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Abstract
Reinforcement learning with evaluation metrics
as rewards is widely used to enhance specific
capabilities of language models. However, for
tasks such as factually consistent summarisa-
tion, existing metrics remain underdeveloped,
limiting their effectiveness as signals for shap-
ing model behaviour. While individual factual-
ity metrics are unreliable, their combination
can more effectively capture diverse factual
errors. We leverage this insight to introduce
an automated training pipeline that improves
factual consistency in summaries by aggregat-
ing scores from different weak metrics. Our
approach avoids the need for complex reward
shaping by mapping scores to preferences and
filtering out cases with high disagreement be-
tween metrics. For each source document, we
generate lexically similar summary pairs by
varying decoding strategies, enabling the model
to learn from factual differences caused by
subtle lexical differences. This approach con-
structs a high-quality preference dataset using
only source documents. Experiments demon-
strate consistent factuality gains across models,
ranging from early encoder-decoder architec-
tures to modern large language models, with
smaller models reaching comparable factuality
to larger ones1.

1 Introduction

Cutting-edge language models have demonstrated
impressive capabilities in generating fluent and co-
herent responses to a wide range of prompts. How-
ever, maintaining faithfulness and factual consis-
tency remains a persistent challenge, particularly
in tasks like summarisation. Despite their surface
plausibility, model-generated summaries often con-
tain factual inconsistencies or hallucinated details
(Huang et al., 2025).

Recent research has tried to mitigate this issue by
incorporating reinforcement learning (RL) to guide

1Code is available at https://github.com/Haruhi07/
MultiMetric

models towards more factually consistent outputs.
A critical obstacle lies in designing effective re-
ward signals that can reliably capture and quan-
tify factuality. Many existing automatic evaluation
metrics (Lin, 2004; Kryściński et al., 2019; Zhang
et al., 2020; Laban et al., 2022) have been adopted
as reward signals for RL. However, even state-of-
the-art metrics struggle with subtle inconsistencies
and may penalise factually accurate outputs (Tang
et al., 2023). Furthermore, using a single metric
directly as a scalar reward for RL can lead to un-
stable training, as explored by Roit et al. (2023).
The training process is influenced by the metric’s
reliability and the distribution of reward scores, but
the distributions of existing evaluation metrics are
not well-studied. Although combining metrics can
broaden error detection coverage (Ye et al., 2024),
applying metric combination in RL often requires
manual weighting of sub-rewards (Gao et al., 2018;
Pasunuru and Bansal, 2018; Wan and Bansal, 2022;
Ye and Simpson, 2023), thus the use of RL is im-
peded by the complexity of reward shaping.

An alternative is Reinforcement Learning from
Human Feedback (Ouyang et al., 2022, RLHF),
which uses human-annotated preferences and has
proven effective at aligning large language models
(LLMs) with broad human values. However, recent
work (Hosking et al., 2024; Xue et al., 2024) shows
that existing RLHF datasets often overlook factu-
ality, despite instructions to annotators to account
for it. Annotator judgments integrate various con-
siderations, such as trade-offs among properties,
individual biases, and occasional misunderstand-
ings, so the resulting overall preferences can fail
to reliably capture factuality. Therefore, while con-
structing a factuality-focused preference dataset is
crucial, doing so requires substantial resources and
expertise, making scalability a major concern.

To overcome these barriers, this paper proposes
a fully automated training pipeline that improves
factual consistency in summarisation without rely-
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Summary1: Four individuals, including three 18 -year-olds and a 24-year-old, have been 
charged with hate crimes and aggravated kidnapping and battery in connection with the brutal 
beating of an 18-year-old white victim with schizophrenia and attention deficit disorder.

Summary2: Four Chicago suspects, including an 18 -year-old schizophrenia sufferer, have 
denying bail after their charges with multiple hate crimes and aggravated kidnapping in a 
horrific beating from which has raised an alarming and devastating $51,000 in aid through an 
open online

Candidate SummariesSource Model

Beam Search

Greedy Decoding

Summary1  ≻Summary2

Final Preference LabelFactuality Metrics + Conflict Filter

Figure 1: Our method only requires source documents to build a preference dataset.

ing on human annotations or reference summaries.
We adopt the sampling method from Choi et al.
(2024), using the language model itself to generate
two summaries by either selecting alternative can-
didate outputs from the same decoding strategy or
using different decoding strategies, as illustrated in
Figure 1. In contrast to their work, which paired
diverse samples together, our approach ensures that
summaries in a pair are lexically similar. This lex-
ical similarity minimises confounding stylistic or
structural differences, allowing the model to focus
specifically on factual distinctions, which facili-
tates the factuality improvement during training.

With the generated summary pairs, we use an
ensemble of factuality metrics to score them and de-
rive preference labels from the scores. To mitigate
the unreliability of any single metric, we include
only those summary pairs for which all selected
metrics agree along with preference learning. This
agreement-based filter removes noisy and contra-
dictory annotations, enhancing the robustness of
the preference signal and making the training pro-
cess more reliable and scalable.

By leveraging lexically similar summary pairs
and agreement-based preference labels derived
from multiple factuality metrics, our method en-
ables more targeted factuality training than previ-
ous RLHF or model-based approaches (Stiennon
et al., 2020; Choi et al., 2024). Importantly, in con-
trast with previous work (Roit et al., 2023) that re-
quires an LLM-sized reward model to stabilise the
training, we never encounter catastrophic forgetting
in our experiments, demonstrating the stability and
effectiveness of our proposed method on various
language models. Our method consistently demon-
strates factuality improvements on different model
architectures, including BART (Lewis et al., 2020),
GPT-J (Wang and Komatsuzaki, 2021), LLaMA-3
(AI@Meta, 2024), and DeepSeek-R1 (DeepSeek-
AI, 2025), showing strong generalisation beyond
a single model family or scale. Remarkably, our
method empowers older and smaller models, such
as BART, to achieve factuality performance com-

parable to that of significantly larger and more re-
cent models, effectively revitalising their potential
to produce accurate summaries at lower computa-
tional cost.

Our contributions are threefold:

• We present a novel, fully automated prefer-
ence learning pipeline for optimising sum-
marisation factuality, which not only improves
LLMs’ factuality scores but also elevates the
factuality performance of smaller models to
the same level.

• We show a promising way to adapt multiple
existing factuality metrics into training targets.
By leveraging preference learning and filter-
ing cases with high disagreement, we improve
the reliability of the training data, leading to
more robust training in practice.

• We analyse the contribution of lexical simi-
larity between summary pairs and conclude
that, with sufficiently accurate preference an-
notations, similar pairs are more effective for
enhancing factuality for summarisers.

2 Related Work

2.1 Factuality Evaluation in Summarisation

Factuality has become one of the most critical prop-
erties to evaluate in recent language models. De-
pending on the methodologies applied, existing
factuality evaluation metrics can be broadly cate-
gorised into 3 types.

Similarity-based metrics Classical similarity-
based metrics such as ROUGE (Lin, 2004) and
BLEU (Papineni et al., 2002) reported the n-gram
overlapping ratio between the system and the ref-
erence summaries. Subsequently, BERTScore
(Zhang et al., 2020) replaced the exact word match-
ing with embedding-based cosine similarity to en-
hance robustness to lexical and syntactic variation.
This idea was then extended to sentence embedding
similarity by Ye et al. (2024), who found that using
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the source document as reference could shrink the
performance gap between similarity-based metrics
and other methodologies.

Question Answering-based metrics This line of
work frames factuality evaluation as a reading com-
prehension task. Key phrases are extracted from
the summary, and questions are generated based on
their context. A question-answering model answers
these questions using the source document, then
checks whether the answers are consistent with
the summary (Durmus et al., 2020; Scialom et al.,
2021; Fabbri et al., 2022). While this approach has
shown empirical effectiveness, it usually involves
multiple processing stages and models, making it
computationally expensive.

Entailment-based metrics These methods as-
sess whether the source document entails the sum-
mary using natural language inference (NLI) mod-
els. Early approaches that simply concatenated the
entire document and the summary as input to an
NLI model often underperformed. Recent methods
improved performance by segmenting the source
document (Laban et al., 2022; Zha et al., 2023) or
extracting relational structures for inference (Goyal
and Durrett, 2020; Qiu et al., 2024). The final fac-
tuality score is computed by aggregating the in-
ference results across text segments or extracted
relation pairs.

2.2 RL for Fine-tuning Language Models
Reinforcement learning is often applied to fine-tune
pre-trained language models, especially for capabil-
ities that are difficult to formalise mathematically.
Early research introduced interactive or preference
learning to define reward functions in RL (Gao
et al., 2018; Shapira et al., 2022). Other previous
studies used evaluation metrics as direct reward
signals for training (Pasunuru and Bansal, 2018;
Ye and Simpson, 2023), but these approaches often
suffered from distribution shift and required care-
ful reward design to prevent catastrophic forgetting
and to combine multiple, sometimes contradictory,
reward components.

With the advent of LLMs, RL has been widely
used with human feedback to enforce desirable
properties such as safety, which are difficult to
guarantee through supervised fine-tuning alone
(AI@Meta, 2024). More recently, DeepSeek-R1
have demonstrated that RL can also facilitate emer-
gent capabilities, such as reasoning (DeepSeek-AI,
2025). However, this depends on sparse rule-based

rewards that may be difficult to learn from. While
RLHF (Ouyang et al., 2022) can tune the model
for properties that are hard to define, the annota-
tors make an overall judgment that might ignore
factual errors (Hosking et al., 2024), leading to un-
derperformance on factuality (Wang et al., 2024;
Augenstein et al., 2023).

To avoid the limitations and costs of human an-
notation, Choi et al. (2024) proposed to label sum-
mary pairs using simple rules. It over-simplifies
the problem and can introduce noise into the la-
bels. Therefore, we propose instead to use a com-
bination of existing evaluation metrics that directly
target factual consistency. Our experiments sug-
gested solid gains in factuality compared to their
approach.

3 Methods

3.1 Summary Generation

Given a source document x, different decoding
strategies can lead to various outputs y.

Beam Search selects the top-k most likely par-
tial sequences at each timestep t, by extending
each of the k token sequences from the previous
timestep, y<t, with all possible tokens. Each se-
quence is scored by its log probability conditioned
on the source document x. The hyperparameter k
is known as the beam size. The output ybeam with
length L can be expressed as:

ybeam = argmax
y∈B

L∑

t=1

logP (yt|y<t,x) (1)

where B is the set of top-k candidate sequences
identified during decoding.

Greedy Decoding chooses the most likely token
at each timestep:

yt = argmax
yt

logP (yt|y<t,x) (2)

Random Sampling samples each token from
the vocabulary’s probability distribution at each
timestep. The distributions are derived from logits
using the softmax function:

yt ∼ softmax

(
LM(yt|y<t, x)

τ

)
(3)

where LM(·) denotes the logit output of each
timestep, and temperature τ controls the sampling
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distribution. A higher τ increases diversity by
adding more variance to the outputs.

Recent LLMs often employ the sampling-based
decoding strategies to enhance output diversity
(AI@Meta, 2024; DeepSeek-AI, 2025). Prior re-
search has shown that beam search tends to yield
higher factuality scores compared to other decod-
ing strategies, especially random sampling (Wan
et al., 2023; Choi et al., 2024). In contrast, greedy
decoding generally produces outputs that are lexi-
cally similar but less factually consistent than beam
search outputs, as it is biased towards locally opti-
mal token choices.

In this paper, we aim to train a model to avoid
generating highly probable but factually inconsis-
tent summaries. To do this, we can generate pairs
of summaries with minimal differences from the
same decoding strategy. For example, we can take
the second most probable sequence produced by
beam search as follows, where ybeam is the stan-
dard beam search output from Equation 1.

ybeam′ = argmax
y ̸=ybeam,y∈B

L∑

t=1

logP (yt|y<t, x) (4)

This ensures that ybeam and ybeam′ differ only
slightly, enabling the evaluation metrics to focus
on factuality differences, rather than stylistic or
structural variations that could bias the evaluation.

3.2 Data Annotation

In this subsection, we leverage multiple factuality
metrics to score summaries generated in the previ-
ous step. Prior research (Choi et al., 2024) used a
heuristic to identify target summaries, rather than
scoring each one, where beam search-generated
summaries were always selected as the winning
completions in preference learning. This intro-
duces noise into the training data: it assumes that
the higher average factuality score of beam search
necessarily corresponds to more factual summaries
individually, but it struggles when beam search and
greedy decoding produce similar outputs, in which
cases the greedy decoding could be more accurate.

To address this issue, instead of over-trusting
beam search-generated summaries, we use multiple
weak factuality metrics to score the summaries and
derive preference labels from them. Since scores
from different metrics are not directly comparable,
we convert these heterogeneous scores to binary
preference labels so that they can be aggregated.

Then we employ a conflict resolution strategy to
filter out inconsistent preference labels. The anno-
tation process works as follows:

1. For each metric mi, we obtain score
Smi(y,x) for summary y given source x.

2. For each pair of summaries (y1,y2) related
to the same source document x, we obtain
its binary preference label under the metric
m, which can be written as Pmi(y1,y2,x) =
sign(Smi(y1,x)− Smi(y2,x))

3. The conflict filter checks {Pmi(y1,y2,x)}
and only keeps the data with consistent pref-
erence labels under all metrics mi.

3.3 Training with DPO
Using the preference data obtained from the previ-
ous step, we apply Direct Preference Optimization
(Rafailov et al., 2023, DPO) to train the language
models towards improved factuality. Compared to
RL, DPO directly optimises models without requir-
ing a separate reward model, reducing complexity
and improving training efficiency. Given summary
pairs with corresponding preference labels, DPO
adjusts the model parameters to increase the like-
lihood of generating the preferred summary. The
loss function of DPO can be written as:

L(θ) =

E(x,y{w,l})[log σ(β(fθ(x,yw)− fθ(x,yl)))]

where σ is the sigmoid function, f is the log proba-
bility that the model assigns to a summary, θ rep-
resents the model parameters to optimise, β is a
temperature parameter, and y{w,l} denote the win-
ning and losing summaries in the pair, respectively.

4 Experiments

4.1 Experimental Setup and Implementations
4.1.1 Dataset and Evaluation Metrics
To ensure consistency with prior work (Choi
et al., 2024), we evaluate our approach on XSUM
(Narayan et al., 2018) and TL;DR (Völske et al.,
2017). Both datasets require the summarisation
of long news articles or Reddit posts into single-
sentence summaries, posing challenges for the sum-
marisers to identify key information and assemble
it correctly. Table 1 presents the characteristics
of the two datasets. Numbers in parentheses refer
to the test split while other numbers are for the
training split. Length refers to the total number of
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words in the text. Compression Ratio is computed
between source length and summary length.

Dataset Size Source
Length

Summary
Length

Compression
Rate

XSUM 204045(11334) 430(433) 23(23) 5.35%(5.31%)
TL;DR 116722(6553) 313(314) 31(31) 9.90%(9.87%)

Table 1: Characteristics of XSUM and TL;DR datasets.

For evaluation, we apply the same automatic
metrics as in the previous work (Choi et al., 2024)
to ensure a fair comparison. AlignScore (Zha et al.,
2023) and FactCC (Kryściński et al., 2019) re-
flect factuality, while ROUGE-L (Lin, 2004) and
BARTScore (Yuan et al., 2021) check the coher-
ence. The definitions of these metrics are in Ap-
pendix A. In addition, we employ ChatGPT to com-
pare our approach against the baselines as LLMs
have shown promising results in directly evaluating
generative tasks (Gekhman et al., 2023; Luo et al.,
2023). We further analyse shifts in common types
of factual consistency error to understand the im-
pact of our training pipeline, again using ChatGPT
to categorise mistakes.

4.1.2 Language Model Selection

To demonstrate the robustness of our method, we
select a variety of language models with different
scales and capabilities. Model specifications are
listed in Table 2. We select BART-large (Lewis
et al., 2020) to represent encoder-decoder models
that were widely employed before the advent of
LLMs. We select GPT-J-6B (Wang and Komat-
suzaki, 2021), LLaMA-3.2-3B (AI@Meta, 2024),
and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI,
2025) as they are representative LLMs trained for
different purposes. Due to their large sizes, we
apply LoRA (Hu et al., 2021) and only train an
adapter during fine-tuning.

Model Size Architecture Pre-release
Fine-tuning

Main
Ability

Fine-tuning
Scale

BART-large 406M Encoder-Decoder SFT Summarisation Full

GPT-J 6B Decoder SFT
Open-ended
Generation

Adapter

LLaMA-3.2 3B Decoder SFT+RL Instruction Adapter

DeepSeek-R1
(Distill-Qwen)

7B Decoder SFT+RL Reasoning Adapter

Table 2: Specifications of the selected language models.

GPT-J is an alternative for GPT-3 (Brown et al.,
2020) and was only tuned with SFT. It can perform

specific tasks given a prompt but it is suggested to
apply task-oriented SFT beforehand.

LLaMA-3.2 utilised RL during its training pro-
cess, specifically through RLHF, to enhance its
alignment with human preferences and improve
the quality of its responses.

DeepSeek-R1 is a mixture-of-experts model with
671B parameters, providing impressive reasoning
ability on a wide range of tasks including maths
and coding. In this paper, we use its distilled model
based on Qwen2.5 (Team, 2024) to balance the
training efficiency and reasoning quality.

For GPT-J, SFT is required before RL, so we
only use a simple prompt as it will learn to sum-
marise during SFT. For LLaMA and DeepSeek,
we avoid fine-tuning them on specific tasks be-
fore applying RL, simulating real-world conditions
where they are provided only with task instructions.
To maintain consistency across experiments, we
use the same generic summarisation prompt for
all LLMs. Details of the prompt are available in
Appendix B, along with the processing steps for
DeepSeek’s chain-of-thought output.

4.1.3 Decoding Strategies
As highlighted in prior studies (Holtzman et al.,
2019; Choi et al., 2024), decoding strategies can
impact factuality. In this section, we study how
decoding strategies influence factual consistency
on our selected datasets and select which to use in
the consequent experiments.

Dataset Model AlignScore(↑)

BS#1 BS#2 RS#1 RS#2 Greedy

X
SU

M

BART 61.9 61.5 19.2 18.4 58.9
GPT-J 59.7 58.3 17.4 17.3 50.5

LLaMA 86.1 85.3 67.3 66.5 83.6
DeepSeek 82.5 82.4 60.2 59.6 80.5

T
L

;D
R BART 84.9 84.7 42.5 41.0 80.6

GPT-J 89.6 89.0 60.3 60.2 83.6
LLaMA 91.4 90.6 83.7 83.6 90.7

DeepSeek 89.1 88.9 75.6 75.8 87.9

Table 3: AlignScore of different decoding strategies.

From Table 3, we observe that the first candidate
from beam search (BS#1) consistently outperforms
other decoding strategies, including greedy decod-
ing and random sampling (RS#1 and RS#2). The
latter strategies introduce excessive randomness
or focus too narrowly on local token probabilities,
leading to lower factuality. Therefore, in our exper-
iments, we primarily use beam search and greedy
decoding, as these strategies provide relatively high
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factual accuracy while the mix of strategies allows
us to generate different summaries for the same
source. For final evaluation, we use the first beam
search output to ensure the highest factuality.

4.2 Factuality Scoring Metrics

Among the metrics mentioned in 2.1, we utilise
SBERTScore (Ye et al., 2024) and SummaC-Conv
(Laban et al., 2022), representing similarity-based
and NLI-based metrics respectively. Their defi-
nitions are in Appendix C. These metrics, while
slightly less powerful than state-of-the-art alterna-
tives, are more computationally efficient. We ex-
clude QA-based metrics not only due to their high
computational cost, but also because they require
a question generation model trained on the same
dataset, which is not available for TL;DR.

4.3 Baselines

We compare our proposed approach with three
baselines: supervised fine-tuning (SFT), reinforce-
ment learning from human feedback (RLHF), and
model-based preference optimisation (Choi et al.,
2024, MPO). Both SFT and RLHF are common
fine-tuning methods that rely on either golden ref-
erences or human annotations. SFT trains on refer-
ence summaries, while RLHF is often applied after
SFT, using human preference rankings to optimise
via RL rather than direct supervision.

We reuse the official SFT checkpoints for BART
on XSUM2 and RLHF checkpoints for GPT-J3 on
TL;DR. For RLHF on the other models, we perform
training using the TRL4 library, with the trl-lib/tldr-
preference dataset5, which includes preference la-
bels based on overall human judgments that are not
specifically focused on factuality.

MPO (Choi et al., 2024) avoids the need to
score summaries by assuming that beam search-
generated summaries are more factually consistent
than those generated by other decoding strategies.
However, while beam-search generates more fac-
tual summaries on average, individual summaries
are not guaranteed to be the most factually con-
sistent, leading to some mislabelled pairs. This
resulted in huge performance degradation for MPO

2https://huggingface.co/facebook/
bart-large-xsum

3https://huggingface.co/CarperAI/openai_
summarize_tldr_ppo

4https://huggingface.co/docs/trl/main/en/ppo_
trainer

5https://huggingface.co/datasets/trl-lib/
tldr-preference

when applied to similar summary pairs in their
study. Our proposed method overcomes this by
using multiple computationally efficient metrics to
annotate generated summaries, allowing greater re-
silience to input similarity and better utilisation of
summaries from various decoding strategies.

4.4 Experimental Results
We built two datasets for each model, using
(BS#1,BS#2) and (BS#1,Greedy) respectively. Ta-
ble 4 presents the better factuality performance
between the two settings for MPO and our ap-
proach individually. We do not report RLHF results
for XSUM due to the lack of a human preference
dataset, nor do we include DeepSeek RLHF results
for TL;DR, as we cannot learn a reward model for
it on a preference dataset without chain-of-thought
examples.

Dataset Model Method AlignScore(∆) BARTScore FactCC ROUGE-L

X
SU

M

BART

SFT 61.9(\) -3.69 65.7 36.4
MPO 62.0(+0.1) -3.67 76.0 33.5

Ours 86.6(+24.7) -3.63 83.3 33.9

GPT-J

SFT 59.7(\) -3.63 62.4 25.0
MPO 53.5(-6.2) -3.90 73.8 23.6

Ours 75.8(+16.1) -3.57 80.6 22.3

LLaMA

SFT 86.1(\) -3.48 75.1 19.2
MPO 79.8(-6.3) -3.49 76.0 18.8

Ours 88.7(+2.6) -3.47 77.4 18.3

DeepSeek

SFT 82.5(\) -3.34 75.9 14.8
MPO 81.3(-1.2) -3.39 78.8 12.5

Ours 83.2(+0.7) -3.23 80.5 14.0

T
L

;D
R

BART

SFT 84.9(\) -3.48 43.2 25.8
RLHF 73.1(-11.8) -3.95 41.5 22.6

MPO 88.1(+3.2) -3.40 56.9 24.2

Ours 94.2(+9.3) -3.33 65.6 22.4

GPT-J

SFT 89.6(\) -3.69 30.9 26.8
RLHF 81.5(-8.1) -3.59 34.1 23.4

MPO 92.3(+2.7) -3.53 37.5 23.7

Ours 93.8(+4.2) -3.44 46.0 22.3

LLaMA

SFT 91.4(\) -3.81 73.7 15.6

RLHF 90.2(-1.2) -3.78 64.1 18.3
MPO 86.4(-5.0) -3.78 81.3 15.4

Ours 93.5(+2.1) -3.74 84.1 15.1

DeepSeek

SFT 89.1(\) -3.79 66.7 15.8
MPO 89.7(+0.6) -3.77 72.5 15.1

Ours 90.9(+1.8) -3.69 75.8 15.1

Table 4: Evaluation results on the two datasets. ∆ refers
to the performance difference over SFT results. The
best results are highlighted in bold.

Our approach consistently outperforms all three
baselines on AlignScore, FactCC and BARTScore,
bringing positive effects to all models across both
datasets, and the largest improvements across all
models. RLHF and MPO sometimes decreased the
factuality, specifically for LLaMA on both datasets.

For ROUGE-L, we found the same trade-off be-
tween it and the factuality performance as in Choi
et al. (2024). ROUGE is computed between the
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generated summary and the reference summary,
which is directly used for SFT. Note that a previ-
ous study (Maynez et al., 2020) has indicated that
some human written reference summaries contain
hallucinations. Considering the large factuality im-
provement obtained from our approach, we think
this trade-off is within the acceptable range.

Dataset Model Baseline

SFT RLHF MPO

XSUM

BART 51.4 \ 52.0
GPT-J 44.2 \ 80.0

LLaMA 42.0 \ 54.0
DeepSeek 39.0 \ 52.4

TL;DR

BART 47.2 40.4 54.8
GPT-J 46.8 42.8 61.6

LLaMA 43.4 39.2 74.6
DeepSeek 40.8 \ 58.6

Table 5: The win rates against baselines, judged by
ChatGPT for overall summary quality.

The results show that our approach is more ef-
fective at improving summary factuality compared
to RLHF on human-labelled datasets or MPO’s
heuristic preference label generation, while main-
taining overall quality compared to the reference
summaries used by SFT. This highlights the benefit
of scoring summaries based on factuality metrics
rather than relying on heuristic preferences.

Across the four models, BART gained the largest
improvement with an AlignScore increase of 24.7
on XSUM and 9.3 on TL;DR. Although LLMs
had less headroom for the factuality improvement,
our method still managed to increase their scores
marginally. It is worth noting that our training
pipeline sealed the gap between BART and the
LLMs and led to better post-training performance,
making it possible to apply BART where comput-
ing resources are limited. The DeepSeek reasoning
model received the least improvement. We specu-
late that this is because our preference labels are
only decided by the final summary, so errors made
in the thinking process generated before it would
be overlooked by the scoring metrics, resulting in
a noisy training signal.

4.5 Overall Quality Evaluation
To gain a better understanding on the overall quality
of the generated summaries, we use ChatGPT-4o-
mini to evaluate them based on not just factuality,
but also informativeness, coherence, and legibility.
We randomly selected 500 source documents from
each dataset, applied different models to generate
summaries and asked ChatGPT to compare them in
pairs. The full evaluation prompt can be found in

Appendix B. We compared the summaries from our
approach against those from the baselines. Some
win rates against RLHF are not available due to the
availability of the human preference dataset.

Table 5 shows that our summaries were preferred
over MPO but less preferred than SFT summaries.
This is likely because SFT directly trains on human-
written reference summaries, while ours focus on
factuality, leading to potentially less fluency or in-
formativeness. RLHF summaries are also more
preferred because they are originally trained to
align with human values, thus being more likely
to be selected by ChatGPT, which has also been
trained with the same purpose. However, previous
discussion has confirmed the competitive overall
quality of our summaries. Therefore, we asked
ChatGPT to output the reasons for its selections,
and found out that the preferred summaries con-
tained excessive details, while our summaries are
more abstract and discarded some of the unnec-
essary details to reduce the risk of generating in-
consistent content (Appendix D). This suggests a
trade-off between factual consistency and summary
style, which aligns with previous findings (Hosking
et al., 2024) that overall judgements may neglect
factuality.

5 Analysis

5.1 Ablation Study

We studied the effectiveness of each component in
our approach and present their influence in Table
6. Introducing a single factuality metric to score
the summary did not always lead to improvements.
For example, when only one metric was applied,
LLaMA and DeepSeek occasionally showed de-
creased factuality scores. However, when multiple
factuality metrics were applied, all models showed
improvement. Additionally, filtering out inconsis-
tent labels further enhanced performance, likely
because contradicting labels may appear in differ-
ent batches, thereby adding noise during training.

5.2 Similarity of Summary Pairs

Taking the training outcome of BART on XSUM as
the example, we examined the impact of similarity
between paired summaries, as shown in Table 7.
Summary pairs generated by selecting alternative
outputs, i.e., (BS#1,BS#2), achieved higher similar-
ities than pairs generated by varying the decoding
strategy, as also shown in Table 6. Highly similar
summary pairs help the model focus on subtle fac-
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Dataset Model Decoding
Strategy

Pair
Similarity

Scoring Metric
SFT

ResultsSBERT SummaC
SBERT

+SummaC

SBERT
+SummaC
+Filter

X
SU

M

BART
(BS#1,BS#2) 0.940 71.4 79.7 78.5 86.6

61.9
(BS#1,Greedy) 0.826 75.0 81.7 79.9 86.1

GPT-J
(BS#1,BS#2) 0.973 60.0 54.1 71.7 70.9

59.7
(BS#1,Greedy) 0.773 68.2 73.9 70.0 75.8

LLaMA
(BS#1,BS#2) 0.938 85.0 86.5 87.5 88.7

86.1
(BS#1,Greedy) 0.889 85.5 84.3 86.3 87.1

DeepSeek
(BS#1,BS#2) 0.985 81.1 82.6 82.8 83.0

82.5
(BS#1,Greedy) 0.843 80.7 82.2 83.1 83.2

T
L

;D
R

BART
(BS#1,BS#2) 0.954 94.0 91.3 94.7 94.1

84.9
(BS#1,Greedy) 0.802 93.1 91.3 94.4 94.2

GPT-J
(BS#1,BS#2) 0.943 92.9 95.3 95.6 93.7

89.6
(BS#1,Greedy) 0.751 91.9 91.6 94.2 93.8

LLaMA
(BS#1,BS#2) 0.909 92.1 90.8 91.8 93.5

91.4
(BS#1,Greedy) 0.868 89.9 91.0 91.5 92.9

DeepSeek
(BS#1,BS#2) 0.972 88.7 85.6 89.2 90.9

89.1
(BS#1,Greedy) 0.735 89.5 88.8 89.3 89.9

Table 6: AlignScore of language models fine-tuned by
different training settings using our approach on the two
datasets. The best results are highlighted in bold.

tual consistency differences, but we speculate that
there could exist a threshold. The (BS#1,Greedy)
strategy is competitive with (BS#1,BS#2) overall
in Table 6, suggesting that an average similarity
∼ 0.7 may be sufficient.

Taking BART as an example, in Table 7, we fur-
ther investigated the effect of less similar summary
pairs (BS#1,RS#1), i.e., the best setting for MPO,
to which we applied the same preference label gen-
eration process. Using our method to fine-tune
with these labels still improved factuality but to a
lesser degree than the similar pairs (BS#1,BS#2)
and (BS#1,Greedy). Although MPO was able to ob-
tain the largest improvement on (BS#1,RS#1) pairs,
our method still outperformed it, validating the ef-
fectiveness of our method on reducing the noise
in the dataset. Furthermore, we observe the same
degeneration mentioned in Choi et al. (2024) on the
similar pairs (BS#1,BS#2) and (BS#1,Greedy). We
show the evaluation accuracy curve during training
in Appendix E, which stayed level during training,
implying that the model benefitted little from train-
ing on these data. Summary pairs generated by
beam search and random sampling, which have a
greater factuality gap (as shown in Table 3), were
too straightforward for BART to learn from, result-
ing in minimal improvements.

Therefore, we can conclude that both our similar
summary pair generation process and our labelling
step using automated metrics contribute to the final
improvement of our approach.

Decoding Strategy Pair Similarity Method AlignScore

- - SFT 61.9

(BS#1, BS#2) 94.0 MPO 62.0
Ours 86.6

(BS#1, Greedy) 82.6 MPO 36.3
Ours 86.1

(BS#1, RS#1) 34.9 MPO 66.4*
Ours 72.0

Table 7: The effect of using different decoding strategies
to generate summary pairs for training BART on XSUM.
* indicates the result cited from Choi et al. (2024).
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Figure 2: Error frequencies on XSUM.
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Figure 3: Error frequencies on TL;DR.

17349



5.3 Disagreement Analysis
We looked into the rates of each model trigger-
ing the disagreement filter on the two datasets. In
practice, 1000 summaries pairs were generated to
obtain the preference labels. Table 8 below shows
that at least 60% of the data was retained for train-
ing after the filtering process.

Model XSUM TL;DR

BART 28.6 29.8
GPT-J 31.8 27.3

LLaMA 37.3 31.4
DeepSeek 34.7 28.9

Table 8: The percentage of data that triggers disagree-
ment filter in our experiments.

5.4 Inconsistency Type Analysis
Finally, we employ ChatGPT to assess factual in-
consistencies in the summaries and analyse how
the frequency of factual errors changes before and
after training with our approach. Similar to pre-
vious studies (Tang et al., 2023), we defined five
inconsistency types, namely Intrinsic, Extrinsic,
Noun, Predicate, Quantifier. Along with Correct
summaries, we asked ChatGPT to identify them
according to a given definition and count the fre-
quency of each. The definition and prompt can be
found in Appendix B.

Figures 2 and 3 show that the error frequencies
of Noun, Predicate, and Quantifier types mostly
decreased. Consequently, our approach achieved
many more Correct summaries than SFT check-
points, demonstrating the effectiveness of our ap-
proach across different models.

6 Conclusion

We introduce a novel automatic training pipeline
for improving the factual consistency of summaris-
ers. Our approach can be generalised over dif-
ferent model architectures and scales. It requires
only source documents, utilising multiple factuality
evaluation metrics to score the summary and obtain
labels for preference optimisation. The experimen-
tal results suggest that our approach outperforms
baselines and boosts the factuality performance of
smaller models to a level comparable to LLMs,
revealing the effectiveness of preference learning
over similar summary pairs.

Limitations

We only applied SBERTScore and SummaC to
score the generated summaries in this paper. There

are various other metrics available but we were
not able to test them all. While we were able to
demonstrate that it is possible to improve factual-
ity using our chosen imperfect metrics, this could
raise concerns about the generalisation ability of
our approach to other automated scoring methods.

We also did not include results for RL with the
scalar metric scores used directly as the reward
signal. We explored this method in our early inves-
tigation and found that it requires both the model
and the metric backbone to be large and extremely
computationally costly, otherwise catastrophic for-
getting became a very common problem during
training. Although we did not have the compari-
son against this line of work, we believe that our
method provides a more stable training paradigm in
practice, as we never encountered the catastrophic
forgetting problem in our experiments.

In overall quality evaluation, we found that our
approach generated summaries that were less pre-
ferred by ChatGPT when comparing to SFT/RLHF
summaries. This reveals the challenge of how to
fine-tune the summariser towards better factuality
without trading off other qualities. It also high-
lights the difficulty of judging the overall quality
of summaries, where a human or LLM judge may
put more weight on certain qualities (e.g., readabil-
ity, brevity) at the expense of others (e.g., factual
consistency). The trade-off between these quali-
ties may need to be judged within the context of
a specific application: how important it is that a
summary is factually consistent versus stylistically
compelling will depend on its use case.
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A Evaluation Metrics

For a given source document D, we denote its gen-
erated summary as S. The length of the source
document is denoted |D| and the summary length
is denoted |S|.

AlignScore breaks both source document and
summary into certain length chunks. We denote the
sets of chunks as {Dj} and {Si}. It then aggregates
the entailment scores obtained on these text chunk
pairs. The backbone NLI classifier is trained for
predicting the alignment degree in sentence pairs.

AlignScore(S,D) =

1

|{Si}|
∑

s∈{Si}
max

d∈{Dj}
Alignment(s, d)

FactCC provides a coarse-grained insight into
whether the generated summary is entailed by the
source document. The backbone is an NLI model
based on BERT, so the equation can be written as

FactCC(S,D) = NLI(S;D)

BARTScore is essentially the weighted log-
likelihood computed using BART. It can be written
as

BARTScore(S,D) =

|S|∑

t=1

ωt log p(St|S<t, D,Θ)

where St is each token in S and Θ is the trained
weights of BART.

ROUGE computes the n-gram recall between
the candidate and the target text. In this paper, we
use ROUGE-L, which match the longest common
subsequence (LCS) that appear in both summaries.
The equation can be expressed as

ROUGE-L(S,D) =
LCS Length

Reference Summary Length

B Prompt for LLMs

B.1 Prompt for Summarisation Generation
We only prepare a simple prompt for GPT-J as it
needs SFT before applying RL, as shown in Figure
4. {doc} denotes the source document which will
be changed according to the data being processed.
It will learn to summarise the source document
into a single sentence during SFT, therefore it only
needs a template to ensure the model receives the
source document and generate summaries as the
completion.

Document: {doc}

Summary: 

Figure 4: Prompt for GPT-J.

Figure 5 and 6 present the prompts we used to
generate summaries using LLaMA and DeepSeek
on the two datasets. The only difference in the
prompt is that we indicate that the source docu-
ments are reddit posts in TL;DR and news docu-
ments in XSUM.

You are a useful AI assistant that helps people to summarize [reddit posts/news 
documents]. Summarize the given post into a single sentence:

Document: {doc}

Summary:

Figure 5: Prompt for LLaMA to generate summaries on
the two datasets.

DeepSeek requires a special token <think> to
trigger the thinking process, as shown in Figure
6. Following the prompt, it generates a chain-of-
thought that ends with </think> before generating
the final output. Therefore, we take all the output
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after </think> as the final summary for the metrics
to score.

You are a useful AI assistant that helps people to summarize [reddit posts/news 
documents]. Think first and then summarize the given post into a single sentence.

Document: {doc}

<think>

Figure 6: Prompt for DeepSeek to generate summaries
on the two datasets.

B.2 Prompt for ChatGPT Evaluation
We use a similar prompt to the previous work
(Choi et al., 2024) for ChatGPT to compare two
summaries, as described in Figure 7. {source},
{summary1}, {summary2} denote the source docu-
ment and two candidate summaries. We found that
ChatGPT-4o-mini tends to claim that both sum-
maries are not good enough due to informativeness,
therefore we relaxed the requirement and ask it to
choose the most faithful summary if both are not
good as we focus on factuality on this paper.

Which of the following summaries does a better job of summarizing the most 
important points in the given news article, without including unimportant or 
irrelevant details? A good summary is both precise and concise but not overly 
specific. If both summaries are not good, choose the one that are most faithful to the 
original post. 
Article: {source}
Summary A: {summary1}
Summary B: {summary2} 
FIRST provide a one-sentence comparison of the two summaries, explaining which 
you prefer and why. SECOND, on a new line, state only \"A\" or \"B\" to indicate 
your choice. Your response should use the format: 
Comparison: <one-sentence comparison and explanation> 
Preferred: <A or B> 

Figure 7: Prompt for ChatGPT win rate evaluation.

As for inconsistency type analysis, we give the
definition in the prompt first and then ask ChatGPT
to judge the summary. The prompt is shown in
Figure 8. {source} and {summary} represent the
source document and the summary to analyse.

Here is the definition of common factual inconsistency types. 
Intrinsic Errors: The summary contains misinformation that is present in the original 
text. 
Extrinsic Errors: The summary contains information that is not present in the original 
text. 
Noun Errors: The summary misrepresents details from the source, such as dates, 
numbers, names, or events. 
Predicate Errors: The summary misrepresents the relationships between entities or 
events in the source. 
Quantifier Errors: The summary misrepresents the quantity entities or events in the 
source. 
Can the given summary be supported by the given article? Only consider the errors 
above. 
Article: {source}
Summary: {summary}
FIRST, identify whether the summary is correct. If the summary is correct, please say 
\"No errors\". THEN, identify the errors in the summary, reply only with the error 
types \"Intrinsic\", \"Extrinsic\", \"Noun\", \"Predicate\", \"Quantifier\". Your 
response should use the format: 
Error types: <a list of error types>

Figure 8: Prompt for ChatGPT inconsistency type anal-
ysis.

C Scoring Metric Definitions

For a given source document D, we denote its
generated summary as S. Their sentence collec-

tions are marked as {Dj} and {Si} respectively.
SBERTScore is defined as below.

SBERTScore(S,D) =

1

|{Si}|
∑

s∈{Si}
max

d∈{Dj}
cos sim(s, d)

SummaC firstly computes NLI scores on sen-
tence pairs to get a score matrix A, such that

Aij = NLI(s, d) s ∈ {Si}, d ∈ {Dj}

It then maps A into a score frequency matrix H =
bin(A), where it bins the NLI scores into h evenly
spaced bins for each summary sentence. Then a
convolutional layer is trained to aggregate H to
obtain the final score.

SummaC(S,D) = Conv(H)

D ChatGPT Win Rate Reason Analysis

We print out the common words that appeared in
the reasons given by ChatGPT for choosing SFT
and RLHF summaries over ours in Figure 9. The
main reason for the SFT and RLHF summaries be-
ing preferred is that they carry more details, while
ours reduced the hallucination risk by generating
fewer details.

Figure 9: Word cloud showing frequency of terms in the
reasons generated by ChatGPT for preferring SFT and
RLHF summaries over those produced by our approach.

E Evaluation Accuracy Curve during
Training

Figure 10 shows how well the model learns to dis-
tinguish the chosen summary and the rejected sum-
mary in the pair. Ideally, the model learns to simu-
late the chosen summary while differs its behaviour
from the rejected summary so that it gains better
accuracies during training.
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Figure 10: Evaluation accuracies over pairwise labels
during DPO training for BART on XSUM.
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