlines the rea-
soning steps required to reach the correct answer.
In Table 7, we compare KurTail with QuaRot, and
the results show that KurTail outperforms QuaRot.
This additional observation suggests that optimiz-
ing the rotations can also enhance performance on
math reasoning tasks.

Ablation Study on the Calibration Dataset. We
also investigate the impact of the calibration dataset
on performance. To this end, we modify the cali-
bration data to optimize the rotation using different
datasets. Specifically, we conduct experiments us-
ing PTB (Marcus et al., 1993), C4 (Raffel et al.,
2020), WikiText (Merity et al., 2016b), and Al-
paca (Taori et al., 2023). Additionally, we create
a combined dataset by sampling equally from all
four sources. For each experiment, we sample 512
instances and report the results for Llama-3.2 3B.

Table 8: Performance on different calibration datasets.

Cal Dataset Wiki(↓) 0-shot(↑) MMLU(↑)

Quarot 10.1 56.1 42.0

Wikitext-2 9.0 59.05 47.76
C4 9.1 59.24 47.75
Alpaca 9.3 59.68 47.34
PTB 9.2 58.60 48.33
Combined 9.0 59.79 48.75

Table 9: Effect of different calibration size.

Cal Size Wiki(↓) 0-shot(↑) MMLU(↑)

128 9.11 59.24 47.85
256 9.12 58.85 47.47
512 9.09 59.79 48.75

1024 9.08 59.43 49.02

Table 8 presents the findings. Interestingly, all
dataset variations outperform the non-training
method Quarot. Moreover, we observe lower per-
plexity on WikiText when using other datasets for
calibration. The best performance on the MMLU
task is achieved with the PTB dataset, while the
best results for common sense reasoning tasks are
obtained using the Alpaca dataset. The combined
dataset yields the best overall performance across
all tasks while it uses the exact same number of

samples (512 sentences). In Table 9, we explore
different calibration sample sizes for learning the
rotations and their impact on the model’s perfor-
mance in downstream tasks. In this study, we used
our combined dataset and the Llama 3.2 3B model.
As shown in Table 8, we observe a trend toward im-
provement as the sample size increases, although
performance tends to saturate around a sample size
of 512.

6 Conclusion

We introduced KurTail a novel technique for learn-
ing orthogonal transformations that rotate the ac-
tivation distribution to address the outlier prob-
lem and overcomes the limitations of previous ap-
proaches. Compared to QuaRot, which uses non-
learnable rotation, and SpinQuant, which requires
substantial computational resources for learning
rotations, KurTail offers a more efficient and robust
solution by learning a rotation that minimizes the
kurtosis of the representations. We further provide
theoretical insights into why layer-wise optimiza-
tion yields the same results as end-to-end training,
and why orthogonal transformations are a suitable
choice of matrix space for learning the transfor-
mation. Finally, these results highlight KurTail ’s
ability to deliver efficiency and high performance
across large-scale language models.

Limitations. In this work, we only focuses on dy-
namic per-token quantization for activations, which
offers flexibility but does not fully exploit the poten-
tial of static tensor-wise quantization. Static quanti-
zation, which precomputes scaling factors for im-
proved efficiency, could further optimize inference
speed and memory usage. However, it requires care-
ful calibration, which we leave for future work.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone, 2024.
URL https://arxiv. org/abs/2404.14219.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James Hens-

17412

man. 2024a. Slicegpt: Compress large language mod-
els by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan
Zhong, Xincheng Wang, Jie Ren, Torsten Hoefler,
and Dan Alistarh. 2023. Towards end-to-end 4-bit
inference on generative large language models. arXiv
preprint arXiv:2310.09259.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-
ian L Croci, Bo Li, Pashmina Cameron, Martin Jaggi,
Dan Alistarh, Torsten Hoefler, and James Hensman.
2024b. Quarot: Outlier-free 4-bit inference in rotated
llms. arXiv preprint arXiv:2404.00456.

Hicham Badri and Appu Shaji. 2023. Half-quadratic
quantization of large machine learning models.

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel
Soudry. 2019. Post-training 4-bit quantization of con-
volution networks for rapid-deployment. Preprint,
arXiv:1810.05723.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 7432–7439.

Michael Boratko, Harsh Padigela, Deepak Mikkilineni,
Pavan Yuvraj, Rajarshi Das, Andrew McCallum,
Mihai Chang, Achille Fokoue, Pavan Kapanipathi,
Nicholas Mattei, et al. 2018. Arc: A machine reading
comprehension dataset for reasoning over science
text. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1414–1423.

Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan,
Alex Bronstein, Uri Weiser, et al. 2020. Robust quan-
tization: One model to rule them all. Advances in neu-
ral information processing systems, 33:5308–5317.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318–
30332.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev,
Elias Frantar, Artem Babenko, and Dan Alistarh.
2024. Extreme compression of large language
models via additive quantization. arXiv preprint
arXiv:2401.06118.

Nelson Elhage, Robert Lasenby, and Christopher Olah.
2023. Privileged bases in the transformer residual
stream. Transformer Circuits Thread.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Stella Biderman, Hailey Schoelkopf, Lintang
Sutawika, et al. 2024a. Lessons from the trenches on
reproducible evaluation of language models. arXiv
preprint arXiv:2405.14782.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024b. A framework for few-shot language model
evaluation.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhi-
hang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang,
and Sifan Zhou. 2025. Ostquant: Refining large
language model quantization with orthogonal and
scaling transformations for better distribution fitting.
arXiv preprint arXiv:2501.13987.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Jun Li, Li Fuxin, and Sinisa Todorovic. 2020. Effi-
cient riemannian optimization on the stiefel man-
ifold via the cayley transform. arXiv preprint
arXiv:2002.01113.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Ying-
tao Zhang, Linzhan Mou, Linqi Song, Zhenan Sun,
and Ying Wei. 2024a. Duquant: Distributing outliers
via dual transformation makes stronger quantized
llms. Advances in Neural Information Processing
Systems, 37:87766–87800.

17413

https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://arxiv.org/abs/1810.05723
https://arxiv.org/abs/1810.05723
https://transformer-circuits.pub/2023/privileged-bases
https://transformer-circuits.pub/2023/privileged-bases
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024b.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87–100.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yuandong Tian, and Tijmen
Blankevoort. 2024. Spinquant–llm quantization with
learned rotations. arXiv preprint arXiv:2405.16406.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computational
Linguistics, 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016a. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016b. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Openbookqa: Fact-based open
book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 268–277.

OpenAI. 2024. Learning to reason with
llms. https://openai.com/index/
learning-to-reason-with-llms. Accessed:
2025-01-30.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2021. Winogrande: An ad-
versarial winograd schema challenge at scale. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8732–8740.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social iqa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4463–4473.

Utkarsh Saxena, Sayeh Sharify, Kaushik Roy, and Xin
Wang. 2024. Resq: Mixed-precision quantization
of large language models with low-rank residuals.
arXiv preprint arXiv:2412.14363.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr
Kuleshov, and Christopher De Sa. 2024. Quip#:
Even better llm quantization with hadamard in-
coherence and lattice codebooks. arXiv preprint
arXiv:2402.04396.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

17414

https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

A Proofs

Lemma A.1. The quantization error after trans-
formation is bounded with

∥∥X −Q(xT)T−1
∥∥
F
≤

c
2

√
NM

∥∥T 1
∥∥
2

∥∥T−1
∥∥
2
= c

2

√
NMκ(T), where

T is the transformation and c is a constant depends
on X and κ(T) is the condition number of matrix
T .

Proof of Lemma 2.3
We aim to bound the quantization error defined

as
∥∥X −Q(XT)T−1

∥∥
F

. To do so, we use the
fact that X = XTT−1:

E =
∥∥X −Q(XT)T−1

∥∥
F

=
∥∥XTT−1 −Q(XT)T−1

∥∥
F
.

(5)

Applying the sub-multiplicative property of the
Frobenius norm (i.e., ∥AB∥F ≤ ∥A∥2 ∥B∥F), we
obtain:

∥∥XTT−1 −Q(XT)T−1
∥∥
F
≤

∥XT −Q(XT)∥F ·
∥∥T−1

∥∥
2
.

(6)

We now focus on bounding the quantization er-
ror term ∥XT −Q(XT)∥F . Under uniform quan-
tization, each entry of the quantization error is
bounded by ∆

2 , where ∆ =
maxij |(XT)ij |

2k−1−1
is the

quantization step size. Therefore, the Frobenius
norm can be bounded by:

∥XT −Q(XT)∥F ≤
√
NM · ∆

2
, (7)

where N and M are the number of rows and
columns of XT , respectively.

Combining Eq. 6 and Eq. 7, we get:

∥∥X −Q(XT)T−1
∥∥
F
≤

√
NM · ∆

2
·
∥∥T−1

∥∥
2
.

(8)

To bound ∆, we use the fact that the maximum
absolute value of elements in XT satisfies:

max
ij

|(XT)ij | ≤ ∥XT ∥2 ≤ ∥X∥2 · ∥T ∥2 . (9)

Substituting this into the expression for ∆, we
obtain:

∆ ≤ ∥X∥2 · ∥T ∥2
2k−1 − 1

.

Finally, substituting this into Eq. 8, we conclude:

∥∥X −Q(XT)T−1
∥∥
F
≤

∥X∥2
2k−1 − 1

·
√
NM · ∥T ∥2 ·

∥∥T−1
∥∥
2
=

∥X∥2
2k−1 − 1

·
√
NM · cn(T),

(10)

where cn(T) = ∥T ∥2 ·
∥∥T−1

∥∥
2

denotes the
condition number of T .

Proposition A.2. Let H1,O1 = f(X,W1,R1),
and H2,O2 = g(O1;W2;R2) where f, g are pa-
rameterized by W1,R1 and W2,R2.

Given functional invariance of f and g, i.e.
O1 = O′

1 for any O′
1,H

′
1 = f(X,W1,R

′
1) and

any orthogonal R′
1 (and similarly for g), and given

that the total loss is L(R1,R2) = L1(H1) +
L2(H2),

the independent minimization of each
loss results in the same optimum as
end-to-end: argminR1,R2 L(R1,R2) =
(argminR1 L1(R1), argminR2 L2(f ;R2)),
even though H2 implicitly depends on O1.

Proof. We need to first prove that L2 is indepen-
dent of R1 and the same for L1 from R2

L2 is independent from R1 since f is invariant
to orthogonal transformations, O1 is constant with
respect to R1. Since H2 = g(O1,W2,R2) de-
pends on O1 but not directly on R1, any change in
R1 leaves H2 (and therefore L2) unchanged:

∂L2

∂R1
= 0 =⇒ L2(H2) is independent of R1.

Similarly L1 is independt of R2 by using the
invariance of g shows that H1—and hence L1—is
independent of R2:

∂L1

∂R2
= 0 =⇒ L1(H1) is independent of R2.

Now by considering that they have separable ob-
jective which means combining the independence
result in

L(R1,R2) = L1(H1)︸ ︷︷ ︸
depends only on R1

+ L2(H2)︸ ︷︷ ︸
depends only on R2

,

so L is a sum of two functions, each depending on
disjoint variables.

Finally for any function of the form F (x, y) =
F1(x)+F2(y) with independent feasible sets, every

17415

global minimiser is obtained by minimising each
term separately:

(x⋆, y⋆) ∈ argmin
x,y

F (x, y)

⇐⇒ x⋆ ∈ argmin
x

F1(x),

y⋆ ∈ argmin
y

F2(y).

(11)

Applying this to L(R1,R2) yields the claim.

B Evaluation of Rotation based method
on outliers

In dynamic per-token quantization, the maximum
value of a token’s vector plays a critical role in
determining the quantization step size and range.
Larger maximum values increase the quantization
range, which results in larger quantization steps
and greater precision loss. Alternatively, reducing
the maximum value allows for smaller quantization
steps, which result in more efficient representation
of token values with minimal degradation of infor-
mation. Therefore, lowering the maximum values
across tokens is directly connected to overall quan-
tization error and model performance. To evaluate
how well different methods achieve this goal, we
measure the success rate of our proposed method,
KurTail , compared to its un-rotated counterpart
(baseline vector) and an alternative rotation method,
QuaRot. A “success” is defined as a case where the
maximum value of a token’s vector after applying a
benchmark rotation method (KurTail or QuaRot) is
smaller than that of the baseline vector. The success
rate is defined as the percentage of tokens where the
benchmarked rotated version achieves this reduc-
tion. In Table 10, we present the average success
rates for LLAMA3-8B. KurTail consistently pro-
duces smaller maximum values across all layers,
samples, and tokens, achieving a higher success
rate compared to the baseline vector in nearly all
cases. Additionally, it outperforms QuaRot in ap-
proximately 63.29% in MSHA, 62.99% in FFN on
average.

C Further Evaluation

In this section, we provide a more detailed eval-
uation of all tasks and more models. We present
results for 4-bit quantization of weights, activa-
tions, and the KV-cache. Table 12 reports the per-
formance of each MMLU task under 4-bit quantiza-
tion for weights, activations, and the KV-cache. We
use the GPTQ quantization algorithm for weight

Table 10: The success rate of benchmark over baseline.

Baseline Benchmark Success Rate (%)

M
H

SA

Vanilla KurTail 99.74%
Vanilla QuaRot 99.43%
QuaRot KurTail 63.29%

FF
N

Vanilla KurTail 99.96%
Vanilla QuaRot 99.96%
QuaRot KurTail 62.99%

quantization in this experiment. Similarly, using
the same setup, we evaluate common-sense rea-
soning tasks, as shown in Table 13. We report
the performance of common-sense reasoning tasks
using RTN quantization for weights in Table 14.
Finally we also provide the further evaluation
LLaMA-2 7B and Qwen 2.5 14B in Table 15, Ta-
ble 17,Table 16 respectively.

D Comparison with ResQ

We also compare our results with ResQ (Saxena
et al., 2024), a concurrent work that uses a com-
bination of mixed precision and Hadamard rota-
tion (similar to Quarot) using Qwen 2.5 14B in
Table 11. Although in this setting we cannot out-
perform ResQ, a fairer comparison is when mixed
percision is combined with KurTail rotation, which
is out of the context of our study. Furthermore, our
method remains Pareto-optimal under 4-bit quanti-
zation.

Table 11: Qwen2.5-14B: Perplexity, Reasoning Avg,
and MMLU Avg for KurTail and ResQ.

Method Qwen2.5-14B

Wiki (↓) 0-shot (↑) MMLU (↑)

KurTail 6.6 67.2 71.9
ResQ 6.2 69.2 74.6

17416

Table 12: Performance comparison of different models using various methods across different domains.

Model Method Human Other STEM S-Sci AVG

Llama-2-7B

Vanilla 39.8 47.3 34.2 47.3 42.1
Quarot 31.1 35.7 29.9 34.1 32.7

SpinQuant 33.9 38.5 29.5 37.5 34.8
Kurtail 32.3 35.0 29.8 34.4 32.9

Llama-2-13B

Vanilla 47.9 59.4 42.3 61.2 52.7
Quarot 42.7 52.3 38.2 54.1 46.8

SpinQuant 43.5 53.1 39.1 55.4 47.8
Kurtail 45.3 54.0 40.4 56.6 49.1

Llama-3-8B

Vanilla 55.0 70.8 53.7 73.2 63.2
Quarot 42.1 52.9 39.8 54.9 47.4

SpinQuant 49.8 63.3 46.8 65.0 56.2
Kurtail 50.2 64.5 49.1 65.6 57.3

Llama-3-70B

Vanilla 67.7 81.5 69.2 86.7 76.3
Quarot 55.3 68.5 53.7 74.1 62.9

SpinQuant 50.7 67.0 51.9 68.1 59.4
Kurtail 65.2 79.1 63.9 84.2 73.1

Llama-3.2-1B

Vanilla 35.3 41.3 33.9 41.3 38.0
Quarot 25.4 26.9 24.4 25.4 25.5

SpinQuant 25.4 27.6 24.2 25.3 25.6
Kurtail 26.5 28.8 26.0 27.3 27.2

Llama-3.2-3B

Vanilla 49.0 63.1 45.5 62.9 55.1
Quarot 38.5 47.3 35.3 46.7 42.0

SpinQuant 37.0 49.4 39.9 50.5 44.2
Kurtail 44.8 53.4 39.5 53.4 47.8

17417

Table 13: Performance comparison of various models with 4 bits W/A/KV-cache quantization in common sense
reasoning tasks. All the weight are quantized using GPTQ.

Model Method ARC-C ARC-E BoolQ HellaSwag OBQA PIQA SIQA WinoGrande AVG

Llama-2-7B

Vanilla 46.2 74.5 77.8 76.0 44.2 79.1 46.1 69.1 64.1
Quarot 41.6 70.6 73.2 72.1 41.2 76.9 44.0 65.2 60.6

SpinQuant 43.6 71.3 73.8 73.2 40.4 76.0 44.1 65.4 61.0
Kurtail 43.1 72.0 72.0 73.2 41.2 76.6 45.6 66.8 61.3

Llama-2-13B

Vanilla 49.2 77.5 80.6 79.4 45.2 80.5 47.4 72.1 66.5
Quarot 47.3 73.9 77.8 76.6 44.4 78.7 44.1 69.8 64.1

SpinQuant 49.0 76.3 78.2 77.1 42.8 79.3 46.3 69.5 64.8
Kurtail 48.1 75.4 79.7 77.4 45.0 79.0 45.6 71.2 65.2

Llama-3-8B

Vanilla 53.4 77.8 81.4 79.2 45.0 80.8 47.2 72.6 67.2
Quarot 42.1 69.0 72.1 71.5 41.2 74.9 44.3 65.5 60.1

SpinQuant 48.0 75.4 75.8 75.4 43.8 77.5 45.0 69.2 63.8
Kurtail 48.2 75.4 79.2 76.4 43.6 78.4 45.8 70.0 64.6

Llama-3-70B

Vanilla 65.0 86.6 85.4 85.0 48.2 84.3 50.5 79.9 73.1
Quarot 53.0 74.8 81.2 77.7 42.0 78.2 45.7 68.4 65.1

SpinQuant 52.0 77.3 81.7 75.6 43.8 78.8 43.4 72.8 65.7
Kurtail 59.2 82.7 83.9 83.3 46.6 83.5 49.7 76.6 70.7

Llama-3.2-1B

Vanilla 36.2 60.4 63.9 63.6 37.2 74.6 43.0 60.5 54.9
Quarot 30.0 51.4 59.1 54.0 34.2 66.7 39.6 57.1 49.0

SpinQuant 32.3 51.8 59.3 55.4 30.4 67.7 38.6 54.7 48.8
Kurtail 31.1 52.9 60.7 56.4 36.4 68.6 40.5 54.3 50.1

Llama-3.2-3B

Vanilla 46.0 71.7 73.2 73.6 43.0 77.5 47.0 69.7 62.7
Quarot 38.6 59.0 65.9 66.5 35.8 74.4 43.1 65.2 56.1

SpinQuant 38.9 64.8 68.0 69.1 39.4 74.9 45.1 62.9 57.9
Kurtail 42.2 66.7 69.8 68.8 39.8 75.6 44.8 64.6 59.0

Table 14: Performance comparison of various models with 4 bits W/A/KV-cache quantization in common sense
reasoning tasks. All the weights are quantized using RTN.

Model Method ARC-C ARC-E BoolQ HellaSwag OBQA PIQA SIQA Winogrande AVG

Llama-2-7B
Vanilla 46.2 74.5 77.8 76.0 44.2 79.1 46.1 69.1 64.1
Quarot 35.2 62.4 69.0 62.6 33.4 71.7 40.9 60.2 54.4
Kurtail 39.0 64.9 69.8 64.7 39.2 74.1 42.1 62.2 57.0

Llama-2-13B
Vanilla 49.2 77.5 80.6 79.4 45.2 80.5 47.4 72.1 66.5
Quarot 41.4 68.2 73.2 71.2 41.6 76.3 41.1 66.1 59.9
Kurtail 44.2 70.3 74.7 72.5 40.4 77.5 45.9 70.2 62.0

Llama-2-70B
Vanilla 57.4 81.1 83.8 83.8 48.8 82.8 49.2 78.0 70.6
Quarot 50.5 76.8 80.0 78.4 44.0 79.9 46.0 72.9 66.1
Kurtail 51.3 76.6 80.9 81.0 46.4 81.7 46.8 76.2 67.6

Llama-3-8B
Vanilla 53.4 77.8 81.4 79.2 45.0 80.8 47.2 72.6 67.2
Quarot 31.1 51.6 55.7 62.0 31.6 66.3 40.1 59.0 49.7
Kurtail 38.1 61.1 72.5 69.3 36.8 72.9 41.9 66.1 57.3

Llama-3-70B
Vanilla 65.0 86.6 85.4 85.0 48.2 84.3 50.5 80.0 73.1
Quarot 20.6 31.3 58.5 28.4 25.4 55.0 33.2 50.7 37.9
Kurtail 23.0 37.8 48.5 33.9 29.8 61.8 36.6 51.6 40.4

Llama-3.2-1B
Vanilla 36.2 60.4 63.9 63.6 37.2 74.6 43.0 60.5 54.9
Quarot 27.4 33.9 39.1 36.2 30.0 56.9 34.7 53.0 38.9
Kurtail 28.7 37.2 38.8 42.9 31.6 60.0 35.7 57.5 41.5

Llama-3.2-3B
Vanilla 46.0 71.7 73.2 73.6 43.0 77.5 47.0 69.7 62.7
Quarot 33.1 50.3 41.8 56.3 31.8 67.8 39.8 56.8 47.2
Kurtail 37.4 56.6 48.0 62.1 36.6 71.3 40.5 60.4 51.6

17418

Table 15: Performance of different quantization methods on LLaMA-2 models across multiple benchmarks. WikiText
reports perplexity (lower is better, ↓). Other benchmarks report accuracy (higher is better, ↑). The Avg. column is
the mean of all accuracies except WikiText.

LLaMA-2 7B Wiki(↓) ARC-C ARC-E BoolQ HellaSwag PIQA WinoGrande Avg. ↑
Vanilla 5.5 46.2 74.5 77.8 76.0 79.1 69.1 70.5

Quarot 6.2 41.6 70.6 73.2 72.1 76.9 65.2 66.6
SpinQuant 6.0 43.6 71.3 73.8 73.2 76.0 65.4 67.2
DuQuant 6.1 37.5 50.0 69.2 69.7 75.7 63.9 61.0
OSTQuant 5.9 42.9 72.5 74.7 73.1 77.4 66.8 67.9
QUIK 7.5 43.7 68.0 71.3 73.3 75.7 64.6 66.1
KurTail 5.9 43.1 72.0 72.0 73.2 76.6 66.8 67.3

Table 16: Evaluation on Perplexity and Reasoning Benchmarks. Lower is better for Perplexity, higher is better for
all other metrics.

Method Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg

16-bit 5.3 58.8 79.4 85.4 82.9 45.4 81.9 55.3 75.8 70.6

RTN 2715.0 21.6 32.7 51.5 29.6 25.8 52.6 33.2 51.7 37.3
GPTQ 5100.3 23.8 29.1 47.7 30.1 27.6 51.3 34.6 51.2 36.9
SmoothQuant+ 1375.7 27.0 26.3 38.0 26.8 29.2 51.6 32.4 49.3 35.1
QUIK 10.5 45.0 67.1 64.7 68.9 37.6 74.8 43.9 59.3 57.7
QuaRot 6.8 54.8 79.6 79.9 78.7 44.0 79.5 49.9 70.7 67.1
KurTail 6.6 55.3 80.8 81.3 79.3 42.4 79.4 50.4 69.1 67.2

Table 17: MMLU Performance Across Categories. Higher is better.

Method Humanities Other SocialS STEM Avg.

16-bit 69.9 81.9 86.2 76.5 78.6

RTN 25.3 23.2 26.0 25.3 24.9
GPTQ 25.1 24.7 25.1 24.3 24.8
SmoothQuant+ 25.9 24.5 22.2 22.2 23.7
QUIK 48.9 61.1 64.7 51.5 56.6
QuaRot 60.9 75.1 80.2 67.3 70.9
KurTail 61.9 76.5 81.0 68.0 71.9

17419

