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Abstract

Step-by-step reasoning is widely used to en-
hance the reasoning ability of large language
models (LLMs) in complex problems. Eval-
uating the quality of reasoning traces is cru-
cial for understanding and improving LLM rea-
soning. However, existing evaluation practices
are highly inconsistent, resulting in fragmented
progress across evaluator design and bench-
mark development. To address this gap, this
survey provides a comprehensive overview of
step-by-step reasoning evaluation, proposing a
taxonomy of evaluation criteria with four top-
level categories (factuality, validity, coherence,
and utility). Based on the taxonomy, we review
different datasets, evaluator implementations,
and recent findings, leading to promising direc-
tions for future research.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in reasoning on complex
problems, such as logic, math, and science. At the
core of this versatility lies step-by-step reasoning
(Wei et al., 2022; Kojima et al., 2022), where the
LLM generates an intermediate reasoning trace
before presenting the final answer.

The reasoning ability of LLMs is often mea-
sured in terms of answer accuracy, i.e., finding the
correct answer for a complex reasoning problem
(Cobbe et al., 2021; Zhong et al., 2021). However,
answer accuracy is generally insufficient for mea-
suring LLMs’ reasoning ability, as the correct an-
swer does not imply the correctness of the preced-
ing reasoning trace (Lanham et al., 2023; Mirzadeh
et al., 2024; Paul et al., 2024). Furthermore, assess-
ing the quality of the reasoning trace can directly
lead to better reasoning ability of LLMs by verifier-
guided search (Wang et al., 2023b; Yao et al., 2023;
Hao et al., 2024) and reinforcement learning (Lu
et al., 2024; Cui et al., 2025).

Query

The denominator of a fraction is 7 less 
than 3 times the numerator.

If the fraction is equivalent to 2/5,
what is the numerator?

Reasoning trace

Let the numerator be x.

The denominator is 3x-7.

We know that x/(3x-7) = 3/5.

Therefore, 5x = 6x-14.

Step 1

Step 2

Step 3

Step 4

Step 5 7Finally, we get x= . 

Factuality

Validity

Factually true according to

query/external facts?

Logically/arithmetically

correct?

Figure 1: Illustrative example of reasoning trace evalua-
tion.

Consequently, reasoning trace evaluation is an
active research topic, with numerous new evalu-
ators and datasets continuously being proposed.
However, this rapid growth has led to a prolifera-
tion of evaluators and datasets without establishing
a consensus on the criteria (what to evaluate). In
this survey, we aim to provide a systematic review
of existing step-by-step reasoning evaluation cri-
teria, which will serve as a foundation for imple-
menting evaluators.

Implementing an evaluator also introduces sev-
eral practical decision choices. Different architec-
tures involve trade-offs between computational cost
and expected performance, while non-architectural
factors like training data and data format also play
a significant role. This survey seeks to categorize
and compare various evaluator implementations,
highlighting key trade-offs and revealing additional
dimensions that merit consideration.

The key contributions of this survey are:

• Defining a clear, universal taxonomy of step-
by-step evaluation criteria (§3).

• Surveying existing datasets and evaluators
for step-by-step reasoning evaluation based
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on their implementations, across diverse rea-
soning tasks and criteria (§4-§5).

• Identifying recent findings and promising di-
rections for trace evaluation (§6-§7).

2 Background

2.1 Step-by-step reasoning

Step-by-step reasoning is where LLMs gener-
ate a series of intermediate natural language steps
("thoughts") before outputting the final answer
(Wei et al., 2022). Each instance consists of two
parts: a query and a reasoning trace, and the fi-
nal answer as a part of the reasoning trace. Upon
seeing the query (user input), the LLM autoregres-
sively generates its solution as a reasoning trace.
Finally, a trace should include a final answer for
the query, which can be compared to the ground
truth. See Appendix A for details on different rea-
soning tasks.

2.2 Evaluation

Reasoning trace evaluators assess the quality of
the reasoning trace and assign a score, reflecting
whether it is good or not based on the criterion.
Evaluators can be intrinsic metrics like uncertainty
to models specialized for reasoning trace evalua-
tion; see Section 5 for different types of evaluators.

2.3 Meta-evaluation

How can we evaluate these evaluators (meta-
evaluation)? Two common directions apply: (1)
using meta-evaluation benchmarks with step-wise
labels, or (2) measuring the improvement in the
downstream task performance (Figure 2).

2.3.1 Meta-evaluation Benchmarks

Meta-evaluation benchmarks contains labels in-
dicating a step’s quality based on the predefined
criteria. In this setting, the evaluator’s performance
is measured by the classification accuracy of these
labels. These benchmarks offer a fine-grained view
of which criteria the evaluator can handle well and
which cannot (Song et al., 2025). However, con-
structing these data often requires costly human
annotation (Lightman et al., 2024; Zheng et al.,
2024a) and the gains in meta-evaluation benchmark
might not generalize to downstream performance
(Zhang et al., 2025). Further details can be found
in Appendix B.

Query Trace 2

Trace 1

Trace 3

Meta-evaluation benchmarks:

Can evaluator classify good/bad steps?

Verifier-guided search:

Can the evaluator choose the most promising trace?

Reinforcement learning:

Are evaluator scores a good reward function?

→ Chosen trace answer: Correct

→ Performance of trained LLM

→ Classification accuracy: 0.67

Evaluator

0.99

0.17

0.62

Query

Step 3

Evaluator

0.03

0.93

0.16

Evaluator

0.03

0.93

0.16

Gold label

0

1

1

Gold label

1

1

0

Step 2

Step 1

LLM
Generate trace

Train via RL

Figure 2: Illustration of three popular meta-evaluation
methods: meta-evaluation benchmarks, verifier-guided
search, and reinforcement learning.

2.3.2 Downstream performance improvement

As the fundamental goal of evaluators is to improve
the reasoning ability of LLMs, the evaluator’s qual-
ity can also be measured by the improvement in
downstream reasoning tasks.

Verifier-guided search uses evaluator scores to
find the most promising trace after exploring dif-
ferent paths. Popular methods include Best-of-N
decoding (independently sampling N traces and
selecting one) (Lightman et al., 2024; Zhang et al.,
2024c) and tree search (sampling multiple candi-
date steps and choosing the most promising path)
(Yao et al., 2023; Guan et al., 2024; Zhu et al.,
2024b). The performance is often compared to ma-
jority voting without evaluators (Self-consistency;
Wang et al. (2023b)), where a bigger gap indicates
a better evaluator performance.

Reinforcement learning (RL) uses evaluator
scores as a reward to further train an LLM (Ue-
sato et al., 2022; Pan et al., 2023b; Zhang et al.,
2024a). If the evaluator provides useful training
rewards, the trained model will reach higher final
answer accuracy. Moreover, as evaluators that are
vulnerable to spurious features like length lead to
reward hacking, successful RL also indicates the
evaluator’s robustness (Zhang et al., 2024a).
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Query

The denominator of a fraction is 7 less 
than 3 times the numerator.

If the fraction is equivalent to 2/5,
what is the numerator?

Correct reasoning trace

Let the numerator be x.

The denominator is 3x-7.

We know that x/(3x-7) = 2/5.

Therefore, 5x = 6x-14.

Factuality:
Factually true according to query/external facts?

Coherence:
All preconditions presented in previous steps?

Let the numerator be x.

The denominator is 3x-7.

Validity:
Logically/arithmetically correct?

We know that x/(3x-7) = 2/5.

Therefore, 5x = 6x-14.

Finally, we get x=7.

Utility:
Leads to a correct final answer?

Step 1

Step 2

Step 3

Step 4

Step 5

Query
Step 3

Step 4

Step 5’

Step 1

Step 2

Step 3’ Therefore, 5x=6x-14.

…fraction is equivalent to 2/5,…

The denominator is 3x-7.

We know that x/(3x-7) = 3/5.

Step 2

Step 3’

We know that x/(3x-7) = 2/5.

2/5 is 0.4.

Answer: 0.4.

Step 3

Step 4’

Step 5’

Step 4

Step 5 14

…

Finally, we get x=14. 

Figure 3: Illustration of the proposed categories of step-by-step reasoning evaluation criteria, i.e. factuality, validity,
coherence, and utility. The left shows an example of a query and a reasoning trace. The other four blocks demonstrate
examples that fail to satisfy the respective metric. Red filled rectangles indicate the error’s location, and the outlined
boxes and arrows show the cause of the error. The trace example is originally from Lightman et al. (2024).

3 Evaluation Criteria

Previous studies have proposed various criteria for
evaluating step-by-step reasoning (Golovneva et al.,
2023a; Lightman et al., 2024; Wang et al., 2024c;
Jacovi et al., 2024), but these works failed to pro-
pose a complete taxonomy that covers diverse rea-
soning tasks (e.g., literature in factual reasoning
and math reasoning have focused on different crite-
ria). In this section, we propose a unified taxonomy
of reasoning trace evaluation criteria that spans
different reasoning tasks and evaluators. We cate-
gorize them into four key dimensions: Factuality,
Validity, Coherence, and Utility (Figure 3)1.

3.1 Factuality
Factuality evaluates if the factual information can
be grounded in reliable sources.

The narrower notion of factuality is grounded-
ness, where the generated trace should be true ac-
cording to the query (Lewis et al., 2020; Gao et al.,
2024d). For instance, if the retrieved document
explicitly mentions that Einstein was born in 1879,
the step mentioning that he was born in 1789 is un-
grounded. In less factual tasks like math, ground-
edness also indicates using correct numbers and
constraints given in the query.

However, the reasoning process might require
factual knowledge not directly mentioned in the
query. This type of factuality can be referred to as
parametric knowledge. While steps containing
trivia-style facts can be readily verified by retrieval-
based fact checkers (Thorne et al., 2018), verify-

1These criteria are independent but not mutually exclusive
(a step can fail to satisfy multiple criteria).

ing subtle, commonsensical knowledge remains an
open challenge (Toroghi et al., 2024).

3.2 Validity

Validity evaluates if a reasoning step contains no
logical errors.

The validity of a reasoning step can be defined in
terms of entailment (Bowman et al., 2015), which
is widely accepted in factual/commonsense-based
reasoning (Prasad et al., 2023; Wu et al., 2024a).
Under this definition, a step is considered valid
if it can be directly entailed from previous steps
(Tafjord et al., 2021; Dalvi et al., 2021; Saparov
and He, 2023) or at least does not contradict them
(Golovneva et al., 2023a; Prasad et al., 2023; Zhu
et al., 2024b).

In tasks like math or logic, the more common
form of validity is correctness, e.g. performing ac-
curate calculations in arithmetic reasoning (Light-
man et al., 2024; Jacovi et al., 2024; Zheng et al.,
2024a) or inferring the correct logical conclusion
based on the provided premises (Wu et al., 2024b;
Song et al., 2025).

3.3 Coherence

Coherence measures if a reasoning step’s precon-
ditions are satisfied by the previous steps (Wang
et al., 2023a; Lee and Hwang, 2025). For instance,
if a trace includes the reasoning step "Next, we add
42 to 16." but the origin of the value 42 was never
explained in the previous steps; this step is con-
sidered incoherent. An intuitive way to obtain an
incoherent trace is randomly shuffling a coherent
trace (Wang et al., 2023a; Nguyen et al., 2024), as
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Dataset Train Eval Domain Criteria # Trace Human

ROSCOE (Golovneva et al., 2023b) • Math, Common FVU 1.0k •
RAGTruth† (Niu et al., 2024) • • Fact F 5.9k •
HaluEval†(Li et al., 2023a) • • Fact F 10k ▲
Math-Shepherd (Wang et al., 2024c) • Math U 440k ×
PRM800k (Lightman et al., 2024) • • Math V 75k •
REVEAL (Jacovi et al., 2024) • Common FVC 3.4k •
MATH-Minos (Gao et al., 2024a) • Math V 440k ×
SCDPO (Lu et al., 2024) • Math U 30k ×
MR-GSM8k (Zeng et al., 2024a) • Math V 3.0k •
BIG-Bench-Mistake (Tyen et al., 2024) • Symbolic VCU 2.2k •
CriticBench (Lin et al., 2024) • Math, Common, Symbolic VU 3.8k ×
ProcessBench (Zheng et al., 2024a) • Math V 3.4k •
MR-Ben (Zeng et al., 2024b) • Science, Deductive, Coding V 6.0k •
MR-MATH (Xia et al., 2025) • Math VU 0.1k •
PRMBench (Song et al., 2025) • Math VCU 6.2k ▲
PRM-Clinic (Wang et al., 2025a) • Expert(Clinic) FVC 9.7k ×
VersaPRM (Zeng et al., 2025) • Expert FV 84.1k ×
BiGGenBench† (Kim et al., 2025a) • Math, Logic Custom 0.1k ×

Table 1: List of evaluator training data and meta-evaluation benchmarks. † symbol indicates that the datasets include
other tasks, such as summarization, instruction following, etc, where the # Trace column only counts the reasoning
subset. Train/Eval columns denote if the dataset is used for training or meta-evaluation. Domain indicates what
tasks are used to sample the reasoning trace. Criteria column shows the criteria used to annotate the data classified
according to Section 3, where FVCU stands for factuality, validity, coherence, and utility, respectively. BiGGenBench
(Kim et al., 2025a) applies hand-written, query-specific evaluation criteria (Custom). Human column indicates
human annotation, where • ▲ × denotes full human annotation, automatic annotation/perturbation with human
verification, and full LLM-based annotation, respectively.

the premise of some steps will not appear anywhere
in the previous steps (incoherent) even though it
can be eventually deduced from the query (valid).

Note that coherence judgment is inherently sub-
jective and pragmatic compared to other criteria
(Jacovi et al., 2024). For instance, seemingly trivial
steps like "A part of something is present in that
something" in WorldTree V2 (Xie et al., 2020) are
annotated as necessary in Dalvi et al. (2021) but
not necessary in Ott et al. (2023).

3.4 Utility

Utility measures whether a reasoning step con-
tributes to getting the correct final answer.

The narrower interpretation of utility is progress,
or whether the step is correctly following the
ground truth solution (Saparov and He, 2023;
Nguyen et al., 2024). For instance, in Game of
24 (making the number 24 using 4 natural numbers
and basic arithmetic operations) (Yao et al., 2023),
a solution can be defined as a sequence of opera-
tions (e.g. 5+7 = 12→ 12−6 = 6→ 6×4 = 24).
In this task, the utility of a step (making 5+7 = 12
from 5 and 7) can be directly assessed by checking
if it is a part of a correct solution.

The more general version of utility is value func-
tion (estimated reward). (Chen et al., 2023; Wang

et al., 2024c; Setlur et al., 2024). Value function
is often measured using Monte Carlo Tree Search
(MCTS), where the step’s value is determined by
the average/maximum reward of sampled continua-
tions. Evaluating utility as a value function offers
high scalability as it only requires the gold answer
for computing the reward, without any human anno-
tation or ground-truth solutions (Wang et al., 2024c;
Lai et al., 2024; Cui et al., 2025).

4 Meta-evaluation Datasets

Datasets that annotate LLM-generated reasoning
traces serve as key resources for training evaluators
and conducting meta-evaluations between evalua-
tors. A summary of existing datasets is provided in
Table 4.

Among these, one of the most influential is
PRM800k (Lightman et al., 2024). PRM800k con-
sists of crowdsourced tertiary validity labels (posi-
tive, negative, neutral) assigned step by step, fram-
ing reasoning trace error detection as a sequence
classification problem. Its design has inspired sev-
eral successors (Zeng et al., 2024a; Xia et al., 2025),
setting the paradigm for subsequent reasoning trace
evaluation resources.

To address different needs, several extensions
have been developed. Since human annotations
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Metric impl. F V C U

Rule-based ▲ ▲ ▲ ▲
Uncertainty • ▲
V-information ▲ ▲ •
LLM-as-value-function •
Cross-encoder • • ▲ ▲
Sequence classifiers ▲ • •
Critic models • • ▲ •
Generative verifiers ▲

Table 2: Mapping between each metric implementation
type to the category commonly used, where the acronym
FVCU corresponds to factuality, validity, coherence, and
utility, respectively. For each combination of metric
and implementation, • denotes that there are at least 3
published works, and ▲ denotes that there are 1 or 2.
The full table can be found in Table 3.

are costly and difficult to scale, many works have
explored automatic labeling—either by estimating
utility through Monte Carlo Tree Search (MCTS)
(Wang et al., 2024c; Luo et al., 2024b; Setlur et al.,
2024) or by generating perturbed traces with LLMs
(Lu et al., 2024; Song et al., 2025). More recent
datasets further broaden the scope by enabling
multi-criteria meta-evaluation (Jacovi et al., 2024;
Tyen et al., 2024; Song et al., 2025) and expanding
coverage beyond mathematics into diverse domains
(Zeng et al., 2024b, 2025).

Additional details are provided in Appendix B.

5 Evaluator types

The goal of reasoning trace evaluators is to assess
reasoning traces by assigning scores. However,
choosing the right evaluator for the target criteria
and task is non-trivial. For instance, there is no
guarantee that evaluators designed for factuality
and multi-hop question answering will seamlessly
work on math reasoning problems.

In this survey, we provide a comprehensive
overview of diverse reasoning trace evaluators,
(Luo et al., 2024a; Wei et al., 2025). We summarize
eight popular evaluator types based on the criteria
they evaluate (summarized in Table 2), along with
other practical strengths and weaknesses.

5.1 Rule-based matching
For tasks where the ground truth solution can be ex-
pressed as a graph of entities, a step corresponds to
a directed edge between two entities, as in knowl-
edge graphs for factual reasoning (Nguyen et al.,
2024) or computation graphs for arithmetic prob-
lems (Li et al., 2023b). In this setting, factuality
reduces to identifying the correct relation between

entities, coherence to the correct ordering of steps,
and utility to the existence of the step in the gold
reasoning chain (Nguyen et al., 2024; Saparov and
He, 2023). However, this approach does not gen-
eralize for tasks without clear symbolic represen-
tations, e.g., commonsense reasoning or complex
math reasoning beyond arithmetic word problems.

5.2 Intrinsic metrics
Uncertainty Uncertainty of the model can be
used as an intrinsic proxy for the generated con-
tent’s quality (Xiao and Wang, 2021; Zhang et al.,
2023b). Qiu et al. (2024) use token probability
entropy, defined as Σt∈V p(t)log(p(t)) where p is
the probability distribution of all tokens in vocab-
ulary V . Farquhar et al. (2024) and Kossen et al.
(2024) extend the approach by clustering semanti-
cally similar tokens and calculating the entropy for
each cluster. While uncertainty-based evaluators
are primarily used for factuality (Wu et al., 2024a;
Farquhar et al., 2024), they have also been applied
for evaluating validity (Zhu et al., 2025) or utility
(Hu et al., 2024), indicating that uncertainty can be
a criteria-agnostic proxy of the quality of steps.

V-information Chen et al. (2023); Prasad et al.
(2023) adopt V-information (VI) (Hewitt et al.,
2021) from information theory. Informally, VI
measures if a model family V can generate the
correct goal string g with higher probability when
the target string t is given to the model. Formally,
VI(t → g) = log pV(g|t) − log pV(g|ϕ) when ϕ
is an empty string. When g is the final answer and
t is the trace, VI becomes the difference between
the answer token’s probability between Chain-of-
thought reasoning and zero-shot reasoning, which
indicates how much information the trace provides
to predicting the final answer (utility) (Chen et al.,
2023). When g is a step and t is the list of previous
steps, high VI means that a step is likely to follow
from the context, which roughly corresponds to
coherence (Prasad et al., 2023).

LLM-as-value-function RL can train LLMs to
align rewards to token probabilities (relative to the
base probability obtained from the initial model),
with training objectives like DPO (Rafailov et al.,
2023) and GRPO (Shao et al., 2024). For instance,
when the reward is determined by the final answer
correctness, the token probabilities directly corre-
spond to utility (Mahan et al., 2024; Lai et al., 2024;
Xie et al., 2024; Pang et al., 2024). Unlike sequence
classifiers that lose their trace generation ability af-
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Type Name Domains Criteria Note

Rule-based DiVeRSeE (Li et al., 2023b) Arith VU Computation graph
Direct Evaluation (Nguyen et al., 2024) Factual FVCU Knowledge graph

Uncertainty

UoT (Hu et al., 2024) Common, Expert U
Entropy-based decoding (Qiu et al.,
2024)

Factual F

Semantic entropy probes (Farquhar et al.,
2024; Kossen et al., 2024)

Factual, Common F

SynCheckE (Wu et al., 2024a) Factual F
UnCert-CoT (Zhu et al., 2025) Code V

V-information
REV (Chen et al., 2023) Common U
ReCEvalE (Prasad et al., 2023) Common, Arith CVU
EPVI (Wang et al., 2024d) Arith, Common U

LLM-as-value-function

GenRM (Mahan et al., 2024) Math, Logic, Code U
V-STaR (Hosseini et al., 2024) Arith, Code U
MCTS-DPO (Xie et al., 2024) Math, Common,

Science
U

Step-DPO (Lai et al., 2024) Math U
Tree-PLV (He et al., 2024b) Math, Common U
Step-Controlled DPO (Lu et al., 2024) Math U
IRPO (Pang et al., 2024) Math, Common U
PRIME (Cui et al., 2025) Math U

Cross-encoders

ROSCOE-LI (Golovneva et al., 2023a) Common, Arith FVC Off-the-shelf
ReCEvalE (Prasad et al., 2023) Common, Arith CVU Off-the-shelf
DiVeRSeE (Li et al., 2023b) Arith VU Off-the-shelf
DBS (Zhu et al., 2024b) Common, Arith,

Symbolic
FVCU Synthetic data

SynCheckE (Wu et al., 2024a) Factual F Off-the-shelf

Sequence Classifiers

GSM8k-verifier (Cobbe et al., 2021) Arith U Outcome
PRM800K (Lightman et al., 2024) Math V Process
MATH-Minos (Gao et al., 2024a) Math V Outcome/process
Math-Shepherd (Wang et al., 2024c) Math U Process
Eurus-PRM (Yuan et al., 2024) Math U Process
PAV (Setlur et al., 2024) Math U Process
ReasonEval (Xia et al., 2025) Math V Process
Qwen-PRM (Zhang et al., 2025) Math, Science VU Process
VersaPRM (Zeng et al., 2025) Expert FV Process

Critic models

Verify-CoT (Ling et al., 2023) Math, Symbolic V Partial context
Tree-of-thoughts (Yao et al., 2023) Arith, Common U No fine-tune
RAGTruth (Niu et al., 2024) Common F
CPO (Zhang et al., 2024d) Factual, Arith U
F2-Verification (Wang et al., 2024b) Common, Symbolic,

Arith
FV No fine-tune

OCEAN (Wu et al., 2024c) Factual, Common F
Critic-CoT (Zheng et al., 2024b) Math, Common,

Science, Logic
U

AutoRace (Hao et al., 2024) Math, Common,
Logic

Custom No fine-tune

R-PRM (She et al., 2025) Math V
PARC (Mukherjee et al., 2025) Math V No fine-tune, Par-

tial context
Reasoning evaluators (Kim et al., 2025b) Math, Science,

Code
V No fine-tune

ThinkPRM (Khalifa et al., 2025) Math, Science,
Code

V

Generative verifiers CLoud (Ankner et al., 2024) Math, Logic, Code V
Generative verifier (Zhang et al., 2024c) Math, Symbolic V

Table 3: Evaluators for step-by-step reasoning. E denotes that the method is an ensemble of different methods.
Domain specifies the tasks the evaluator is trained/evaluated with (refer to Appendix A for more details on reasoning
task). The acronym FVCU in the Criteria column denotes factuality, validity, coherence, and utility, respectively. For
AutoRace (Hao et al., 2024), LLMs are instructed to list the criteria based on incorrect traces (Custom).
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ter fine-tuning, these models retain (and improve)
the ability to generate traces. However, this method
requires numerous good and bad reasoning traces
for training. Consequently, most existing LLM-as-
value-function evaluators focus on utility, as it is
easier to scale up the data by simply checking if
the final answer is correct.

5.3 External evaluators

Cross-encoders Cross-encoders simultaneously
encode multiple sentences using a single, small
network often with millions of parameters (Devlin
et al., 2019; Liu et al., 2019). They have been
widely applied to solve tasks such as natural lan-
guage inference (Bowman et al., 2015) and fact
verification (Thorne et al., 2018), where one has to
determine if the hypothesis can be inferred from
the given premise. Cross-encoders trained on off-
the-shelf tasks (Golovneva et al., 2023a; Zha et al.,
2023; Prasad et al., 2023) or LLM-perturbed data
(Zhu et al., 2024b) can be used to evaluate a reason-
ing step based on the query (factuality) or previous
steps (validity). However, their limited language
understanding ability and shorter context length
restrict their performance in more complex tasks.

Sequence classifiers (Reward Models) 2 Se-
quence classifiers are language models with a
lightweight classification head attached to the final
hidden state, trained to predict a numeric score in a
supervised manner (Lightman et al., 2024; Wang
et al., 2024c; Setlur et al., 2024). Sequence classi-
fiers can be further divided into (1) process (step-
level) evaluator vs. outcome (trace-level) evaluator
based on the granularity of each step (Lightman
et al., 2024), and (2) validity evaluator vs. utility
evaluator based on the source of the training data.
These models achieve significant performance and
efficiency (Cobbe et al., 2021; Zhang et al., 2025),
but they often require costly stepwise labels for
training (Lightman et al., 2024). Furthermore, they
cannot generate rationales for a high or a low score,
having limited explainability and leading to spuri-
ous errors (Ankner et al., 2024; She et al., 2025).

Critic models (LLM-as-a-judge) Critic models
are LLMs that are trained or prompted to evaluate
the reasoning traces (Zheng et al., 2023; Kim et al.,

2While reward model generally refers to any model that
predicts the desirability of an action in reinforcement learning,
the term ’(process/outcome) reward model’ in the context
of reasoning trace evaluation often refers to the sequence
classifier architecture.

2024a; Zheng et al., 2024a; Lin et al., 2024). This
approach views trace evaluation as one of many
reasoning tasks, where common techniques like
Chain-of-thought prompting (Huang et al., 2024a)
and reinforcement learning with verifiable rewards
(Chen et al., 2025a) can apply. Numerous works
show that LLMs are versatile critics; they can effec-
tively evaluate factuality, validity, coherence, and
utility in diverse reasoning tasks with or without
fine-tuning (Yao et al., 2023; Jacovi et al., 2024;
Wu et al., 2024d; Niu et al., 2024). While concep-
tually simple and compatible with closed-source
models, generating the rationales requires signifi-
cant execution time and computation compared to
other evaluator types.

Generative Verifiers This paradigm lies in the
middle ground of sequence classifiers and critic
models. These models first autoregressively gen-
erate the evaluation rationale as critic models do.
When the generation terminates, like sequence
classifiers, a small, fine-tuned head predicts the
scores conditioned on both the original reasoning
trace and evaluation rationales generated by itself
(Ankner et al., 2024; Zhang et al., 2024c).

6 Further improving evaluators

This section discusses some of the recent empirical
findings on improving evaluators beyond choosing
different types, e.g., training data, input format, and
scaling compute.

Validity and utility are complementary Valid-
ity measures if the step is logically correct, while
utility measures if the step makes progress towards
the correct answer. Initially, utility-based process
reward models were proposed as an alternative
for validity, since constructing validity data often
requires a costly annotation process (Wang et al.,
2024c). Under the hood, there lies an implicit as-
sumption that useful steps are mostly valid.

However, recent works show that the two cri-
teria are rather complementary, from training se-
quence classifiers to using critic models. Zhang
et al. (2025) trains a sequence classifier by only
considering steps that are both valid (judged by
critic models) and useful (by MCTS-based rollouts)
steps as positive, substantially improving perfor-
mance over baselines that only consider validity or
utility (Figure 4, Sequence Classifiers). Sun et al.
(2024); Kim et al. (2025b) has also shown that aver-
aging validity and utility scores from critic models
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Figure 4: Plot of different evaluators introduced in Sec-
tion 6, plotted by ProcessBench performance (Zheng
et al., 2024a) (GSM8k, MATH subsets averaged) versus
total compute for evaluating a trace. While these evalu-
ators share the same base model (Qwen-2.5-7B), they
improve the base model’s trace evaluation capability in
different ways. Details can be found in Appendix D.

results in better performance than individual scores
in Best-of-N decoding.

The misalignment between validity and utility is
mainly caused by steps that are logically wrong but
reach the correct answer (Zheng et al., 2024a; Wang
et al., 2025b; Kim et al., 2025b). These invalid but
useful steps, also known as unfaithful reasoning of
LLMs (Lyu et al., 2023; Schnitzler et al., 2024),
might lead to overestimation of reasoning ability
(Lyu et al., 2023; Petrov et al., 2025).

Partial context allows efficient and accurate eval-
uation Validity and coherence evaluate a step
based on its previous steps. The most intuitive way
is to use the full context (all preceding steps). How-
ever, this approach is not feasible when the trace
exceeds the context length of the evaluators, e.g.,
large reasoning models’ traces are often too long
to apply critic models (Kim et al., 2025b).

An alternative solution is to use a partial context,
where only relevant parts of the query and preced-
ing steps are selected and passed to the evaluator
(Ling et al., 2023; Mukherjee et al., 2025). These
works first construct a directed entailment graph,
and evaluate the step only based on the identified
premises. This allows evaluators to use shorter
context, which is both computationally efficient
(Ling et al., 2023) and even more accurate as dis-
tractors are removed from the context (Mukherjee
et al., 2025) (Figure 4, Partial context). Moreover,

the graph structure also distinguishes direct errors
(premises are valid but the reasoning is invalid)
and accumulated errors (premises are invalid but
reasoning is valid) (Mukherjee et al., 2025).

Test-time scaling improves evaluator perfor-
mance Test-time scaling is a general paradigm
where investing more test-time compute leads to
improved performance. Test-time compute can be
scaled in diverse directions, such as sampling the
output multiple times (Wang et al., 2023b; Yao
et al., 2023) or generating more tokens during a
single inference (Snell et al., 2024; Qwen-Team,
2024; DeepSeek-AI, 2025).

This paradigm can be extended to critic mod-
els that reason on reasoning traces, especially in
meta-evaluation benchmarks. When applying ma-
jority voting of independently sampled K evaluator
scores in generative models (critic model, genera-
tive verifiers), the accuracy in predicting incorrect
steps increases linearly with the scale of logK
(Singhi et al., 2025; Kim et al., 2025b; She et al.,
2025) (Figure 4, Majority voting). Furthermore, us-
ing large reasoning models (LRMs) with stronger
reasoning capability by generating longer traces
(Zheng et al., 2024a; Kim et al., 2025b; Khalifa
et al., 2025) leads to significant improvement in
error detection (Figure 4, Scaling (LRMs)).

In verifier-guided search settings, one can either
scale exploration or scale evaluation. For instance,
in Best-of-N decoding, one can increase the num-
ber of responses or use critic models that produce
longer outputs. What is the optimal strategy with
a constrained computing budget? For relatively
weaker evaluators, simple majority voting (Wang
et al., 2023b) often outperforms verifier-guided
search (Zhang et al., 2025; Singhi et al., 2025).
However, using stronger evaluators, e.g., sequence
classifiers with better training data (Zhang et al.,
2025) or critic models with stronger reasoning ca-
pabilities (Khalifa et al., 2025; Kim et al., 2025b)
for Best-of-N can effectively outperform majority
voting using the same computation budget.

7 Future directions

Evaluating real-world reasoning traces with ex-
ternal knowledge Existing datasets for reason-
ing trace evaluation are mostly restricted to sim-
ple factual reasoning (e.g. factual multi-hop ques-
tion answering) or self-contained problems (e.g.
math problems). However, many realistic reason-
ing tasks such as repository-level coding (Zhang
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et al., 2023a), medicine (Savage et al., 2024), and
law (Holzenberger and Van Durme, 2021; Kim
et al., 2024b) require external up-to-date knowl-
edge retrieval-augmented generation (Lewis et al.,
2020). Developing evaluators and meta-evaluation
benchmarks for these tasks will significantly en-
hance the applicability of reasoning trace evalua-
tion in more realistic scenarios.

Evaluating long, complex reasoning traces Fol-
lowing OpenAI o1 (OpenAI, 2024b), numerous
large reasoning models (LRMs) that generate long,
complex traces involving self-verification and back-
tracking were introduced (DeepSeek-AI, 2025;
Muennighoff et al., 2025; Gandhi et al., 2025).
However, existing evaluators are not suitable for
these complex traces. For instance, assigning a
single scalar score (e.g., sequence classifiers) will
make invalid steps corrected afterwards (Wait, this
reasoning is not correct.) and ones not corrected
indistinguishable. Since LRM reasoning traces can
contain critical errors (Petrov et al., 2025; Chen
et al., 2025b), the effort to develop evaluation re-
sources for such traces will lead to a better under-
standing of LRMs’ behaviors and further improve-
ment in their performance and credibility.

Advanced methods for finding premises. NLI-
based validity and coherence evaluation signifi-
cantly benefit from determining the previous steps
that the current step uses as a premise (Mukherjee
et al., 2025). However, finding such steps is not
a trivial task. ROSCOE (Golovneva et al., 2023a)
uses the minimum NLI score of all (previous step,
current step) combinations, which ignores cases
where a step has multiple premises. Recent works
(Ling et al., 2023; Tyen et al., 2024; Mukherjee
et al., 2025) make the reasoner LLM annotate the
premises of the given step. Plausible but under-
explored approaches include applying uncertainty-
based methods (Chen et al., 2023; Wu et al., 2024a)
or training a parser that annotates the logical depen-
dencies between steps as graphs (Lee et al., 2025b).

Symbol-grounded evaluation of reasoning traces
Reasoning tasks often have a symbolic ground truth
solution. For instance, deductive reasoning tasks
can be represented with formal logic, and arith-
metic problems can be expressed as a series of
equations or symbolic theorems. These solutions
provide precise, formal ways to define evaluators,
including validity and utility (progress). However,
not much work has been done to exploit the par-

allel between reasoning traces and the underlying
symbolic solution. While several rule-based ap-
proaches parse reasoning traces for evaluation in
relatively simpler reasoning tasks (Saparov and He,
2023; Nguyen et al., 2024; Li et al., 2023b), no
attempts have been made to extend this paradigm
to evaluate reasoning traces for more complex and
realistic tasks like first-order logic reasoning (Han
et al., 2024a,b) and formal math reasoning that use
interactive theorem provers (e.g., Lean, Isabelle)
(Yang et al., 2023; Gao et al., 2024c).

Rubric-based evaluation for complex and
expert-level tasks. Existing evaluators often ap-
ply identical evaluations for all reasoning trace,
e.g., using the same LLM-as-a-judge prompt for
all inputs. However, as the reasoning tasks require
more domain knowledge and expertise, there is
an increasing need for highly specific rubrics for
evaluating reasoning traces (Kim et al., 2025a). For
instance, one can calculate the sum of an arithmetic
sequence by adding all terms one by one or finding
a general term; the problem-specific rubrics explic-
itly prefer the latter. However, manual rubric gen-
eration is costly and less scalable, which motivates
automatic extraction/generation of high-quality rea-
soning trace rubrics. AutoRace (Hao et al., 2024)
aims to generate rubrics automatically based on in-
correct responses, while RaR (Gunjal et al., 2025)
extracts checklist-style rubrics from ground-truth
biomedical documents. Still, automatically obtain-
ing expert-level, high-quality rubrics for more di-
verse reasoning tasks remains an open question.

8 Conclusion

This survey aims to organize existing criteria and
methods for step-by-step reasoning evaluation,
which is crucial for understanding and improving
LLM’s reasoning capabilities. We provide a unified
taxonomy for evaluation criteria, a comprehensive
review of existing evaluators and their implemen-
tation, and examine recent directions on how to
improve these evaluators.

Still, diverse challenges remain in evaluating
step-by-step reasoning traces. As new reasoning
tasks and methods emerge, existing evaluators of-
ten become obsolete for evaluating complex reason-
ing traces from new tasks and models. As LLMs
are now involved in challenging and high-stakes
reasoning tasks in the real world, understanding the
nature of their errors and precisely evaluating the
reasoning trace will remain important.
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9 Limitation

References This survey includes an extensive list
of recent publications (mostly between 2022 and
2025) on reasoning trace evaluation, sourced from
*ACL, EMNLP, NeurIPS, and arXiv preprints, etc.
While there might be missing references due to
the sheer volume of works produced in this field,
we will continue to update missing references and
newly released impactful works that contribute to
the field.

Survey on diverse empirical results While Fig-
ure 4 contains a controlled comparison between dif-
ferent approaches like training sequence classifier
with different data, using partial context, or apply-
ing test-time scaling techniques, the comparison
is limited to ProcessBench results for two reasons:
(1) While most paper report reasoning performance
improvement results (Section 2.3), these results are
often not directly comparable because they make
use of different base model, which strongly affect
the overall performance. (2) Other meta-evaluation
benchmarks than ProcessBench (Jacovi et al., 2024;
Zeng et al., 2024a; Song et al., 2025) have not been
applied to diverse evaluator implementations at the
time of writing.
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Newton Cheng, Nicholas Joseph, Nicholas Schiefer,
Oliver Rausch, Robin Larson, Sam McCandlish,
Sandipan Kundu, Saurav Kadavath, Shannon Yang,
Thomas Henighan, Timothy Maxwell, Timothy
Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds,
Jared Kaplan, Jan Brauner, Samuel R. Bowman, and
Ethan Perez. 2023. Measuring faithfulness in chain-
of-thought reasoning. Preprint, arXiv:2307.13702.

Jinu Lee and Wonseok Hwang. 2025. Symba: Symbolic
backward chaining for structured natural language
reasoning. Preprint, arXiv:2402.12806.

Jinu Lee, Qi Liu, Runzhi Ma, Vincent Han, Ziqi Wang,
Heng Ji, and Julia Hockenmaier. 2025a. Entailment-
preserving first-order logic representations in natural
language entailment. Preprint, arXiv:2502.16757.

Jinu Lee, Sagnik Mukherjee, Dilek Hakkani-Tur, and
Julia Hockenmaier. 2025b. Reasoningflow: Seman-
tic structure of complex reasoning traces. Preprint,
arXiv:2506.02532.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023a. Halueval: A large-
scale hallucination evaluation benchmark for large
language models. Preprint, arXiv:2305.11747.

Ruosen Li, Zimu Wang, Son Tran, Lei Xia, and Xinya
Du. 2024a. Meqa: A benchmark for multi-hop event-
centric question answering with explanations. In Ad-
vances in Neural Information Processing Systems,
volume 37, pages 126835–126862. Curran Asso-
ciates, Inc.

Xiang Li, Zhenyu Li, Chen Shi, Yong Xu, Qing
Du, Mingkui Tan, and Jun Huang. 2024b. Al-
phaFin: Benchmarking financial analysis with

1802

https://aclanthology.org/2025.naacl-long.303/
https://aclanthology.org/2025.naacl-long.303/
https://aclanthology.org/2025.naacl-long.303/
https://arxiv.org/abs/2503.19877
https://arxiv.org/abs/2503.19877
https://doi.org/10.18653/v1/2024.findings-emnlp.319
https://doi.org/10.18653/v1/2024.findings-emnlp.319
https://doi.org/10.18653/v1/2024.findings-emnlp.319
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2406.15927
https://doi.org/10.18653/v1/2024.emnlp-main.946
https://doi.org/10.18653/v1/2024.emnlp-main.946
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://aclanthology.org/2025.findings-naacl.96/
https://aclanthology.org/2025.findings-naacl.96/
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2402.12806
https://arxiv.org/abs/2402.12806
https://arxiv.org/abs/2402.12806
https://arxiv.org/abs/2502.16757
https://arxiv.org/abs/2502.16757
https://arxiv.org/abs/2502.16757
https://arxiv.org/abs/2506.02532
https://arxiv.org/abs/2506.02532
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2305.11747
https://proceedings.neurips.cc/paper_files/paper/2024/file/e560a0b22e4432003d0dba63ff8dc457-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e560a0b22e4432003d0dba63ff8dc457-Paper-Datasets_and_Benchmarks_Track.pdf
https://aclanthology.org/2024.lrec-main.69/
https://aclanthology.org/2024.lrec-main.69/


retrieval-augmented stock-chain framework. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 773–
783, Torino, Italia. ELRA and ICCL.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023b. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333, Toronto,
Canada. Association for Computational Linguistics.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning.
Preprint, arXiv:2402.14809.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reason-
ing. In Advances in Neural Information Processing
Systems, volume 36, pages 36407–36433. Curran As-
sociates, Inc.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Dakuan Lu, Xiaoyu Tan, Rui Xu, Tianchu Yao, Chao
Qu, Wei Chu, Yinghui Xu, and Yuan Qi. 2025.
Scp-116k: A high-quality problem-solution dataset
and a generalized pipeline for automated extraction
in the higher education science domain. Preprint,
arXiv:2501.15587.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024. Step-controlled dpo: Leveraging
stepwise error for enhanced mathematical reasoning.
Preprint, arXiv:2407.00782.

Junliang Luo, Tianyu Li, Di Wu, Michael Jenkin, Steve
Liu, and Gregory Dudek. 2024a. Hallucination detec-
tion and hallucination mitigation: An investigation.
arXiv preprint arXiv:2401.08358.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei

Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav
Rastogi. 2024b. Improve mathematical reasoning in
language models by automated process supervision.
Preprint, arXiv:2406.06592.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305–329,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Dakota Mahan, Duy Van Phung, Rafael Rafailov,
Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Al-
balak. 2024. Generative reward models. Preprint,
arXiv:2410.12832.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and fac-
tuality in abstractive summarization. Preprint,
arXiv:2005.00661.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. Preprint, arXiv:1809.02789.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
Preprint, arXiv:2410.05229.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Sagnik Mukherjee, Abhinav Chinta, Takyoung Kim,
Tarun Anoop Sharma, and Dilek Hakkani-Tür. 2025.
Premise-augmented reasoning chains improve error
identification in math reasoning with llms. Preprint,
arXiv:2502.02362.

Thi Nguyen, Linhao Luo, Fatemeh Shiri, Dinh Phung,
Yuan-Fang Li, Thuy-Trang Vu, and Gholamreza Haf-
fari. 2024. Direct evaluation of chain-of-thought in
multi-hop reasoning with knowledge graphs. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, pages 2862–2883, Bangkok, Thailand. As-
sociation for Computational Linguistics.

1803

https://aclanthology.org/2024.lrec-main.69/
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2402.14809
https://arxiv.org/abs/2402.14809
https://proceedings.neurips.cc/paper_files/paper/2023/file/72393bd47a35f5b3bee4c609e7bba733-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72393bd47a35f5b3bee4c609e7bba733-Paper-Conference.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2501.15587
https://arxiv.org/abs/2501.15587
https://arxiv.org/abs/2501.15587
https://arxiv.org/abs/2407.00782
https://arxiv.org/abs/2407.00782
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://arxiv.org/abs/2410.12832
https://arxiv.org/abs/2005.00661
https://arxiv.org/abs/2005.00661
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2502.02362
https://arxiv.org/abs/2502.02362
https://doi.org/10.18653/v1/2024.findings-acl.168
https://doi.org/10.18653/v1/2024.findings-acl.168


Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun
Shum, Randy Zhong, Juntong Song, and Tong Zhang.
2024. Ragtruth: A hallucination corpus for develop-
ing trustworthy retrieval-augmented language models.
Preprint, arXiv:2401.00396.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang,
Armando Solar-Lezama, Joshua Tenenbaum, and
Roger Levy. 2023. LINC: A neurosymbolic approach
for logical reasoning by combining language models
with first-order logic provers. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5153–5176, Singapore.
Association for Computational Linguistics.

OpenAI. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI. 2024b. Openai o1 system card. Preprint,
arXiv:2412.16720.

Simon Ott, Konstantin Hebenstreit, Valentin Liévin,
Christoffer Egeberg Hother, Milad Moradi, Maxi-
milian Mayrhauser, Robert Praas, Ole Winther, and
Matthias Samwald. 2023. Thoughtsource: A central
hub for large language model reasoning data. Scien-
tific Data, 10(1).

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023a. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3806–3824, Singapore. Association for Computa-
tional Linguistics.

Sarah Pan, Vladislav Lialin, Sherin Muckatira, and
Anna Rumshisky. 2023b. Let’s reinforce step by
step. Preprint, arXiv:2311.05821.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston.
2024. Iterative reasoning preference optimization.
Preprint, arXiv:2404.19733.

Debjit Paul, Robert West, Antoine Bosselut, and Boi
Faltings. 2024. Making reasoning matter: Measur-
ing and improving faithfulness of chain-of-thought
reasoning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 15012–
15032, Miami, Florida, USA. Association for Com-
putational Linguistics.

Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev,
Maria Drencheva, Kristian Minchev, Mislav
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A Tasks

This section describes different reasoning tasks and
datasets in more detail. While all reasoning tasks
fundamentally share the same criteria, literature
about a specific task has focused on one criterion
over others. For instance, evaluators for factual rea-
soning tasks often emphasized detecting infactual
statements, while evaluators for math reasoning
tasks aimed for invalid statements. These discrep-
ancies are one of the fundamental causes of the
divergence of the terminologies and definitions in
the field.

A.1 Multi-hop Question Answering

Multi-hop question answering (MHQA) tasks re-
quire taking information from multiple sources
to derive the correct answer (Yang et al., 2018).
MHQA is often divided into two subcategories,
factual reasoning and commonsense reasoning.

Answering factual MHQAs can be seen as find-
ing the sequence of bridging entities that leads to
the final answer (Yang et al., 2018; Talmor and
Berant, 2018; Kwiatkowski et al., 2019). For ex-
ample, to solve a factual MHQA question "The Ar-
gentine PGA Championship record holder has won
how many tournaments worldwide?", one must first
find who the Argentine PGA championship record
holder is (bridging entity) and determine how many
tournaments he has won worldwide. As bridging
entity identification does not require sophisticated
reasoning ability compared to other tasks, reason-
ing trace evaluation on factual MHQA mostly fo-
cuses on the factuality based on semantic alignment
between the query (retrieved documents) and the
trace (Golovneva et al., 2023a).

In contrast, an inference step in commonsense
MHQAs (Clark et al., 2018; Mihaylov et al., 2018;
Talmor et al., 2019; Bisk et al., 2019; Geva et al.,
2021; Trivedi et al., 2022) can require information
that is not present in the query. The form of such
commonsense knowledge can be diverse, ranging
from well-known facts (Paris is in France.) to log-
ical rules (If A was born after B was dead, they
have never met each other). Due to these implicit
steps, factuality, validity, and coherence are often
hard to separate in evaluating commonsense reason-
ing traces (Jacovi et al., 2024; Zeng et al., 2024b).
Furthermore, due to the inherent subjectiveness of
validity and coherence in commonsense reasoning,
there might be non-negligible inter-annotator dis-
agreement on certain questions (Jacovi et al., 2024)
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LLMs are known to achieve strong performance
in challenging MHQA datasets such as ARC-
Challenge and PIQA, sometimes exceeding human
performance (OpenAI, 2024a; Anil et al., 2023).
However, multiple studies report that even modern
LLMs like GPT-4 (OpenAI, 2024a) are vulnerable
to errors, such as failing to correctly adhere to long
evidence (Zhu et al., 2024a), leveraging shortcuts
(Schnitzler et al., 2024), or ignoring the temporal
relation between events (Li et al., 2024a). There-
fore, identifying and categorizing mistakes made
by LLMs in these tasks is still an important goal.

A.2 Symbolic Reasoning

Since the discovery of Chain-of-thought prompting
(Wei et al., 2022; Kojima et al., 2022), step-by-step
reasoning largely expanded LLMs’ ability to solve
symbolic reasoning tasks3 such as mathematical
reasoning, logical reasoning, and algorithmic
reasoning. As the final answer and the reasoning
process are highly objective in these tasks, utility
and validity are the two most popular criteria for
evaluating reasoning traces from symbolic tasks.

Arithmetic reasoning, where the model has
to predict the correct answer from arithmetic
word problems, is the most renowned variant of
math reasoning. Popular benchmarks include
MathQA (Amini et al., 2019) and GSM8k (Cobbe
et al., 2021), which provide long, diverse nat-
ural language queries in contrast to relatively
synthetic, simple benchmarks (Koncel-Kedziorski
et al., 2016; Miao et al., 2020). Game of 24 (Yao
et al., 2023) and Mathador (Kurtic et al., 2024)
ask to combine given numbers and arithmetic op-
erations to generate the target number, requiring
exploration and backtracking in the exponential
solution space.

The recent saturation of LLMs in arithmetic
word problems facilitated more challenging math-
ematical reasoning benchmarks from math com-
petitions and university textbooks, covering fields
like calculus, probability, statistics, geometry, num-
ber theory, and more (He et al., 2024a; Gao et al.,
2024b; Glazer et al., 2024; Zhang et al., 2024b).
While these benchmarks were highly challenging to
the state-of-the-art LLMs of the time of release, re-
cently emerging large reasoning models (OpenAI,

3While symbolic reasoning may strictly refer to algorith-
mic reasoning in some literature (Wei et al., 2022; Suzgun
et al., 2022), we adopt the broader sense including math and
logical reasoning that can be readily expressed in symbols
(e.g., equation, logic) (Sprague et al., 2024).

2024b; Qwen-Team, 2024; DeepSeek-AI, 2025)
achieve unprecedented performance in these bench-
marks by generating long reasoning traces often
with self-verification and backtracking.

Deductive logical reasoning (Tafjord et al.,
2021; Tian et al., 2021; Saparov and He, 2023;
Han et al., 2024a) mainly focuses on logical deduc-
tion, where one should repeatedly apply the gen-
eral rules to specific facts as in classical syllogism.
Constraint-based reasoning (Zhong et al., 2021;
Tyagi et al., 2024) is a variant of deductive reason-
ing where one must find the solution that satisfies
the provided initial constraints (e.g., grid puzzles
(Zhong et al., 2021)). As these datasets are easy to
solve in a symbolic form like logic programming
(Saparov and He, 2023; Pan et al., 2023a; Olausson
et al., 2023; Lee and Hwang, 2025) but harder in
natural language due to the size of the search space
(Kang et al., 2024), they have served as a diag-
nostic benchmark for understanding and analyzing
the complex reasoning capability of large language
models (Sinha et al., 2019; Saparov and He, 2023;
Han et al., 2024a). However, as these datasets are
often synthetically generated from their symbolic
representations, they might not fully generalize to
real-world problems with linguistic diversity and
commonsense.

Finally, algorithmic reasoning tasks include
manipulating strings and data structures, such as
concatenating the last letters of the given words
(Wei et al., 2022) or completing the incomplete
Dyck language. BIG-Bench-Hard (BBH; Suzgun
et al. (2022)) and NPHardEval (Fan et al., 2024) in-
clude 11 and 9 algorithmic reasoning tasks, respec-
tively, which are challenging for modern LLMs
like GPT-4 and PaLM-540B.

A.3 Others
Science reasoning tasks lie between fac-
tual/commonsense reasoning tasks and symbolic
reasoning tasks, as they often require under-
standing complicated facts combined with world
knowledge and performing precise math/logical
reasoning (Hendrycks et al., 2021; Rein et al.,
2024; He et al., 2024a; Lu et al., 2025). The most
popular benchmark in this field, GPQA-Diamond
(Rein et al., 2024), contains 546 questions from
physics, chemistry, and biology, where human
experts only get 65% of the problems correct.

Expert-domain reasoning includes domain-
specific reasoning tasks that often require signifi-
cant expertise in the field, e.g., biomedical reason-
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ing (Šuster and Daelemans, 2018; Savage et al.,
2024; Zuo et al., 2025), legal reasoning (Holzen-
berger et al., 2020; Guha et al., 2023; Kim et al.,
2024b), and financial reasoning (Chen et al., 2022;
Li et al., 2024b). These tasks require both domain-
specific knowledge and reasoning strategies, posing
a significant challenge to modern language models
(Zuo et al., 2025; Li et al., 2024b). However, due to
the high cost of expert annotation, existing methods
often oversimplify real-world challenges (Holzen-
berger and Van Durme, 2021; Guha et al., 2023);
consequently, the demand for resources that closely
reflect real-world expert applications is rising.

Programming/coding is closely related to algo-
rithmic reasoning. Popular benchmarks regarding
programming include competitive coding, where
one has to solve an algorithm problem given in
natural language and test codes (Chen et al., 2021;
Li et al., 2022), and practical coding that covers
tasks of software engineers and developers (Zhang
et al., 2023a; Jimenez et al., 2024; Chan et al.,
2024). Programming differs from other reasoning
tasks in various aspects: (1) codes are strictly con-
strained by predefined syntax and semantics, and
(2) the result is evaluated by the execution result
rather than the code itself. These constraints make
(1) segmenting the trace (code) into steps and (2)
applying metrics that require explicitly stated an-
swers, i.e., V-information, difficult than in natural
language reasoning traces. Therefore, most evalua-
tors specialized in code focus on trace-level utility
rather than step-wise evaluation, defined as the pass
rate of predefined unit tests (Dai et al., 2025).

B Appendix for Meta-evaluation Datasets

This appendix includes discussions on the dataset
construction process, with a focus on data anno-
tation and label types. A summary of existing
datasets can be found in Table 4.

B.1 Data collection process

B.1.1 Labeling methods
Human annotation The most straightforward
approach to decide the ground truth label is to
use human evalua tion (Lightman et al., 2024; Ja-
covi et al., 2024; Zeng et al., 2024a; Zheng et al.,
2024a). The largest human annotation experiment
was conducted by Lightman et al. (2024), where
crowdsourced annotators labeled the validity of
800k steps (75k reasoning traces). Due to the sheer
volume of annotation, an active learning strategy

was used; the annotators were requested to anno-
tate hard samples (the final answer is incorrect but
judged as valid by the reward model), which were
added to the training data for the next version of
the reward model.

LLM annotation As a cheap alternative for hu-
man evaluation, LLM-as-a-judge is often used to
generate labels (Gao et al., 2024a; Zhang et al.,
2025). However, LLM-assigned labels are not
fully credible, given that state-of-the-art LLMs still
make errors in human-annotated datasets (Zheng
et al., 2024a; Kim et al., 2025b). Therefore, LLM-
annotated data is often used to augment the training
data rather than for meta-evaluation purposes.

Perturbation Another method to create positive
and negative samples is to insert errors into correct
reasoning traces. For instance, Zhu et al. (2024b);
Lu et al. (2024) samples traces that reach the cor-
rect answer, and prompts an LLM to introduce a
predefined form of perturbation to the reasoning
trace. This allows easy sampling of diverse erro-
neous traces that can improve the robustness of
evaluators, but using human-defined errors might
not correctly reflect the true distribution of LLM-
generated errors.

Step-level utility Some datasets use step-level
utility as their labels. The most prominent approach
is Monte Carlo Tree Search (Wang et al., 2024c),
where the step-level utility is measured by sampling
rollouts from a step and checking if they reach the
correct answer. However, to increase the efficiency
of the search for negative labels (low utility), Luo
et al. (2024b); Dai et al. (2025) implements a binary
search algorithm to locate the first step with low
utility. One notable variant of step-level utility
labels is advantage, where the evaluators are not
trained to predict the expected reward of each node
but the change in the expected rewards before and
after generating the step (Setlur et al., 2024).

Trace-level utility The coarsest label is the trace-
level utility, simply measured by the correctness of
the final answer (Lambert et al., 2025).

Both trace-level and step-level utilities do not
require human annotation other than the final an-
swer, which is much cheaper to obtain than hu-
man annotations (Wang et al., 2024c). However,
they cannot serve as a reliable proxy of factual-
ity/coherence/validity due to unfaithful reasoning,
where traces that reach the correct answer (high
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Dataset Train Eval Domain Criteria # Trace Human

ROSCOE (Golovneva et al., 2023b) • Math, Common FVU 1.0k •
RAGTruth† (Niu et al., 2024) • • Fact F 5.9k •
HaluEval†(Li et al., 2023a) • • Fact F 10k ▲
Math-Shepherd (Wang et al., 2024c) • Math U 440k ×
PRM800k (Lightman et al., 2024) • • Math V 75k •
REVEAL (Jacovi et al., 2024) • Common FVC 3.4k •
MATH-Minos (Gao et al., 2024a) • Math V 440k ×
SCDPO (Lu et al., 2024) • Math U 30k ×
MR-GSM8k (Zeng et al., 2024a) • Math V 3.0k •
BIG-Bench-Mistake (Tyen et al., 2024) • Symbolic VCU 2.2k •
CriticBench (Lin et al., 2024) • Math, Common, Symbolic VU 3.8k ×
ProcessBench (Zheng et al., 2024a) • Math V 3.4k •
MR-Ben (Zeng et al., 2024b) • Science, Deductive, Coding V 6.0k •
MR-MATH (Xia et al., 2025) • Math VU 0.1k •
PRMBench (Song et al., 2025) • Math VCU 6.2k ▲
PRM-Clinic (Wang et al., 2025a) • Expert(Clinic) FVC 9.7k ×
VersaPRM (Zeng et al., 2025) • Expert FV 84.1k ×
BiGGenBench† (Kim et al., 2025a) • Math, Logic Custom 0.1k ×

Table 4: List of evaluator training data and meta-evaluation benchmarks. † symbol indicates that the datasets include
other tasks, such as summarization, instruction following, etc, where the # Trace column only counts the reasoning
subset. Train/Eval columns denote if the dataset is used for training or meta-evaluation. Domain indicates what
tasks are used to sample the reasoning trace. Criteria column shows the criteria used to annotate the data classified
according to Section 3, where FVCU stands for factuality, validity, coherence, and utility, respectively. BiGGenBench
(Kim et al., 2025a) applies hand-written, query-specific evaluation criteria (Custom). Human column indicates
human annotation, where • ▲ × denotes full human annotation, automatic annotation/perturbation with human
verification, and full LLM-based annotation, respectively.

utility) often include factual/logical errors (Lan-
ham et al., 2023; Lyu et al., 2023; Zheng et al.,
2024a; Kim et al., 2025b).

B.1.2 Inter-annotator agreement
While reasoning trace evaluation is considered
more objective than other long-text evaluation tasks
(e.g., helpfulness, bias/harmfulness, and language
proficiency) (Wang et al., 2024a), a certain amount
of inter-annotator disagreement is inevitable. Here,
we report the trend in inter-annotator agreement
observed in existing human annotation works.

Incorrect solutions for harder problems lead
to higher disagreement ProcessBench (Zheng
et al., 2024a) consolidates the intuitive hypothe-
sis that inter-annotator disagreement grows when
the query is difficult and the trace is incorrect in
at least one step. Compared to the easiest case
(GSM8k queries, correct trace), where three anno-
tators agree in 95.9% of the cases, the hardest case
(OmniMATH, incorrect trace) shows only 47.8%
of three-annotator agreement.

Inter-annotator disagreement reflects vagueness
in natural language In many cases, the disagree-
ment is significantly affected by the linguistic as-
pects of the reasoning trace. REVEAL (Jacovi

et al., 2024) manually classifies steps that aroused
disagreement between annotators into 13 distinct
categories. Among these, frequent disagreement
types like "World knowledge (some world knowl-
edge might not be taken for granted)" and "Unclear
reference (one proper noun can refer to multiple
real-world entities)" are typical disagreement types
observed in simpler recognizing textual entailment
(natural language inference) tasks (Camburu et al.,
2018; Lee et al., 2025a), showing that these vague-
ness is present even in minimal settings.

On the other hand, synthetic, algorithmic rea-
soning tasks like BIG-Bench-Hard (Suzgun et al.,
2022) are linguistically uniform. Consequently,
BIG-Bench-Mistake that annotate errors in this
benchmark (Tyen et al., 2024) observes near-
perfect inter-annotator agreement (Krippendorf’s
α > 0.97), again demonstrating the strong con-
nection between linguistic variation and inter-
annotator agreement.

B.2 Label types

Sequence classification The most common la-
bel type is sequence classification, where a qual-
ity label is assigned to each step/trace. For ex-
ample, Wang et al. (2024c) assigns binary la-
bels to steps based on the utility, and Lightman
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et al. (2024) assigns ternary validity labels (cor-
rect/incorrect/neutral) obtained by human annota-
tion. The neutral label in Lightman et al. (2024)
was introduced to absorb ambiguous cases and min-
imize inter-annotator disagreement; considering it
as positive or negative when training the evaluator
does not significantly affect the Best-of-N perfor-
mance (<1.0p).

One caveat of sequence classification is that it is
hard to define the labels after the first error (prop-
agated error). It is often unclear whether steps
that rely on the first erroneous step should be la-
beled as incorrect (because they rely on incorrect
premises) or correct (because the reasoning is cor-
rect if assuming the premises are correct) (Jacovi
et al., 2024; Mukherjee et al., 2025). Two different
label schemas are used to bypass this ambiguity:
annotating the pairwise preference and annotating
the index of the first erroneous step.

Preference (win/lose) Reasoning trace evalua-
tion can be formulated as a preference problem
(Lai et al., 2024; Lu et al., 2024; Lambert et al.,
2025). In this scenario, data points are defined as
pairs of reasoning traces, one as the winner and the
other as the loser. The pairs are often constructed
by sampling two different continuations from a
shared prefix or perturbing a correct trace. These
data are often used to train the LLM-as-a-value-
function models via preference learning algorithms,
e.g., DPO (Rafailov et al., 2023).

Identifying first erroneous index Another
method is to label the index of the first erroneous
step (Zheng et al., 2024a; Zeng et al., 2024a). In
this setting, the reasoning trace is given as a list
of steps, and the evaluator must predict the index
of the first error. If there is no error, the model
should predict -1. This setting effectively bypasses
the propagated error problem, but converting these
labels to binary classification can lead to better per-
formance in sequence classifiers and critic models
(Kim et al., 2025b).

C Comparing criteria definitions

C.1 Comparison between proposed definitions

Factuality↔Validity Factuality focuses on the
relationship between a step and provided/external
knowledge, while validity focuses on the relation-
ship between two model-generated steps. For in-
stance, Given an incorrect step Albert Einstein died
in 1965 (he died in 1955), this step is not factual if

the query explicitly mentions that Einstein died in
1955. Apart from that, if the previous steps provide
the premises for reaching 1955, i.e. Einstein was
born in 1879, and he died at the age of 76, the step
is invalid.

While the standard practice is to treat factuality
and validity separately (Prasad et al., 2023; Zhu
et al., 2024b; Jacovi et al., 2024), the boundary be-
tween stating facts and making logical inferences is
often vague, especially in commonsense reasoning.
For example, if the step states Einstein died be-
tween 1960 and 1970 when given the information
Einstein died in 1955, is this step a factual error or
a logical error? The boundary heavily relies on the
definition of what can be taken as granted, which
is also a key factor in defining coherence. RE-
VEAL (Jacovi et al., 2024) delegates the decision
to human annotators, and shows that LLMs (Anil
et al., 2023; Brown et al., 2020) perform poorly
(F1<0.65) at classifying the steps between factual
statements and logical inference.

Validity↔Coherence Existing works often treat
coherence as a subtype of validity (Golovneva et al.,
2023a; Zhu et al., 2024b; Kim et al., 2025a; Jacovi
et al., 2024), as both criteria judge a step based on
its previous steps. However, validity and coherence
are different by definition, as validity focuses on
the logical correctness of a step while coherence
focuses on the pragmatic aspect of informativeness.
For instance (Figure 3-Coherence), omitting a step
(Step 3) from the correct trace will make the subse-
quent step (Step 3’) incoherent, but it is still valid
since it can be eventually deduced from the query
and previous steps.

Validity↔Utility Previous studies have contin-
uously pointed out that validity does not necessar-
ily lead to utility and vice versa (Lyu et al., 2023;
Nguyen et al., 2024). One case is shortcut reason-
ing (Schnitzler et al., 2024; Lee and Hwang, 2025),
where LLM generates invalid Chain-of-thoughts
but guesses the correct answer directly from the
query. ProcessBench (Zheng et al., 2024a) reports
that invalid traces with correct answers can be eas-
ily found in challenging problems, reaching 51.8%
in the olympiad-level Omni-MATH (Gao et al.,
2024b).

The distinction between validity and utility has
been highlighted by multiple empirical results.
Treating these metrics as different yields substantial
performance gain when training sequence classi-
fiers (Zhang et al., 2025) and in Best-of-N decoding
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Figure 5: A Sankey diagram displaying the relationship
between commonly used terminologies (left) to the pro-
posed taxonomy (right).

(Sun et al., 2024; Kim et al., 2025b). See Section 6
for details.

C.2 Comparison to other definitions

Hallucination is most commonly defined as "mod-
els either generating (1) nonsensical or (2) unfaith-
ful to the source content" (Ji et al., 2023; Banerjee
et al., 2024; Huang et al., 2024b), which corre-
sponds to (1) validity/coherence and (2) factuality.
However, some works restrict the meaning of hal-
lucination to factual errors, i.e. "models generating
description tokens that are not supported by the
source inputs" (Xiao and Wang, 2021; Akbar et al.,
2024).

Faithfulness is also used with different senses.
The most common definition for faithfulness is
"logical consistency between the generated text
and the query/previous steps" (Maynez et al., 2020;
Creswell and Shanahan, 2022; Huang et al., 2024b),
which includes both factuality (query grounded-
ness) and validity (previous step). Instead, faith-
fulness can be used as "accurately representing
the model’s internal reasoning process" (Lyu et al.,
2023; Lanham et al., 2023). Under this definition,
the final step containing the answer is unfaithful
if it is not supported by the previous steps, which
falls under the definition of coherence.

Informativeness is defined as "providing new
information that is helpful towards deriving the gen-
erated answer" (Golovneva et al., 2023b; Prasad
et al., 2023). Lack of informativeness is often de-
scribed as redundancy "removing the step does
not affect the reasoning process" (Chiang and Lee,
2024; Song et al., 2025; Zhou et al., 2024) or ir-

relevance "unrelated to the query’s topic or task"
(Wang et al., 2023a; Zhou et al., 2024; Jacovi et al.,
2024). Informativeness is synonymous with utility,
as it aims to evaluate the contribution of a step to
reaching the final answer.

D Details for Section 6

This section provides further details regarding the
Section 6, specifically Figure 4.

D.1 Estimating Compute

To estimate the compute in Figure 4, we follow the
approximation equation from Snell et al. (2024);
Kim et al. (2025b). Specifically, the computational
cost can be asymptotically approximated as

C ∈ O(N × L),

where C is the total computational cost, N is the
number of parameters, and L is the number of to-
kens. Note that since all compared evaluators use
the same base model, N remains constant.

Below, we describe how the computation budget
for each method is calculated in Figure 4:

• Unit relative compute (1) corresponds to a sin-
gle forward pass for an average-length trace.
This applies to Fine-tuned Sequence Classi-
fiers, as they take the whole trace as the input.

• The Base Model, Fine-tuned Critic Mod-
els (She et al., 2025), and Fine-tuned
LRMs evaluate each step with a sepa-
rate forward pass. Thus, the compute is
scaled by the number of steps per trace,
which is 6.11 on average in ProcessBench
(GSM8k + MATH). Note that LRMs
like DeepSeek-Distill-Qwen-2.5-7B
(DeepSeek-AI, 2025) generate significantly
longer traces, with L scaled by 7.58.

• PARC (Mukherjee et al., 2025) also uses step-
wise critic evaluations, but only using the Par-
tial context (average 1.57 premises per step)
makes PARC require lower compute by reduc-
ing L.

• In Majority Voting setting, where 8 step-wise
evaluations are sampled per step and aggre-
gated via majority voting, the total computa-
tion cost is multiplied by 8.
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D.2 Data source
• For Base model and Majority voting

scores, authors conducted experiments with
Qwen-2.5-7B-Instruct using the code from
Kim et al. (2025b). Fine-tuned LRM scores
are as reported in the same paper.

• Sequence classifiers scores are obtained from
Zhang et al. (2025).

• Partial context scores are provided by the au-
thors of PARC (Mukherjee et al., 2025), upon
requested by the authors of this survey. While
the currently available version of the paper
does not contain the result, it will appear in
the published version.

• Fine-tuned Critic Model scores are from She
et al. (2025).
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